文档库 最新最全的文档下载
当前位置:文档库 › 铷原子的光泵磁共振

铷原子的光泵磁共振

铷原子的光泵磁共振

摘要:本实验利用光抽运技术研究在弱磁场下铷原子超精细结构塞曼子能级的磁共振,通过测量不同扫场及水平场方向组合下与共振信号对应的电流大小,比较精确地计算出了Rb 87、Rb 85的共振磁场强度、朗德因子F g 、地磁场强度及其倾角。

关键词:光抽运、塞曼子能级、磁共振、朗德因子

1、引言:

在磁场中,塞曼分裂导致的磁能级间距通常比较小,因此,产生磁共振现象所需的能量通常位于射频或微波频段。此波段的电磁波能量要比光频段的能量小得多,普通的光谱仪器根本无法分辨,所以对于那些磁共振信号很微弱的样品很难探测。

光泵,也称光抽运,是借助于光辐射获得原子基态超精细结构能级及塞曼子能级间粒子数的非平衡分布的实验方法。气体原子塞曼子能级之间的磁共振信号非常弱,利用磁共振的方法难于观察。本实验利用光泵磁共振方法既保持了磁共振分辨率高的优点,同时将探测灵敏度提高了七八个数量级,能在弱磁场下(0.1-1mT)精确检测气体原子能级的超精细结构。

2、实验原理:

2.1 铷原子基态及最低激发态的能级

铷原子基态为

2/12S 5,即电子的轨道量子数L=0,自旋量子数S=1/2,总角动量J= 1/2。最低激发态2/12P 5 及2

/32P 5是由L-S 耦合产生的双重态,轨道量子数L=1,自旋量子S=1/2。2/12P 5态J=1/2;2

/32P 5 态J=3/2。在能级5P 与5S 之间产生的跃迁是铷原子主线系的第一条线,为双线。2/12P 5到2/12S 5的跃迁产生的谱线为D1 线,波长是7948?;2/32P 5 到2

/12S 5的跃迁产生的谱线为D2 线,波长是7800?。核自旋 I = 0 的原子的价电子L-S 耦合后总角动量J P 与原子总磁矩J μ 的关系为:

J J J e g P 2m μ=-

(1) J J(J 1)L(L 1)S(S 1)g 12J(J 1)+-+++=+

+ (2) I ≠0时,Rb 87 I = 3/2,Rb 85 I = 5/2。设核自旋角动量为I P ,核磁矩为I μ ,I P 与J P 耦合成F P ,有F P =I P +J P 。耦合后的总量子数F= I+J,…,| I-J |。Rb 87基态F 有两个值, F = 2 及F = 1;Rb 85

基态有F = 3 及F = 2。由F 量子数表征的能级称为超精细结构能级。原子总角动量F P 与总磁矩F μ 之间的关系为:

F F F e g P 2m μ=-

(3) F J

F(F 1)J(J 1)I(I 1)g g 2F(F 1)

+++-+=+ (4)

在磁场中原子的超精细结构能级产生塞曼分裂(弱场时为反常塞曼效应),磁量子数F m =F, F-1, … ,-F ,即分裂成2F +1 个能量间隔基本相等的塞曼子能级,如图1所示。

图1 铷原子能级图

在弱磁场条件下,通过解铷原子的定态薛定谔方程可得其能量本征值为:

0F F B 0h

E E [F(

F 1)J(J 1)I(I 1)]g m B 2αμ=++-+-++ (5)

其中μB 为玻尔磁矩,a 为磁偶极子相互作用常数。由(5)式可得基态

2/12S 5的两个超精细能级之间的能量差为:

''[(1)(1)]2

F ah E F F F F ?=+-+ (6) 相邻塞曼子能级之间(ΔF m =±1)的能量差为:

mF F B 0E g B μ?= (7)

2.2 圆偏振光对铷原子的激发与光抽运效应

一定频率的光引起原子能级之间的跃迁时,需满足一定的条件,即原子和光子的总能量和总动量要守恒。铷原子各激发态能级跃迁图如图2

图2 铷原子各激发态能级跃迁图

量为E D H ?'op ?-=,式中r e D =是电偶极矩;E 是电场强度矢量。利用微扰哈密顿量可以计算能级之间的跃迁概率,并由跃迁概率得到光跃迁的选择定则。当入射光是左旋圆

偏振的1D 光,即+σ1D 时,选择定则为:

,1L ±=?,1,0F ±=?1m F +=?

Rb 87的2/12S 5态及2/12P 5态的磁量子数F m 最大值都是+2,当入射光是+σ1D 时,由于只能产生ΔF m =+1 的跃迁,基态F m =+2 子能级的粒子不能跃迁,如图2所示。当原子经历无辐射跃迁过程从2/12P 5回到2/12S 5时,粒子返回到基态各子能级的概率相等,这样经过若干循环之后,基态F m =+2 的子能级上的粒子数就会大大增加,即大量粒子被“抽运”到基态F m =+2 的子能级上,这就是光抽运效应。各子能级上粒子数的这种远远偏离玻尔兹曼分布的不均匀分布称为“偏极化”,光抽运的目的就是要造成偏极化,有了偏极化就可以在子能级之间进行磁共振实验。

右旋偏振光 -σ光有同样的作用,它将大量的粒子抽运到基态子能级F m = ?2 上。+

σ与-σ对光抽运有相反的作用。当入射光为等量+σ与-σ混合的线偏振光时,铷原子对光有强烈吸收,但无光抽运效应;当入射光为不等量的+σ与-σ混合的椭圆偏振光时,光抽运效应较圆偏振光小;当入射光为π光时,铷原子对光有强烈吸收,但无光抽运效应。

对Rb 85有类似结论,不同之处是1D +σ及-σ光分别将Rb 85

抽运到基态F m =±3上。 2.3 弛豫过程

在热平衡状态下, 基态各子能级上的粒子数遵从玻尔兹曼分布:

0E N N exp()kT

=- 由于在弱磁场中各子能级能量差极小,可近似认为各能级上的粒子数相等。光抽运使能级之间的粒子数之差大大增加,使系统远远偏离热平衡分布状态。系统由偏离热平衡分布状态趋向热平衡分布状态的过程称为弛豫过程。本实验涉及的几个主要弛豫过程有:

1、铷原子与容器器壁的碰撞:导致子能级之间的跃迁,使原子恢复到热平衡分布。

2、铷原子之间的碰撞:导致自旋-自旋交换弛豫,失去偏极化。

3、铷原子与缓冲气体之间的碰撞:缓冲气体的分子磁矩很小(如氮气),碰撞对铷原子磁能态扰动极小,对原子的偏极化基本没有影响。

铷原子与器壁碰撞是失去偏极化的主要原因。在样品中充进适量缓冲气体可大大减少这种碰撞,使原子保持高度偏极化。另外,温度升高时,铷原子密度升高,与器壁及原子之间的碰撞都增加,使原子偏极化减小,温度过低时,原子数太少,信号幅度很小,故存在一个最佳温度,约为40-60℃。

2.4 塞曼子能级间的磁共振

在垂直于恒定磁场B 0的方向上加一圆频率为ω1的线偏振射频场B 1,此射频场可分解为一左旋圆偏振磁场与一右旋圆偏振磁场,当g F >0时,μF 右旋进动,起作用的是右旋圆偏振磁场,此偏振磁场可写为:

B 1= B 1(e x cos ω1t+e y sin ω1t ) (8)

当 ω1满足共振条件

?ω1 =ΔE mF =g F μF B 0 (9)

时,塞曼子能级之间将产生磁共振,即被抽运到基态m F =+2子能级上的大量粒子在射频场B 1作用下,由m F =+2跃迁到m F =+1。同时由于光抽运的存在,处于基态非m F =+2子能级上的粒子又被抽运到m F =+2子能级上。感应跃迁与光抽运将达到一个新的动态平衡。在磁共振时,由于m F ≠+2子能级上的粒子数比未共振时多,因此,对D 1的σ+光的吸收增大,原理见图3

2.5 光探测

射到样品上的+σ1D 光一方面起到光抽运作用,另一方面透过样品的光兼作探测光。测

量透过样品的+σ1D 光强的变化即可得到磁共振的信号,实现了磁共振的光探测,巧妙地

将一个低频射频光子(1―10MHz )转换为一个光频光子(8

10 MHz ),使信号功率提高了7-8 个数量级。 3、实验方法:

3.1 实验装置

实验装置如图4所示。光源用高频无极放电铷灯,稳定性好、噪声小、光强大。用透过

率大于60%,带宽小于15nm 的干涉滤光片,滤去2D 光(2D 光不利于+σ1D 的光抽运)。

偏振片及1/4 波片用于产生+

σ光。透镜1L (f =5-8cm )将光源发出的光变为平行光。透

镜2L 将透过泡的平行光会聚到光电接收器上。

产生水平磁场的亥姆霍兹线圈的轴线与地磁场的水平分量方向一致,产生垂直磁场的亥姆霍兹线圈用来抵消地磁场的垂直分量。扫场信号有方波、三角波、锯齿波,与示波器扫描

同步。射频线圈放在样品泡两侧使1B 垂直于0B ,信号发生器作为射频信号源。产生水平

恒定磁场的亥姆霍兹线圈、产生水平扫场的亥姆霍兹线圈以及产生垂直磁场的亥姆霍兹线圈的供电电路分别装有反向开关,用来改变这三个线圈产生的磁场的方向。

样品泡是一个充有适量天然铷、直径约5cm 的玻璃泡,泡内充有约10Torr 的缓冲气体(如氮、氩等)。样品泡放在恒温室中,温度由30-70℃可调,恒温时温度波动小于±1℃。 光探测器由光电接收元件(光电池)及放大电路组成。

图4 光泵磁共振实验装置图

3.2 实验步骤

(1)、预热:加热样品泡及铷灯。将垂直场、水平场、扫场幅度调至最小,按下池温开关。然后按下电源开关,约30分钟后,灯温、池温指示灯亮,装置进入工作状态。

(2)、观察抽运信号。扫场方式选择方波,水平场保持最小,调大扫场幅度。设置扫场方向与地磁场水平分量方向相反。调节扫场幅度及垂直场大小和方向,使示波器上观察到的光抽运信号幅度最大且左右均匀。记下光抽运信号形状。

(3)观察光泵磁共振信号。打开信号发生器及频率计,射频频率设为650KHz 左右。扫场方式选择三角波,垂直场大小和方向保持不变,在0—0.8A 范围内慢慢调节水平场大小观察共振信号出现情况。然后对于水平场和扫场信号与地磁场水平方向的4种不同组合情况下,测量四个共振信号所对应的水平场电流值,并记录有关数据。

4、实验记录与数据处理

4.1 光抽运信号

南京大学-光磁共振实验报告

光磁共振 (南京大学物理学院 江苏南京 210000) 摘要:光磁共振是利用光抽运的方法,进一步提高磁共振灵敏度的技术。本实验依据光磁共振技术,运用“光抽运—磁共振—光探测”的方法,测量地磁场垂直分量和水平分量以及铷原子的相关参量。 关键词:光磁共振;光抽运;磁共振;塞曼效应;塞曼子能级;地磁场;朗德因子 一、实验目的 1.掌握“光抽运—磁共振—光探测”的思想方法和实验技巧,研究原子超精细结构塞曼子能级间的射频磁共振。 2. 测定銣原子87Rb 和85Rb 的参数:基态朗德因子F g 和原子核的自旋量子数I 。 3. 测定地磁场B 地的垂直分量B 地垂直、水平分量B 地水平 及其倾角θ。 二、实验原理 光磁共振技术是根据动量守恒原理,用光学抽运来研究原子超精细结构塞曼子能级间微波或射频磁共振现象的双共振技术。特点是兼有波谱学方法的高分辨率和光谱学方法的高探测灵敏度。 1.铷原子的超精细结构及其塞曼分裂 铷是一价碱金属原子,有一个价电子,处于第五壳层,主量子数n=5,电子轨道量子数L=0,1,2,3…,n-1,电子自旋S=1/2。铷原子中价电子的轨道角动量L P 和自旋角动量S P 发生轨道—自旋耦合(LS 耦合),得到电子总角动量J P ,其数值 ,,1,,J P J L S L S L S ==++-???-。当不考虑铷原子核的自旋时,铷原子总 磁矩2J J J e e g P m μ=-,其中,e e m -分别为电子的电荷、质量。朗德因子 (1)(1)(1) 12(1) J J J L L S S g J J +-+++=++ 从而形成原子的超精细结构能级,这时,铷原子的基态能级21S J n S +对应于 n=5,L=0,S=1/2,J=1/2,即为212 5S ,相应的朗德因子2J g =;铷原子的第一激发态能级 21 S J n P +对应于n=5,L=1,S=1/2,J=1/2、3/2,是双重态,即为212 5P 和232 5P ,相应的朗德因子 24 ,33J g = 。22132255P S →的能级跃迁产生光谱线1D 线(1794.76nm λ=);223322 55P S →的跃迁产生光谱线2D 线(2780.0nm λ=)。本实验观测与1D 线有关的能级的超精细结构及其在弱磁场中的塞曼分裂。 通常原子核也具有角动量,记原子核的总角动量为P ,它是核中质子和中子的轨道角 动量和自旋角动量的矢量和,核的总角动量的数值I P = ,通常也称为核自旋, 其中I 称为核的自旋量子数,I 为整数或半整数,已知稳定的原子核的I 值在0~7.5之间。 核的总角动量I P 的最大可测的分量值为 I 。当0I ≠时,原子核的总磁矩为

核磁共振实验报告

核磁共振实验报告 一、实验目的: 1.掌握核磁共振的原理与基本结构; 2.学会核磁共振仪器的操作方法与谱图分析; 3.了解核磁共振在实验中的具体应用; 二、实验原理 核磁共振的研究对象为具有磁矩的原子核。原子核是带正电荷的粒子,其自旋运动将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自选运动的原子核才具有磁矩。原子核的自选运动与自旋量子数I有关。I=0的原子核没有自旋运动。I≠0的原子核有自旋运动。 原子核可按I的数值分为以下三类: 1)中子数、质子数均为偶数,则I=0,如12C、16O、32S等。 2)中子数、质子数其一为偶数,另一为基数,则I为半整数,如: I=1/2;1H、13C、15N、19F、31P等; I=3/2;7Li、9Be、23Na、33S等; I=5/2;17O、25Mg、27Al等; I=7/2,9/2等。 3)中子数、质子数均为奇数,则I为整数,如2H、6Li、14N等。 以自旋量子数I=1/2的原子核(氢核)为例,原子核可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向: 氢核(I=1/2),两种取向(两个能级): a.与外磁场平行,能量低,磁量子数m=+1/2; b.与外磁场相反,能量高,磁量子数m=-1/2;

正向排列的核能量较低,逆向排列的核能量较高。两种进动取向不同的氢核之间的能级差:△E= μH0(μ磁矩,H0外磁场强度)。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。三、实验仪器 400MHz超导傅里叶变换核磁共振波谱仪 (仪器型号:AVANCE III 400) 四、仪器构造、组成 1)操作控制台:计算机主机、显示器、键盘和BSMS键盘。 计算机主机运行Topspin程序,负责所有的数据分析和存储。BSMS键盘可以让用户控制锁场和匀场系统及一些基本操作。 2)机柜:AQS(采样控制系统)、BSMS(灵巧磁体系统),VTU(控温单元)、 各种功放。 AQS各个单元分别负责发射激发样品的射频脉冲,并接收,放大,数字化样品放射出的NMR信号。AQS完全控制谱仪的操作,这样可以保证操作不间断从而保证采样的真实完整。BSMS:这个系统可以通过BSMS键盘或者软件进行控制,负责操作锁场和匀场系统以及样品的升降、旋转。3)磁体系统:自动进样器、匀场系统、前置放大器(HPPR)、探头。 本仪器所配置的自动进样器可放置60个样品。磁体产生NMR跃迁所需的

光磁共振实验报告

近代物理实验报告 光磁共振 班级物理081 学号 08180140 姓名周和建 时间 2011年4月27日

【摘要】 以光抽运为基础的光检验测磁共振的方法,使用DH807A型光磁共振实验装置来观察光抽运信号,进而测定铷原子两个同位素87Rb和85Rb的超精细结构塞曼子能级的朗德因子的测量。 【关键词】 光磁共振光抽运塞曼能级分裂超精细结构 【引言】 光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。 光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。 利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、实验原理 (一)铷(Rb)原子基态及最低激发态的能级 实验研究对象是铷的气态自由原子。铷是碱金属,它和所有的碱金属原子Li、Na、K一样,在紧紧束缚的满壳层外只有一个电子。铷的价电子处于第五壳层,主量子数n=5。主量子数为n的电子,其轨道量子数L=0,1, …,n-1。基态的L=0,最低激发态的L=1。电子还具有自旋,电子自旋量子数S=1/2。 由于电子的自旋与轨道运动的相互作用(即L-S耦合)而发生能级分裂, 称为精细结构。轨道角动量P s、的合成角动量P J =P L +P S 。原子的精细结构用总角动 量量子数J来标记,J=L+S,L+S-1, …,│L-S│。对于基态,L=0和S=1/2,因此 Rb基态只有J=1/2。其标记为52S 1/2。铷原子最低激发态是52P 1/2 及52P 3/2 双重态。 这是由于轨道量子数L=1,自旋量子数S=1/2。52P 1/2态的J=1/2, 52P 3/2 态的J=3/2。 5P与5S能级之间产生的跃迁是铷原子主线系的第1条线,为双线。它在铷灯 光谱中强度是很大的。52P 1/2→52S 1/2 跃迁产生波长为7947.6?的D 1 谱线,52P 3/2 →52S 1/2跃迁产生波长7800?的D 2 谱线。 原子的价电子在LS耦合中,总角动量P J 与原子的电子总磁矩μ J 的关系为 (1) (2)

铷原子的光泵磁共振 实验报告

铷原子的光泵磁共振 田卫芳 201411142023 (北京师范大学物理系 2014 级) 指导教师:何琛娟 实验时间: 2016.11.24 摘要 本实验主要研究了铷原子的光泵磁共振现象,首先通过改变垂直场,消除地磁场垂直分量的影响;改变水平场,观察光抽运信号,同时计算地磁场的大小; 利用扫场法观察磁共振信号,计算Rb Rb 8587和的F g 因子的大小,与理论值比较。 关键词 铷原子、超精细结构、塞曼能级分裂、光抽运、磁共振、 1. 引言 在磁场中,塞曼分裂导致的磁能级间距通常比较小,因此,产生磁共振现象所需的能量通常位于射频或微波波段。此波段的电磁波能量要比光频段的能量小得多,普通的光谱仪器根本无法分辨,所以对于那些磁共振信号很微弱的样品(比如气体样品)很难探测。光抽运是用圆偏振光激发气态原子,打破原子在所研究能级间的热平衡分布,造成能级间所需要的粒子数差,以便在低浓度条件下提高磁共振信号强度。光泵磁共振是利用光抽运效应来研究原子超精细结构塞曼子能级间的磁共振。光泵磁共振采用光探测方法,探测原子对光量子的吸收,而不直接测量射频量子,克服了磁共振信号弱的缺点,大大提高了探测灵敏度。 本实验研究铷原子(Rb )的光泵磁共振现象,并测量Rb 的朗德因子。天然铷有两种同位素: 丰度为72.15%的Rb 85,丰度为27.85%的Rb 87。 2. 实验原理 2.1 Rb 原子基态及最低激发态的能级 Rb 是碱金属原子,最外层有一个价电子,基态时位于5s 能级上,其轨道

角动量量子数L=0,自旋角动量量子数为S=1/2,考虑L-S 耦合后,其总角动量J=1/2,记作52S 1/2 ,其最近激发态为52P 1/2和52P 3/2。电子由5p 跃迁到5s 所产生的光辐射是Rb 原子主线系的第一条线,为双线,其强度在Rb 灯光谱中特别高,其中52P 1/2到52S 1/2跃迁产生的谱线称为D 1线,波长794.8nm ,52P 3/2到52S 1/2跃迁产生的谱线称为D 2线,波长780.0nm 。 在核自旋量子数I=0时,原子的价电子经L-S 耦合后总角动量J P 与原子总磁矩J μ 关系为 2J J J e e g P m μ=- (1)(L 1)(S 1) 12(J 1) J J J L S g J +-+++=+ + 但当I ≠0时,原子总角动量还要考虑核的贡献。由量子数F 标定原子的超精细结构能级。原子总角动量P F 与总磁矩μF 之间的关系为 2F F F e e g P m μ=- F(F 1)(J 1)(I 1) 2(F 1) F J J I g g F +++-+=+ 在弱磁场中原子的超精细结构产生反常塞曼分裂,磁量子数m F =F ,F-1……,-F ,会产生2F+1个能级间距基本相等的塞曼子能级,如图2-1所示 图2-1 铷原子能级图

光泵磁共振实验

7-7 光泵磁共振实验 光磁共振,是把光频跃迁和射频磁共振跃迁结合起来的一种物理过程, 是利用光抽运效应来研究原子超精细结构塞曼子能级间的磁共振。所研究的对象是碱金属原子铷Rb 。天然铷中含量大的同位素有两种:87Rb 占27.85 %,85Rb 占72.15%。 气体原子塞曼子能级间的磁共振信号非常弱,用磁共振的方法难于观察。本实验中应用了光探测的方法,既保持了磁共振分辨率高的优点,同时将探测灵敏度提高了几个以至十几个数量级。此方法一方面可用于基础物理研究,另一方面在量子频标、精确测定磁场等问题上也都有很大的实际应用价值。通过实验可加深对原子超精细结构、光跃迁及磁共振的理解。 一.实验目的: 1、了解光泵磁共振的原理,观察光磁共振现象。 2、测量铷(Rb )原子的F g 因子及地磁场的大小。 二.实验原理: 1、铷原子基态和最低激发态的能级 铷(Z =37)是一价金属元素,天然铷有两种稳定的同位素: 85Rb 和87Rb,二者的比例接近2比1。它们的激态都是52S 1/2, 即电子的主量子数n =5,轨道量子数L =0,自旋量子数S =1/2,总角动量量子数J =1/2(L —S 耦合)。 在L —S 耦合下,铷原子的最低激发态仅由价电子的激发所形成,其轨道量子数L =1,自旋量子数S =1/2,电子的总角动量J =L +S 和L -S ,即J =3/2和1/2,形成双重态:52P 1/2和52P 3/2,这两个状态的能量不相等,产生精细分裂。因此,从5P 到5S 的跃迁产生双线,分别称为D 1和D 2线,它们的波长分别是794.8nm 和780.0nm (见图7-7-1)。 通过L —S 耦合形成了电子的总角动量P J ,与此相联系的核外电子的总磁矩μJ 为: J J J P m e g ρρ 2-=μ 其中 ) 1(2)1()1()1(1++++-++=J J S S L L J J g J 就是著名的Longde 因子,m 是电子质量,e 是电子电量。 原子核也有自旋和磁矩,核自旋量子数用I 表示。核角动量P I 和核外电子的角动量P J 耦合成一个更大的角动量,用符号 P F 表示,其量子数

顺磁共振实验报告

近代物理实验报告 顺磁共振实验 学院 班级 姓名 学号 时间 2014年5月10日

顺磁共振实验 实验报告 【摘要】 电子顺磁共振又称电子自旋共振。由于这种共振跃迁只能发生在原子的固有磁矩不为零的顺磁材料中,因此被称为电子顺磁共振;因为分子和固体中的磁矩主要是自旋磁矩的贡献所以又被称为电子自旋共振。简称“EPR ”或“ESR ”。由于电子的磁矩比核磁矩大得多,在同样的磁场下,电子顺磁共振的灵敏度也比核磁共振高得多。在微波和射频范围内都能观察到电子顺磁现象,本实验使用微波进行电子顺磁共振实验。 【关键词】 顺磁共振,自旋g 因子,检波 【引言】 顺磁共振(EPR )又称为电子自旋共振(ESR ),这是因为物质的顺磁性主要来自电子的自旋。电子自旋共振即为处于恒定磁场中的电子自旋在射频场或微波场作用下的磁能级间的共振跃迁现象。顺磁共振技术得到迅速发展后广泛的应用于物理、化学、生物及医学等领域。电子自旋共振方法具有在高频率的波段上能获得较高的灵敏度和分辨率,能深入物质内部进行超低含量分析,但并不破坏样品的结构,对化学反应无干扰等优点,对研究材料的各种反应过程中的结构和演变,以及材料的性能具有重要的意义。研究了解电子自旋共振现象,测量有机自由基DPPH 的g 因子值,了解和掌握微波器件在电子自由共振中的应用,从矩形谐振长度的变化,进一步理解谐振腔的驻波。 【正文】 一、实验原理 (1)电子的自旋轨道磁矩与自旋磁矩 原子中的电子由于轨道运动,具有轨道磁矩,其数值为: 2l l e e P m μ=- ,负号表示方向同l P 相反。在量子力学中(1)l P l l =+,因而 (1)(1)2l B e e l l l l m μμ=+=+,其中2B e e m μ=称为玻尔磁子。电子除了轨道运动外

南京大学_光磁共振实验报告

光磁共振 (大学物理学院 210000) 摘要:光磁共振是利用光抽运的方法,进一步提高磁共振灵敏度的技术。本实验依据光磁共振技术,运用“光抽运—磁共振—光探测”的方法,测量地磁场垂直分量和水平分量以及铷原子的相关参量。 关键词:光磁共振;光抽运;磁共振;塞曼效应;塞曼子能级;地磁场;朗德因子 一、实验目的 1. 掌握“光抽运—磁共振—光探测”的思想方法和实验技巧,研究原子超精细结构塞曼子能级间的射频磁共振。 2. 测定銣原子87Rb 和85Rb 的参数:基态朗德因子F g 和原子核的自旋量子数I 。 3. 测定地磁场 B 地的垂直分量B 地垂直、水平分量B 地水平 及其倾角θ。 二、实验原理 光磁共振技术是根据动量守恒原理,用光学抽运来研究原子超精细结构塞曼子能级间微波或射频磁共振现象的双共振技术。特点是兼有波谱学方法的高分辨率和光谱学方法的高探测灵敏度。 1.铷原子的超精细结构及其塞曼分裂 铷是一价碱金属原子,有一个价电子,处于第五壳层,主量子数n=5,电子轨道量子数L=0,1,2,3…,n-1,电子自旋S=1/2。铷原子中价电子的轨道角动量L P 和自旋角动量S P 发生轨道—自旋耦合(LS 耦合),得到电子总角动量J P ,其数值 ,,1,,J P J L S L S L S ==++-???-。当不考虑铷原子核的自旋时,铷原子总 磁矩2J J J e e g P m μ=-,其中,e e m -分别为电子的电荷、质量。朗德因子 (1)(1)(1) 12(1) J J J L L S S g J J +-+++=++ 从而形成原子的超精细结构能级,这时,铷原子的基态能级21 S J n S +对应于n=5,L=0,S=1/2,J=1/2,即为212 5S ,相应的朗德因子2J g =;铷原子的第一激发态能级 21S J n P +对应于n=5,L=1,S=1/2,J=1/2、3/2,是双重态,即为212 5P 和232 5P ,相应的朗德因 子24 ,33J g = 。221322 55P S →的能级跃迁产生光谱线1D 线(1794.76nm λ=);22332 2 55 P S →的跃迁产生光谱线2D 线(2780.0nm λ=)。本实验观测与1D 线有关的能 级的超精细结构及其在弱磁场中的塞曼分裂。 通常原子核也具有角动量,记原子核的总角动量为P ,它是核中质子和中子的轨道角动量和自旋角动量的矢量和,核的总角动量的数值I P = ,通常也称为核自旋,其中I 称为核的自旋量子数,I 为整数或半整数,已知稳定的原子核的I 值在0~7.5之间。核的总角动量I P 的最大可测的分量值为I 。当0I ≠时,原子核的总磁矩为

光泵磁共振实验报告

铷原子的光泵磁共振实验 学号 姓名: 实验日期: 指导老师: 【摘要】 在本实验中我们运用光泵磁共振技术,研究了铷原子的光抽运信号和磁共振信号,最终测量得87 Rb 的朗德F g 因子为0.4981,85Rb 的朗德F g 因子为0.3348,以及地磁场的大小为0.4245GS. 关键词:光抽运、磁共振、超精细结构、塞曼子能级、朗德F g 因子 一、引言: 光泵,也称光抽运,是借助于光辐射获得原子基态超精细结构能级或塞曼子能级间粒子数的非热平衡分布的实验方法。光泵磁共振技术实际上是将光抽运技术和射频或微波磁共振技术相结合的一种实验技术,它是1955年法国科学家卡斯特勒(A.Kastler )发明的。在光泵磁共振技术中,一方面光抽运改变了磁能级上的粒子数分布,使更多的粒子参与磁共振;另一方面采取光探测的方法而不直接测量射频量子,从而克服了磁共振信号弱的缺点,把探测灵敏度提高了七八个数量级。如今,光泵磁共振已广泛应用于基础物理研究,比如原子的磁矩、能级结构和g 因子测量。此外,在原子频标、激光及弱磁场测量等方面,这一方法也是极为有利的实验手段。 本实验研究铷原子的光泵磁共振现象,并测量铷原子的朗德g 因子和地磁场强度。 二、 原理: 实验研究的对象是Rb 原子,其最外层有一个价电子,位于5s 能级上,因此其电子轨道角动量量子数L=0,电子自旋轨道角动量量子数s=1/2.其总角动量量子数 s L S L S L J --++= ,1,。所以Rb 原子的基态只有2/1=J ,标记为2/125S 。5P 与基 态5S 之间产生的跃迁是铷原子主线系的第一条谱线,谱线为双线。2 /12P 5到 2 /12S 5的跃迁 产生的谱线为D1线,波长是794.8nm ;2 /12P 5到 2 /12S 5的跃迁产生的谱线为D2线,波长是 780.0nm 。 在核自旋I=0时,原子的价电子经L-S 耦合后总角动量和原子的总磁矩的关系为 2J J J e e g P m μ =- (1)

核磁共振实验报告

1、前言和实验目的 核磁共振是指受电磁波作用的原子核系统在外磁场中磁能级之间发生共振跃迁的现象。本实验的样品在外磁场中,外磁场使样品核能级因核自旋不同的取向而分裂,在数千高斯外磁场下核能级的裂距一般在射频波段,样品在射频电磁波作用下,粒子吸收电磁波的能量,从而产生核能级的跃迁。1932年发现中子后,才认识到核自旋是质子自旋和中子自旋之和,质子和中子都是自旋角动量为2 的费米子,只有质子数和中子数两者或其一为奇数时,核才有非零的核磁矩,正是这种磁性核才能产生核磁共振。 核磁共振信号可提供物质结构的丰富信息,如谱线的宽度、形状、面积、谱线在频率或磁场刻度上的准确位置、谱线的精细结构、超精细结构、弛豫时间等,加之是对样品的无损测量,广泛的应用于分子结构的确定、液相和固相的动力学研究、医用诊断、固体物理学、分析化学、分子生物学等领域,是确定物质结构、组成和性质的重要实验方法。核磁共振还是磁场测量和校准磁强计的标准方法之一,其不确定度可达001.0±%。 实验目的: (1)掌握核磁共振的实验原理和方法 (2)用核磁共振方法校准外磁场B ,测量氟核的F g 因子以及横向驰豫时间2T 2、实验原理 如原子处在磁场中会发生能级分裂一样,许多原子核处在磁场中也会发生能级的分裂,因为 原子核也存在自旋现象。质子和中子都是自旋角动量等于2 的费米子,当质子数和中子数都为偶数时原子核的磁矩为0,当其一为奇数时原子核磁矩为半整数,当两个都为奇数时核磁矩为整数。只有具有核磁矩的原子核才有核磁共振现象。 我们知道在微观世界里物理量都只能取分立的值,即都是量子化的。原子核的角动量也只能取分立的值 )1(+= I I p ,I 为自旋量子数,取分立的值。对于本实验用到的H 1和F 19,自旋量 子数I 都为1/2。沿z 方向的角动量为 m p z =,在这里m 只能取1/2或-1/2。而自旋角动量不为0的核具有核磁矩p m e g p 2F =,考虑沿z 轴方向则有N z p Z mgF p m e G F ==2,其中以 γ== p z m e F 2为原子核磁矩的基本单位,p m e 2=γ。 在没有磁场作用时,原子核的能量时一样的,但处于磁场中则会发生能级分裂, B m γ-B -F B F E Z =?=?-=,本实验中1=?m ,故有B E γ=?。外加一射频场,当满足一定 的条件时就会发生共振吸收,条件为πγγυ2hB B E h = =?= ,从而有共振频率B π γ υ2= 。通过

3.光磁共振实验预习报告

光磁共振实验预习报告 【摘要】 光磁共振是利用光泵抽运方法来研究气态原子基态及激发态精细和超精细结构塞曼能级间的磁共振。实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。本实验在加深对原子超精细结构的理解的基础上,掌握观测光抽运效应的条件和方法,观察和测量共振信号的扫场法,超精细结构的理解,掌握以光抽运为基础的光检测磁共振方法,进而测定铷原子两个同位素Rb 87 或Rb 85 的超精细结构塞曼子能级的朗德因子g 的测量。 【关键字】 光磁共振 精细结构 铷原子 朗德因子 【引言】 光磁共振是“激光之父”卡斯特勒提出并实现。它的基本思想是利用光的抽运效应造成原子基态Zeeman 能级上粒子布居的偏极化,即偏离热平衡时所遵循的Boltzmann 分布。然后利用磁共振效应对这种偏极化布局进行扰动,使光的抽运速率变化。通过对抽运速率变化的探测来研究原子塞曼能级超精细结构。 由于气体原子塞曼子能级间的磁共振信号非常弱,用磁共振的方法难以观察。 1950年卡斯特勒(A.Kastler)提出了光抽运方法(又称光泵),使原子能级的粒子数分布产生重大改变,并利用抽运光对磁共振信号作光检测,从而大大提高了信号强度和检测灵敏度,成功地观测了气体原子塞曼子能级间的磁共振,由此发展起来的光泵磁共振技术,为现代原子物理学的研究提供了新的实验手段,并为激光和量子频标的发展打下了基础,卡斯特勒也因此荣获1966年度的诺贝尔物理奖。 【正文】 一、实验原理 1. 铷(Rb )原子基态及最低激发态的能级 铷的价电子处于第五壳层,主量子数n=5。基态的L=0, 最低激发态的L=1。电子还具有自旋,电子自旋量子数S=1/2。由于电子的自旋与轨道运动的相互作用(既L —S 耦合)而发生能级分裂,称为精细结构。电子轨道角动量L P 与其自旋角动量S P 的合成电子的总角动量S L J P P P +=。 原子能级的精细结构用总角动量量子数J 来标记,J=L+S ,L+S-1,…,|L-S |.对于基态, L=O 和S=1/2,因此Rb 基态只有J=1/2。其标记为521/2S 。铷原子最低激发态是 3/22P 5及1/22P 5。1/22P 5态的J=1/2, 3/22P 5态的J=3/2。5P 于5S 能级之间产生的跃迁是 铷原子主线系的第1条线,为双线。它在铷灯光谱中强度是很大的。1/22P 5→1/22S 5跃迁产

实验 光泵磁共振实验

实验 光泵磁共振实验 在五十年代初期,法国物理学家卡斯特勒(A ·H ·Kastler )提出了光抽运(optical pumping ,又称光泵)技术,并发现和发展了研究原子核磁共振的光学方法,因此于1966年荣获诺贝尔物理学奖。 光抽运(即光泵)是用圆偏振光束激发气态原子的方法,以打破原子在所研究的能级间的玻耳兹曼热平衡分布,造成所需的布居数差,从而在低浓度的条件下提高了核磁共振强度,这时再用相应频率的射频场激励原子的磁共振。在探测核磁共振方面,不是直接探测原子对射频量子发射或吸收,而是采用光电探测的方法,探测原子对光量子的发射或吸收。由于光量子的能量比射频量子高八个数量级,所以探测信号的灵敏度比一般磁共振探测技术高八个数量级。 三十多年来,用光抽运——磁共振——光电探测技术对许多原子、离子和分子进行了大量研究,增进了对微观粒子结构的了解。如对原子的磁矩、朗德因子g ,能级结构、塞曼分裂等,尤以对碱金属原子(铷等)激发态精细与超精细结构的研究方面起了很大推动作用。此外光抽运技术在激光、原子频标和精测弱磁场等方面也都有广泛的应用。 本实验以碱金属——铷(Rb )原子做为研究对象,所涉及的物理内容丰富,应用到原子物理学,光学,电磁学及无线电电子学等方面的知识,并定性或定量地了解到原子内部的很多信息。它是典型的波谱学教学实验之一。 实验原理 1、 铷(Rb )原子的精细结构与超精细结构能级 本实验研究气态的自由原子——铷(Rb ),它和所有碱金属原子Li 、Na 、K 一样,在紧紧束缚的满壳层外只有一个电子。铷的价电子处于第五壳层,主量子数n = 5。n 为5的电子,其轨道量子数L = 0,1,2,3,4,(n -1)。基态L = 0,最低激发态L = 1,电子自旋量子数s = 1/2。 由于电子的轨道运动与自旋的相互作用(即L-S 耦含)而发生的能级分裂,称为原子的精细结构(见图1)。轨道角动量L P 与自旋角动量S P 合成为总角动量S L J P P P +=。原子能级的精细结构用总角动量量子数J 标记, J =L +S ,L +S -1,……,|L -S |。对基态,L =0和S =1/2,因此Rb 基态J =0+1/2=1/2。其标记为 52S 2/1。Rb 最低激发态,L =1和S =1/2,因此J =1/2 和J =3/2,是双重态:52P 1/2和52P 3/2。5P 与5S 能级之间产生跃迁是Rb 原子主线系第1条线, 为双线。它在铷灯光谱中强度是很大的。52P 1/2 →52S 1/2跃迁产生波长为7947.6?为D 1谱线, 52P 3/2→52S 1/2跃迁产生波长为7800A 为D 2谱线。

光泵磁共振实验数据处理

光泵磁共振实验数据处理

作者: 日期:

光泵磁共振实验数据处理 观察光泵磁共振现象: 测量超精细结构因子及地磁场水平分量 、原始数据处理 水平场 电流I /mA B 直/ T (Ru85)/ K Hz (R u 8 7)/KH z 扫场方向 扫场方向 平均值 扫场方向 扫场方向 平均值 30 0 0.0 0 7 7 62.5 1 3 50 0. 3 947 87 06 400 0. 5 104 8 976.5 8. 5 450 0. 12 1 1 62 1 087 1. 5 5 0 0 0 . 22 127 2 11 9 7 1 6 89 1 90 3 1796 550 0. 3 6 20 6 1 1 953.5 其中,外加水平直流场 B 直 二16厂N 10 7T 5 r

、R u85数据线性拟合处理 1、线性拟合结果 Ru85数据线性拟合图 拟合结果为:=1 1 0. 2 2 0+ 4.682 106 B 直 KHz 2、根据二K+AB 直 得出 K=11 0.2 20, A = 4.682 1 06 。 /KHz 1300 - Equati on y = a + b*x Adj. R-Square 0.99996 Value Sta ndard Error A In tercept 110.22036 2.77776 A Slope 4.68175E6 13819.42851 1200 一 1100 1000 900 - 800 0.00014 0.00016 0.00018 0.00020 0.00022 0.00024 /T

磁共振实验报告

近代物理实验题目磁共振技术 学院数理与信息工程学院 班级物理082班 学号08220204 姓名 同组实验者 指导教师

光磁共振实验报告 【摘要】本次实验在了解如光抽运原理,弛豫过程、塞曼分裂等基本知识点的基础上,合理进行操作,从而观察到光抽运信号,并顺利测量g因子。 【关键词】光磁共振光抽运效应塞曼能级分裂超精细结构 【引言】光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。这种方法是卡斯特勒在巴黎提出并实现的。由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。 【正文】 一、基本知识 1、铷原子基态和最低激发态能级结构及塞曼分裂 本实验的研究对象为铷原子,天然铷有两种同位素;85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数m F=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级. 设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为 E=-μF·B0=g F m FμF B0(1) 这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子g F= g J [F(F+1)+J(J+1)-I(I+1)] ? 2F(F+1)(2) 图1 其中g J= 1+[J(J+1)-L(L+1)+S(S+1)] ? 2J(J+1)(3) 上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(1)可知,相邻塞曼子能级之间的能量差 ΔE=g FμB B0(4) 式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.

光磁共振实验讲义

25P 1 2 794.76nm 780.0nm Fig.1 铷原子精细结构的形成 光磁共振讲义 一、 讲课形式(时间安排) 40分钟理论及相关知识的讲述,15分钟仪器介绍及操作演示。 二、 教学要求 1 通过研究铷原子基态的光磁共振,加深对原子超精细结构的认识; 2 掌握光磁共振的实验技术; 3 测定铷原子的g 因子和测定地磁场。 三、 实验原理 1.概念介绍 1) 光抽运(光泵):利用光照射打破原子在所研究能级间的热平衡态,造成 期望集居数差,它基于光和原子间的相互作用。 2) 如何提高探测灵敏度:采用光探测,探测原子对光量子的吸收而不是采 用一般的磁共振的探测方法(直接探测原子对射频量子的吸收),因光量子能量比射频量子能量高几个数量级,因而大大提高探测灵敏度。 3) 光磁共振:是将光抽运、磁共振、光探测技术结合起来研究气态原子精 细和超精细结构的一种实验技术,加深了人们对原子磁矩、 因子、能级寿命、能级精细结构、超精细结构及原子间相互作用的认识。 2.铷原子的能级分裂(精细结构的形成) 1) 研究对象:铷(Rb )的气态自由原子,价电子处于第五电子层,主量子 数n=5,轨道量子数L=0,1,…,n-1,电子自旋量子数S=1/2 2) 原子精细结构的形成:由电子的自旋与轨道运动相互作用(L-S 耦合) 发生能级分裂 3) 铷原子基态与最低激发态的形成:用J 表示电子总角动量量子数,J=L+S,L+S-1,…,|L-S| 4) 对于基态,L=0,S=1/2,得J=1/2,标记 为21/25S ;对于最低激发态,L=1,S=1/2, 得J=3/2,1/2,标记为22 3/21/25,5P P ,如右 图所示,形成两条谱线。

钟浩鹏 光泵磁共振实验报告

扬州大学物理科学与技术学院 近代物理实验论文实验名称:光泵磁共振实验及地磁场的测量 班级:物教1301班 姓名:钟浩鹏 学号:130801131 指导老师:王文秀

光泵磁共振实验报告 摘要:在本实验中,我们通过调节水平磁场,竖直磁场和扫场观察了抽运信号和光泵磁共振现象。通过测量水平磁场的电流值并计算得到铷的朗德因子g。同时通过地磁场水平分量与总磁场和扫场的关系,计算出地磁场的水平分量大小。由于装置的摆放决定了总场沿水平方向时共振信号最强,由此测量了地磁场竖直分量的大小,从而测得了地磁场的大小和方向。In this experiment, we adjust the horizontal magnetic field, the vertical magnetic field and sweeping field observed the pumping signal and optical pump magnetic resonance phenomenon. By measuring the level of the current value of the magnetic field and calculate the rubidium land factor g. At the same time through the geomagnetic field level component to the total magnetic field and sweeping field, the relationship between size to calculate the horizontal component of the geomagnetic field. Put the device determines the strongest resonance signal when PLD along the horizontal direction, thus to measure the size of the vertical component of geomagnetic field, so as to have the size and direction of the magnetic field. 关键词:光抽运;光泵磁共振;地磁场 一、引言 光泵也称光抽运,是借助于光辐射获得原子基态超精细结构能级及塞曼子能级间粒子数的非平衡分布的实验方法。光泵磁共振技术于1955年由法国科学家卡斯特勒发明,它是将光抽运技术和射频或微波磁共振技术相结合的一种实验技术,这种技术最早实现了粒子数反转。气体原子塞曼子能级之间的磁共振信号非常弱,普通方法很难探测。本实验利用光泵磁共振方法克服了磁共振信号弱的特点,将探测灵敏度提高了七八个数量级,能在弱磁场下精确检测原子能级的超精细结构。本实验研究Rb原子的光泵磁共振现象,天然Rb有两种同位素: 85 Rb(丰度为72.15%)、87 Rb(丰度为27.85%)。 二、实验原理 1.铷原子基态和最低激发态的能级 铷(Z=37)是一价金属元素,天然铷中含量大的同位素有两种:87Rb,占27.85 %和85Rb,占72.15%。它们的基态都是52S1/2。 图1 Rb原子精细结构的形成 在L—S耦合下,形成双重态:52P1/2和52P3/2,这两个状态的能量不相等,产生精细分裂。因此,从5P到5S的跃迁产生双线,分别称为D1和D2线,如图1所示,它们的波长分别是794.76nm和780.0nm。

最新核磁共振实验报告

一、实验目的与实验仪器 1.实验目的 (1)了解核磁共振的基本原理; (2)学习利用核磁共振校准磁场和测量因子g 的方法: (3)掌握利用扫场法创造核磁共振条件的方法,学会利用示波器观察共振吸收信号; (4)测量19F 的g N 因子。 2.实验仪器 NM-Ⅱ型核磁共振实验装置,水 样品和聚四氟乙烯样品。 探测装置的工作原理:图一中绕 在样品上的线圈是边限震荡器电路 的一部分,在非磁共振状态下它处在 边限震荡状态(即似振非振的状态), 并把电磁能加在样品上,方向与外磁 场垂直。当磁共振发生时,样品中的 粒子吸收了震荡电路提供的能量使振荡电路的Q 值发生变化,振荡电路产生显著的振荡,在示波器上产生共振信号。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 原子核自旋角动量不能连续变化,只能取分立值即: P = 其中I 称为自旋量子数,I=0,1/2,1,3/2,2,5/2,…本实验涉及的质子和氟核 F 19 的自旋量子数I 都等于1/2。类似地原子核的自旋角动量在空间某一方向,例如z 方向的分量不能连续变化,只能取分立的数值 自旋角动量不为零的原子核具有与之相联系的核自旋磁矩, 其大小为: P 2M e g =μ 核磁共振 实验报告

其中e 为质子的电荷,M 为质子的质量,g 是一个由原子核结构决定的因子,对不同种类的原子核g 的数值不同,g 成为原子核的g 因子。由于核自旋角动量在任意给定的z 方向的投影只可能取(2I+1)个分立的数值,因此核磁矩在z 方向上的投影也只能取(2I+1)个分立的数值: 2M e g p 2M e g m z z ==μ 原子核的磁矩的单位为: 2M e N =μ 当不存在外磁场时,原子核的能量不会因处于不同的自旋状态而不同。通常把B 的方向规定为z 方向,由于外磁场B 与磁矩的相互作用能为: B B P B B E z z m γγμμ-=-=-=?-= 核磁矩在加入外场B 后,具有了一个正比于外场的频率。量子数m 取值不同,则核磁矩的能量也就不同。原来简并的同一能级分裂为(2I+1)个子能级。不同子能级的能量虽然不同,但相邻能级之间的能量间隔 却是一样的,即: B E γ=? 而且,对于质子而言,I=1/2,因此,m 只能取m=1/2和m= -1/2两个数值。简并能级在磁场中分开。其中的低能级状态,对应E 1=-mB ,与场方向一致的自旋,而高的状态对应于E 2=mB ,与场方向相反的自旋。当核自旋能级在外磁场B 作用下产生分裂以后,原子核在不同能级上的分布服从玻尔兹曼分布。 若在与B 垂直的方向上再施加一个高频电磁场(射频场),且射频场的频率满足一定条件时,会引起原子核在上下能级之间跃迁。这种现象称为共振跃迁(简称共振)。 发生共振时射频场需要满足的条件称为共振条件: B π γν2= 如果用圆频率ω=2πν 表示,共振条件可写成:B γω=

光泵磁共振实验报告

光泵磁共振实验报告 摘要:在本实验中,我们通过设置和调节水平磁场,竖直磁场和扫场观察了抽运信号和光泵磁共振现象。通过测量水平磁场的电流值并计算得到铷的朗德g 因子。同时通过地磁场水平分量与总磁场和扫场的关系,计算出地磁场的水平分量大小。再者,由于装置的摆放决定了总场沿水平方向时共振信号最强,由此测量了地磁场竖直分量的大小,从而测得了地磁场的大小和方向。在实验过程中掌握了光泵磁共振的基本原理。 关键词:抽运,光泵磁共振 一、引言 光泵,也称光抽运,是借助于光辐射获得原子基态超精细结构能级及塞曼子能级间粒子数的非平衡分布的实验方法。光泵磁共振技术于1955年由法国科学家卡斯特勒发明,它是将光抽运技术和射频或微波磁共振技术相结合的一种实验技术,这种技术最早实现了粒子数反转。气体原子塞曼子能级之间的磁共振信号非常弱,普通方法很难探测。本实验利用光泵磁共振方法克服了磁共振信号弱的特点,将探测灵敏度提高了七八个数量级,能在弱磁场下精确检测原子能级的超精细结构。本实验研究Rb 原子的光泵磁共振现象,天然Rb 有两种同位素: 85 Rb (丰度为72.15%)、87 Rb (丰度为27.85%)。 二、实验原理 1.铷原子基态和最低激发态的能级 铷(Z=37)是一价金属元素,天然铷中含量大的同位素有两种:87Rb ,占27.85 %和85Rb ,占72.15%。它们的基态都是52S1/2。 在L —S 耦合下,形成双重态:52P1/2和52P3/2,这两个状态的能量不相等,产生精细分裂。因此,从5P 到5S 的跃迁产生双线,分别称为D1和D2线,如图B4-1所示,它们的波长分别是794.76nm 和780.0nm 。 通过L —S 耦合形成了电子的总角动量PJ ,与此相联系的核外电子的总磁矩 J μ为 2J J J e e g P m μ=- 式中 图B4-1 Rb 原子精细结构的形成

核磁共振实验报告

应物0903班 核磁共 振实验报告 王文广U8 苏海瑞 U8

核磁共振实验报告 一、实验目的 1.了解核样共振的基本原理 2.学习利用核磁共振测量磁场强度和原子核的g 因子的方法 二、实验内容 1.在加不同大小扫场情况下仔细观察水样品的核磁共振现象,记录每种情况下的共振峰形和对应的频率 2.仔细观察和判断扫场变化对共振峰形的影响,从中确定真正能应永久磁铁磁场0B 的共振频率,并以此频率和质子的公认旋磁比值 ()267.52MHz /T γ=计算样品所在位置的磁场0B 3.根据记录的数据计算扫场的幅度 4.研究射频磁场的强弱对共振信号强度的影响 5.观察聚四氟乙烯样品的核磁共振现象,并计算氟核的g 因子 三、实验原理 1.核磁共振现象与共振条件 原子的总磁矩j μ和总角动量j P 存在如下关系 22B j j j j e e B e g P g P P m h e e m πμμγμγ=-==为朗德因子,、是电子电荷和质量,称为玻尔磁子,为原子的旋磁比

对于自旋不为零的原子核,核磁矩j μ和自旋角动量j P 也存在如下关系 22N I N I N I I p e g P g P P m h πμμγ=-== 按照量子理论,存在核自旋和核磁矩的量子力学体系,在外磁场 0B 中能级将发生赛曼分裂,相邻能级间具有能量差E ?,当有外界条 件提供与E ?相同的磁能时,将引起相邻赛曼能级之间的磁偶极跃迁,比如赛曼能级的能量差为02B h E γπ ?= 的氢核发射能量为h ν的光子,当0= 2B h h γνπ 时,氢核将吸收这个光子由低塞曼能级跃迁到高塞曼能级,这种共振吸收跃迁现象称为“核磁共振” 由上可知,核磁共振发生和条件是电磁波的圆频率为 00B ωγ= 2.用扫场法产生核磁共振 在实验中要使0= 2B h h γνπ 得到满足不是容易的,因为磁场不是容易控制,因此我们在一个永磁铁0B 上叠加一个低频交谈磁场 sin m B B t ω=,使氢质子能级能量差 ()0sin 2m h B B t γωπ +有一个变化的区域,调节射频场的频率ν,使射频场的能量h ν能进入这个区域,这样在某一瞬间等式 ()0sin 2m h B B t γωπ +总能成立。如图,

相关文档