文档库 最新最全的文档下载
当前位置:文档库 › PIN和APD介绍

PIN和APD介绍

PIN和APD介绍
PIN和APD介绍

PIN:positive-intrinsic-negative(P型半导体-杂质-N型半导体)

APD:avalanche photodiode(雪崩二极管)

饱和光功率

又称饱和光功率即指最大负载。指在

一定的传输速率下,维持一定的误码率(10-10~

10-12)时的光模块接收端最大可以探测到的输

入光功率。当光探测器在强光照射下会出现光电流饱

和现象,当出现此现象后,探测器需要一定的时间恢复,

此时接收灵敏度下降,接收到的信号有可能出现误判而

造成误码现象,而且还非常容易损坏接收端探测器,在

使用操作中应尽量避免超出其饱和光功率。因此对于

发射光功率大的光模块不加衰减回环测试会

出现误码现象。当APD输入光功率达到一定强

度的时候,输出的光电流将趋于饱和。随着温

度的升高,APD的击穿电压V BR也随着上升,如

果APD的工作电压(即高压)不变,APD的光

电检测性能会变弱,灵敏度降低。

APD的倍增因子代表倍增后的光电流与首次光电流之比。如图:

由图可知,倍增因子M与反向偏置电压有关(反偏电压越大,斜率越大,M越大。理论上反偏电压接近击穿电压时,M趋于无穷大。),所以说他是可调的。同时可以看到APD雪崩光电二极管还存在一个雪崩电压(击穿电压)V B。当反偏电压大于击穿电压时,M会急剧增大处于雪崩状态。但此时产生的倍增噪声会远远大于倍增效应带来的好处。因此实际使用中,总是把反偏电压调到略小于雪崩电压的地方。

APD倍增因子M的计算公式很多,一个常用的公式为 M=1/1-(v/vB)n

式中: n 是由P-N 结材料决定的常数; V B 为理想反向偏压; V 为反向偏压的增加值。对于Si 材料,

n =1. 5 ~ 4 ;对于Ge 材料n = 2. 5~8 。由式中还可看出,当| V | →

| V B | 时, M → ∞, P-N结将发生雪崩击穿。

由公式可知,同样材料的APD管,同样偏置电压情况下,击穿电压越大,倍增因子越小。

三、光电检测器

光电检测器是把光信号功率转换成电信号电流的器件。光纤通信使用的是PIN光电二极管和雪崩光电二极管(APD)。对这些半导体光检测器的基本要求是:

①光电转换效率高,②噪声低,③响应速度高,④工作电压尽量低,⑤具有良好的温度特性和稳定性,⑥寿命长。

1.PIN光电二极管(PIN-PD)

如图3-25所示,它工作于反偏压。器件由P、I、N三层组成,基本结构是PN结。如果在PN结上加反向电压,在结上形成耗尽层,当光入射到PN结上时,产生许多电子空穴对,在电场作用下产生位移电流,如果两端加上负载阻抗就有电流流过,常称这种电流为光电流,光信号就转变成电信号。

在PN结中间加上的本征半导体层称为Ⅰ层,

图3-25 PIN管工作原理示意图其示意图

以展宽耗尽层,提高转换效率。

PIN管的灵敏度常以量子效率来表示。量子效率的意义是一个光子照射在检测器上所产生的电子数。因此,PIN管在光功率P的照射下,产生的光电流为

式中,η为量子效率,其数值总是小于1;e为电子电量,e≈1.6×10-19C。显然η的含义就是平均一个光子激发的电子数。光电检测器的量子效率与器件材料、光波长有关。

通常也采用响应度R表示PIN管的性能,它代表PIN光电二极管在光照下产生的光电流I与入射的光功率P之比,由式(3-15)即可得出响应度为

由上可见,响应度R(和量子效率η)是描述器件光电转换能力的物理量,它与器件材料、光波长有关。

响应速度是指光电检测器对入射微弱调制光信号产生光电流的响应快慢,通常用响应时间(上升时间和下降时间)来描述。若从频域观点,当光电检测器在接收正弦调制光信号时,则以器件的极限工作频率(截止频率)fc来表示。可见响应速度直接关系到器件的频带宽度。就PIN光电二极管而言,为得到较快的响应速度,需要有较窄的耗尽层,以便缩短载流子在电场中的漂移时间,但这与为提高量子效率应有较宽耗尽层的要求有矛盾,因此两者必须兼顾。PIN管的响应速度一般都能满足实际要求。

无光照射时,PIN管具有的电流称为暗电流(Id),暗电流会引起噪声,要求尽量小。

表3-5列出了PIN光电二极管特性的典型数据。

表3-5 PIN-PD特性的典型值

2. 雪崩光电二极管(APD)

雪崩光电二极管内部因电子雪崩,具有对微弱的光电流产生放大的作用,即具有倍增特性。因此在电放大之前,恰当地利用APD的倍增作用,可以得到很高的灵敏度。

APD光电检测器件结构的基本部分与PIN光电二极管一样,仍是PN结,不同之处是在P层和N层中的掺杂量增大,在外加很高的反向偏压(一般为几十~200V)作用下,PN结区形成强电场区,在耗尽层内运动的载流子(一次电子空穴对),就可以在高场作用下获得足够的能量而加速,通过高速碰撞产生新的电子空穴对,这就是载流子的碰撞电离。新产生的二次电子空穴对在高电场作用下向相反的方向运动,在运动中又不断产生新的碰撞电离……,从而引起载流子的雪崩倍增,形成大的光电流。

APD在不同光强照射下的伏安(V-I)特性曲线如图3-26所示。图中VB称为雪崩电压。在APD上加上反偏压V大于VB时,便要击穿。一般应在V略小于VB状态下使用。当无光照(即输入光功率P=0)时,APD的电流非常小,称为暗电流Id。

APD的倍增因子M定义为

式中Iph是倍增后的光电流;I和Id分别为倍增后的总电流和暗电流;Iph0是无倍增时的光电流,即由光子直接产生的平均一次电流;I0和Id0分别为无倍增时的总电流和暗电流。暗电流的大小影响光电检测器的噪声大小。暗电流一般很小,这里可忽略不计。

图3-26 APD的伏安特性

倍增因子M随外加反偏压V接近击穿电压VB时迅速增大,当V=VB时M值达最大(Mmax),随后出现增益饱和效应,如图3-27所示。

图3-27 倍增因子与反偏压的关系

两者关系可以近似用下式表示

式中n为一常数,由半导体材料、半导体掺杂分布和入射光波长决定。显然通过调整偏压V可获得需要的增益值M,但M值并不是愈大愈好,因为信增噪声随倍增因子M的增大而增大,结果导致光接收机信噪比恶化,灵敏度降低。M值的选取应使倍噪比最大值为最

佳倍增因子。实用中常取值在几十至一百之间。

PIN光电管无雪崩倍增,故M=1。

此外,使用雪崩光电二极管可以提供一定的动态范围,即当进入APD的光功率过强时,可以通过降低其偏压使M值减小,反之光功率较弱时,可提高偏压使M值增大。

当光接收端机采用APD做光检测器时,检测器的信号功率正比于M2(这里的M为平

均的雪崩增益值);而倍增噪声功率却正比于M2·F,这里F称为过剩噪声系数,这是由于倍增过程的随机性引起的附加噪声,一般情况下(M<100=,F可近似表示为F=Mx(3-19)

式中x称为过剩噪声指数,x=0.2~1,与材料与工艺等有关。因此倍增噪声功率可用

过剩噪声指数x近似描述

N∝M2+x (3-20)

APD管脉冲响应上升时间可做到小于1ns;APD的增益带宽乘积可做到;Si管为200GHz,Ge管为30GHz,InGaAs管为60GHz。可以满足高速率传输系统的要求。

表3-6列出了Si、Ge、InGaAs-APD特性的典型数据。

表3-6 APD特性的典型值

温度变化对APD的特性特别是倍增因子M的影响十分严重,M值随温度升高而降低,为此需要相应地改变偏压值,故实际应用中须采用自动控制温度补偿措施。

关于PIN-PD和APD使用的半导体材料,在0.8~0.9靘的短波长区域内使用Si,Si-PIN 和Si-APD工艺成熟、性能优良,雪崩噪声最小,故采用该器件的光接收机灵敏度高,在带宽公里积为1000(Mb/s)·km的情况下得到广泛应用。当工作波长>1.0μm时,硅的响应度太低,因而不能作为光检测器使用。在1.0~1.6μm的长波长区域内,PIN管使用InGaAs 材料,InGaAs-PIN工艺成熟,性能优良,它常与场效应管(FET)前置放大器构成集成接收组件,PIN/FET组件与APD比较,简单、价廉、温度稳定性好,在数百Mb/s的码速范围内具有很好的灵敏度,因而被广泛采用。对于长波长带的APD,主要使用Ge-APD和In-GaAs-APD,二者相比,前者结构简单、工艺成熟,但暗电流和过剩噪声指数大,可用的电流倍增低(10左右),因而接收机灵敏度受到限制;后者性能优良,并适用于整个长波长范围,但制造困难,随着工艺和技术的进步,InGaAs-APD将在长波长接收机中得到愈来愈广泛的应用。

一般来说,APD适用于接收灵敏度要求高的长距离传输和高速率通信系统;PIN适用于中、短距离和中、低速率系统,尤以PIN/FET组件使用广泛。

图3-28示出误码率BER=10-9时,码速率在10~1000Mb/s范围内,使用PIN/FET(1.1~1.6μm)和Si-APD(λ≤1μm)光接收机灵敏度(Pr)的典型值,Pr大体在-60~-30dBm 之间,长波长、高码速下的InGaAs-APD的灵敏度可比PIN/FET高7dB以上。图中还同时示出了光发送机的发送功率(PT),在已知码速条件下,收与发功率之差(PT-Pr,dB)就是收、发间所能允许的最大光损耗值,不论何种原因,若系统损耗超过此值,则意味着BER

将大于10-9。关于这方面内容后面将进一步讨论。

图3-28 实用中的光接收机灵敏度和光发送机平均输出功率

APD偏压电路的最佳设计 孙纯生,秦世桥,王兴书,朱冬华 1 .国防科技大学光电科学与技术学院,中国长沙410073 2 . 海军工程大学装备工程部,中国武汉430033 本文提出了一种基于温度补偿和负载电阻补偿的雪崩光电二极管(APD)反向偏压控制方法,并详细的分析了背景光和负载电阻对雪崩光电二极管检测电路的影响。为雪崩光电二极管偏置电路的设计建立了一种理想的温度补偿和负载电阻补偿模型。据预测,这种控制方法特别适用于车辆使用的激光测距仪。实验结果证实,本文提出的设计可以很大程度的改善测距仪的性能。 雪崩光电二极管(APD)的特点是具有很高的量子效率和教大的内部增益,这可以很大程度的降低对前置放大电路性能的要求,并能提高检测电路的信噪比(SNR)。因此,它具有很广泛的用途,如光纤通信、激光测距仪、微弱信号探测器等。为了使检测电路能获得最佳检测性能,APD的外部电压需要接近最佳倍增因子时的电压。由于最佳倍增因子是许多因数的复函数,如:外部温度、背景光通量、放大器噪声和系统带宽,因此需要设计一个复杂的反馈控制电路及时的调整雪崩光电二极管的偏压。当然这就增加了开销。本文介绍了一种简单的、避免高开销的方式,就是确保温度补偿的同时给APD偏置电路选择一个合适的负载电阻。通过这种方式,背景光对雪崩光电二极管检测电路造成的不良影响可在一定程度上得到补偿,并且检测电路抗背景光能力得到了改善。在这种方法基础上为汽车防撞设计的激光测距仪能很好地满足系统的要求。 APD激光检测电路的主要噪声源包括检测器噪声、负载电阻噪声、放大电路前端噪

声,还有背景光电流和信号光电流造成的散粒噪声。当前的信噪比可以按照下列方程式计算: (1) 方程1右边分子部分是光信号电流。方程1右边分母部分是噪声电流,包括三个方面。第一项是背景光电流和信号光电流造成的散粒噪声,第二项是检测器噪声,最后一项是负载电阻噪声和跟随放大电路的等效噪声。在方程中,s P 代表检测器接收到的光信号功率,M 是APD 的倍增增益,o R 是当M=1时的电流灵敏度,e 是电子的电荷量,等于1.602×10-19C ,B 是检测电路的通频带宽,b P 是检测器收到的背景光功率,A F 是APD 的过量噪声系数,ds i 是APD 表面漏电流,db i 是负载漏电流,K 是玻耳兹曼常数,等于1.3807 × 10-23 JK-1,T 是检测器负载电阻的温度(K),l R 是检测器的负载电阻(Ω),n F 是放大电路的等效输入噪声系数。 由于实际使用中M 是远远大于1的,暗电流可表示为d i ≈M db i ,而APD 过量噪声因子 A F =kM +(1-k )(2-1/M )≈2+kM 。在这一近似条件下,当d (i SNR )/dM =0,i SNR 达到其最大值且倍增因子达到最佳,可表示为: (2) 方程2中符号和方程1中符号的含义相同。我们知道,最佳倍增因子是外部温度、光信号功率、背景光功率,APD 噪声、光谱灵敏度、放大器噪声和系统带宽的函数。此外,特别是APD 内部结构决定了其倍增增益M 随工作温度变化而变化。用温度系数T C 来描述这种影响。对于C30737系列的APD ,T C 为 0.6 V/℃,这意味着在相同条件下,当APD 的工作温度增加1℃,为了维持APD 倍增因子不变偏压需要增加0.6 V 。 从前面一段的分析,我们知道,电路温度和背景光补偿旨在控制偏压,以便在不同SNR

#include #include #include #define ts_path "/home/huohuo/huangwork/work/birds.ts" //TS文件的绝对路径 void Read_Ts_Packet(FILE *file_handle,unsigned char *packet_buf,int len); //读一个TS流的packet int parse_TS(unsigned char *buffer,int FileSize); //分析TS流,并找出PA T的PID和PAT的table void parse_PAT(unsigned char *buffer,int len); //分析PA T,并找出所含频道的数目和PMT的PID void pronum_pmtid_printf(); //打印PMT的PID unsigned char* Find_PMT(unsigned short pmt_pid); //找出PMT的table void parse_PMT(unsigned char *buffer,int len,unsigned short pmt_pid); //解析PMT,找出其中的Video和Audio的PID void printf_program_list(); //打印PMT table中包含的stream的类型和PID unsigned char* Find_video_audio(unsigned short program_pid,unsigned char type); //找出Video或者Audio的table typedef struct { unsigned short program_num; //program's num unsigned short pmt_pid; // }PROGRAM; typedef struct { unsigned char stream_type; unsigned short elementary_pid; }PRO_LIST; PROGRAM programs[10] = {{0,0}}; //用来存储PMT的PID和数量unsigned int num = 0; //total program PRO_LIST program_list[10] = {{0,0}}; //用来存储PMT中stream的类型和PID unsigned int program_list_num = 0; FILE *file_handle; //指向TS流的指针 unsigned int FileSize = 0;

APD偏压电路的最佳设计 - 外文翻译 APD偏压电路的最佳设计 孙纯生,秦世桥,王兴书,朱冬华 1 .国防科技大学光电科学与技术学院,中国长沙410073 2 . 海军工程大学装备工程部,中国武汉430033 提出了一种基于温度补偿和负载电阻补偿的雪崩光电二极管反向偏压控制方法,并详细的分析了背景光和负载电阻对雪崩光电二极管检测电路的影响。为雪崩光电二极管偏置电路的设计建立了一种理想的温度补偿和负载电阻补偿模型。据预测,这种控制方法特别适用于车辆使用的激光测距仪。实验结果证实,提出的设计可以很大程度的改善测距仪的性能。 雪崩光电二极管的特点是具有很高的量子效率和教大的内部增益,这可以很大程度的降低对前置放大电路性能的要求,并能提高检测电路的信噪比(SNR)。因此,它具有很广泛的用途,如光纤通信、激光测距仪、微弱信号探测器等。为了使检测电路能获得最佳检测性能,APD的外部电压需要接近最佳倍增因子时的电压。于最佳倍增因子是许多因数的复函数,如:外部温度、背景光通量、放大器噪声和系统带宽,因此需要设计一个复杂的反馈控制电路及时的调整雪崩光电二极管的偏压。当然这就增加了开销。介绍了一种简单

的、避免高开销的方式,就是确保温度补偿的同时给APD偏置电路选择一个合适的负载电阻。通过这种方式,背景光对雪崩光电二极管检测电路造成的不良影响可在一定程度上得到补偿,并且检测电路抗背景光能力得到了改善。在这种方法基础上为汽车防撞设计的激光测距仪能很好地满足系统的要求。 APD激光检测电路的主要噪声源包括检测器噪声、负载电阻噪声、放大电路前端噪 声,还有背景光电流和信号光电流造成的散粒噪声。当前的信噪比可以按照下列方程式计算: 方程1右边分子部分是光信号电流。方程1右边分母部分是噪声电流,包括三个方面。第一项是背景光电流和信号光电流造成的散粒噪声,第二项是检测器噪声,最后一项是负载电阻噪声和跟随放大电路的等效噪声。在方程中,Ps代表检测器接收到的光信号功率,M是APD的倍增增益,Ro是当M=1时的电流灵敏度,e是电子的电荷量,等于×10-19C,B是检测电路的通频带宽,Pb是检测器收到的背景光功率,FA是APD的过量噪声系数,ids是APD表面漏电流,idb是负载漏电流,K是玻耳兹曼常数,等于× 10-23 JK-1,T 是检测器负载电阻的温度(K),Rl是检测器的负载电阻(Ω),Fn是放大电路的等效输入噪声系数。 M 于实际使用中M是远远大于1的,暗电流可表示为

[转载]PSI/SI解析(各种id说明) (2012-06-13 17:14:16) 转载▼ 分类:计算机 标签: 转载 原文地址:PSI/SI解析(各种id说明)作者:阿猛 一、SI信息的构成 1、信息构成 SI信息内容是按照network(网络)→transport strem(传输流)→service(业务)→event(事件)的分层顺序描述,如图1所示。 SI数据信息是按照一定的数据结构进行存储的,这样一来才能达到方便、快捷地进行数据检索和提取。SI数据主要有:网络信息、传输流信息、业务信息、业务的事件信息等,并且大量的信息都是通过描述符来传输的,所以可用树状链表来存储数据,构成从网络、传输流、业务、事件的树状结构。机顶盒接收端的解析主要负责这些SI数据的重建。 在数字电视系统中,为了能有效地从众多的数据包中组织起SI信息,而使用了很多的标识。有Network_id(网络标识)、Original_network_id(原始网络标识)、Transport_stream_id(传输流标识)、Service id(业务标识)、eventid_id(事件标识)、Bouquet_id(业务群组标识)。这些标识是作为信息查找定位用的,例如:要在一个TS里找出一个业务信息,就要知道这个业务信息在那个网络里、在哪个TS里和这个业务信息在这个流里的标识,这样一来,通过层层过滤,就能精确地定位描述这个业务信息的位置,并把它们找出来进行数据组织。图1就非常清楚地表明了这种查找思路。 一个网络信息由network_id来定位。

一个TS由network_id、Original_network_id、Transport_stream_id来定位,标明这个流在那个网络播发,它原属那个网络,并给它加上标识。 一个业务由network_id、Original_network_id、Transport_stream_id、service_id来定位,标明这个业务在那个网络播发,它原属那个网络和那个流,并给它加上标识。这体现在SDT表中。 一个事件由network_id、Original_network_id、Transport_stream_id、service_id、event_id来定位,标明这个事件在那个网络播发,它原属那个网络和那个流及那个业务,并给它加上标识。这体现在EIT表中。 据此,根据各个SI表的功能,各表的ID结构如下: NIT:network_id、Original_network_id、Transport_stream_id 、service_id。 SDT:Original_network_id、Transport_stream_id 、service_id。 EIT:Original_network_id、Transport_stream_id 、service_id、event_id。 BAT:bouquet_id 、Original_network_id 、Transport_stream_id 、service_id。 另外,还有一个PID(包标识),它的作用是给每一个数据包打上一个标记,TS承载有视频数据、音频数据、PSI和SI信息数据、图文电视数据、字幕数据、数据广播数据、交互业务数据、CA系统的控制信息数据等等,除了PSI和SI信息数据和CA系统的控制信息数据外,其他的数据的PID都是通过PMT表给出的,CA系统的控制信息数据的PID是由CAT表给出的,而承载了PSI和SI信息的各种表的PID值是固定分配的。 如下表 表 PID值 PAT | 0X0000 CAT | 0X0001 TSDT | 0X0002 NIT、ST | 0X0010 SDT、BAT、ST | 0X0011 EIT、ST | 0X0012 RST、ST | 0X0013 TDT、TOT、ST | 0X0014 DIT | 0X001E SIT | 0X001F 由于这些表是分配了固定的PID值,所以机顶盒就可以根据这些PID值来辨认出是什么表,并读取表中的描述参数来生成EPG信息和完成各种数据的组织、解码出所需要的节目和信息。 2、表的构成

HLS,Http Live Streaming是由Apple公司定义的用于实时流传输的协议,HLS基于HTTP 协议实现,传输内容包括两部分,一是M3U8描述文件,二是TS媒体文件。 1、M3U8文件 用文本方式对媒体文件进行描述,由一系列标签组成。 #EXTM3U #EXT-X-TARGETDURATION:5 #EXTINF:5, ./0.ts #EXTINF:5, ./1.ts #EXTM3U:每个M3U8文件第一行必须是这个tag。 #EXT-X-TARGETDURATION:指定最大的媒体段时间长度(秒),#EXTINF中指定的时间长度必须小于或等于这个最大值。该值只能出现一次。 #EXTINF:描述单个媒体文件的长度。后面为媒体文件,如./0.ts 2、ts文件 ts文件为传输流文件,视频编码主要格式h264/mpeg4,音频为acc/MP3。 ts文件分为三层:ts层Transport Stream、pes层 Packet Elemental Stream、es层 Elementary Stream. es层就是音视频数据,pes层是在音视频数据上加了时间戳等对数据帧的说明信息,ts层就是在pes层加入数据流的识别和传输必须的信息

注:详解如下 (1)ts层ts包大小固定为188字节,ts层分为三个部分:ts header、adaptation field、payload。ts header固定4个字节;adaptation field可能存在也可能不存在,主要作用是给不足188字节的数据做填充;payload是pes 数据。 ts header

专用信息(PSI) PSI 承载于含特定PID 的数据包之中。PSI已被标准化了,而有些内容则由节目关联表(PAT)和有条件进入表(CAT)来规定。这些数据包必须周期地包含在每个传输流中。PAT的PID总是为0,而CAT的PID总是为1。这些PID 值和零数据包PID的8191值是整个MPEG系统中唯一的固定PID 值。解多路复接器必须通过进入合适的表来确定所有余下的PID。然而,在ATSC和DVB中PMT可能要求特定的PID值。从这方面( 和其它一些方面) 来看,MPEG和DVB/ATSC是不能完全互相转换的。节目关联表(PAT)数据包(PID=0)中列出了传输流中存在的节目流,PAT 指定了所有节目映像表(PMT)数据包的PID。PAT的第一条输入,即节目0,总是留给网络数据,包含了网络信息(NIT)数据包的PID。授权控制信息(ECM) 的PID 和授权管理信息(EMM)的PID列在有条件进入表(CA T)数据包(PID=1)中。图7.3 显示,属于同一节目流的视频、音频和数据基本数据流的PID都列在节目映像表(PMT) 数据包中。每个PMT 数据包有其自己的PID。一个给定网络信息表包含的内容不仅仅是承载它的传输流,还包括同一解码器所能获得的其它传输流,例如调到不同的RF频道,或将卫星接收天线对准其它不同的卫星。NIT 可能列出一些其它传输流数目,每个含有一个描述符,指定无线电频率、轨道位置等等。在MPEG中只有NIT 是强制性设定的。在DVB中还包括如DVB-SI那样的中间数据,而NIT 则被认为是DVBSI的一部分。该内容将在第八部分中讨论。在一般讨论时,我们使用PSI/SI 这个词。 当第一次接收到传输流时,解多路复接器必须在数据包报头中寻找0和1 的PID。所有PID0 数据包含有节目关联表(PAT)。所有PID1 数据包含有有条件进入表(CAT)数据。通过读取PAT,解多路复接器可以找到网络信息表(NIT)和每个节目映像表(PMT) 中的 PID 。找到了PMT,解多路复接器便可找到每个基本数据流的PID。因此,如果要解码一个特定的节目流,我们就先要参考PA T,然后只需要PMT 来寻找节目中所有的基本数据流的PID。如果节目被加密,则还需要进入CAT。由于没有PAT就无法进行介多路复接,所以搜寻速度是PAT 数据包发送频率的函数。MPEG规定PAT数据包和参考PAT 数据包的PMT 数据包之间的最大间隔为0.5秒。在DVB和ATSC中,NIT 可能存在于具有特定PID 的数据包中。 第五部分 打包基本数据流(PES) 在实际应用中,载有从压缩器中得到的视频或音频的连续基本数据流需要分割成数据包。这些数据包用含有同步时间标记的报头信息来辨别。PES 数据包能够用来创建节目流或传输流。 5.1 PES 数据包 在打包基本数据流(PES)中,无长度限制的基本数据流根据不同的应用场合分割成大小合适的数据包。数据包的大小可能是几百个千字节,但它会根据不同的应用场合而变化。每个数据包之前有一个PES数据包报头。图5.1 显示的是报头信息内容。数据包的开头是一个24位的开始码前缀和一个数据流ID,用来识别数据包的内容是视频还是音频,并进一步识别音频编码的类型。这两个参数(开始码前缀和数据流ID)组成了数据包开始码,用来识别数据包的开始。请不要将PES中的数据包和传输流中使用的小得多的数据包混淆起来,即便它们有着相同的名字。由于MPEG只定义了传输流,而没有定义编码器,所以设计者要选择建立多路复接器,进一步将基本数据流转变成传输流。在这种情况下,PES 数据包可能没法识别,但它们在逻辑上存在于传输流有效负载之中。 5.2 时间标记

目录 1 编解码流程 (2) 1.1 编码流程 (2) 1.2 PES、TS结构 (3) PES结构分析(ES打包成PES) (3) TS结构:(PES经复用器打包成TS): (4) 2 解码流程 (5) 2.1 获取TS中的PAT (5) 2.2 获取TS中的PMT (6) 2.3 分流过滤 (6) 2.4 解码 (7) 3 DVB和ATSC制式 (7) 3.1 DVB和ATSC的区别 (7) 3.2 DVB和ATSC的SI (8)

1编解码流程 1.1编码流程 图1-1 ES:原始码流,包含视频、音频或数据的连续码流。 PES:打包生成的基本码流,是将基本的码流ES流根据需要分成长度不等的数据包,并加上包头就形成了打包的基本码流PES流,可以是不连续的。 TS:传输流,是由固定长度为188字节的包组成,含有独立时基的一个或多个节目,适用于误码较多的环境。 PS:节目流. TS流与PS流的区别在于TS流的包结构是固定长度的,而PS 流的包结构是可变长度的。在信道环境较为恶劣,传输误码较高时,一般采用TS码流;而在信道环境较好,传输误码较低时,一般采用PS码流。TS码流具有较强的抵抗传输误码的能力。

最后经过64QAM调制及上变频形成射频信号在HFC网中传输,在用户终端经解码恢复模拟音视频信号。 1.2PES、TS结构 PES结构分析(ES打包成PES) ES是直接从编码器出来的数据流,可以是编码过的视频数据流,音频数据流,或其他编码数据流的统称。每个ES都由若干个存取单元(AU)组成,每个AU实际上是编码数据流的显示单元,即相当于解码的1幅视频图像或1个音频帧的取样。 ES流经过PES打包器之后,被转换成PES包。PES包由包头和payload组成。 打包时,加入显示时间标签(Presentation Time-Stamp,PTS),解码时间标签(Decoding Time-Stamp,DTS)及段内信息类型等标志信

TS流也是由一个或多个PES组合而来的,他们可以具有相同的时间基准,也可以不同。其基本的复用思想是,对具有相同时间基准[color="#000000"]的多个PES现进行节目复用,然后再对相互有独立时间基准的各个PS进行传输复用,最终产生出TS。TS包由包头和包数据2部分组成,其中包头还可以包括扩展的自适用区。包头长度占4bytes,自使用区和包数据共占184bytes,整个TS包长度相当于4个ATM包长。TS包的包头由如下图摘录所示的同步字节、传输误码指示符、有效载荷单元起始指示符、传输优先、包识别(PID-Packet Identification)、传输加扰控制、自适应区控制和连续计数器8个部分组成。 其中,可用同步字节位串的自动相关特性,检测数据流中的包限制,建立包同步;传输误码指示符,是指有不能消除误码时,采用误码校正解码器可表示1bit 的误码,但无法校正;有效载荷单元起始指示符,表示该数据包是否存在确定的起始信息;传输优先,是给TS包分配优先权;PID值是由用户确定的,解码器根据PID将TS上从不同ES来的TS包区别出来,以重建原来的ES;传输加扰控制,可指示数据包内容是否加扰,但包头和自适应区永远不加扰;自适应区控制,用2 bit表示有否自适应区,即(01)表示有有用信息无自适应区,(10)表示无有用信息有自适应区,(11)表示有有用信息有自适应区,(00)无定义;连续计数器可对PID包传送顺序计数,据计数器读数,接收端可判断是否有包丢失及包传送顺序错误。显然,包头对TS包具有同步、识别、检错及加密功能。 TS包自适应区由自适应区长、各种标志指示符、与插入标志有关的信息和填充数据4部分组成。其中标志部分由间断指示符、随机存取指示符、ES优化指示符、PCR标志、接点标志、传输专用数据标志、原始PCR标志、自适应区扩展标志8个部分组成。重要的是标志部分的PCR字段,可给编解码器的27MHz时钟提供同步资料,进行同步。其过程是,通过PLL,用解码时本地用PCR相位与输入的瞬时PCR相位锁相比较,确定解码过程是否同步,若不同步,则用这个瞬时PCR调整时钟频率。因为,数字图像采用了复杂而不同的压缩编码算法,造成每幅图像的数据各不相同,使直接从压缩编码图像数据的开始部分获取时钟信息成为不可能。为此,选择了某些(而非全部)TS包的自适应区来传送定时信息。于是,被选中的TS包的自适应区,可用于测定包信息的控制bit和重要的控制信息。自适应区无须伴随每个包都发送,发送多少主要由选中的TS包的传输专用时标参数决定。标志中的随机存取指示符和接点标志,在节目变动时,为随机进入I帧压缩的数据流提供随机进入点,也

PMT (Program Map Table) 节目映射表Meaning of PMT - "Program Map Table". A Program Specific Information table that supplies basic information about the services present in an Moving Pictures Experts Group 2 (MPEG-2) transport stream. The PMT lists all of the packet IDs (PID) for packets containing elements of a particular program such as audio, video, aux data, and Program Clock Reference (PCR). Packets in the same elementary stream all have the same PID and the decoder can select the elementary stream or streams it wants and reject the remainder. Also carried in the metadata is the information that some programs will be open and some may be subject to encryption 节目映射表:数字电视与传统模拟电视节目选择的方式完全不同,传统电视的每一个频道对应一个节目,只要调到相应的频率,就可以看到节目。而在数字电视信号中,一路码流对应多路节目,使用复用技术就可以做到了。一个物理的频道只能给出包含多路节目的一路传输流。要观看其中的某一路节目,还必须从该传输流中提取出该路节目的压缩包,然后再进行解码。所以怎样从众多的传输流中,选中一路节目播放,就变得很复杂。在mpeg-2的传输流(Transport Stream)中,节目专用信息PSI(Program Specific Information),就是规定不同节目和节目中的不同成分如何复用成一个统一的码流。以PSI为基础可以提供一个码流的构成,从而帮助用户对节目进行选择。DVB中的服务信息SI(Service Information)则对此进行了进一步的扩展,加入了一些对用户有用的信息,标示节目的类型,服务商,节目的相互关系等。正确的了解mpeg-2的PSI以及DVB的SI的结构,及其在节目组织,选择中的应用,可以正确理解service information在DVB解码中的地位。对于我们做好对数字节目的复用,也能起到帮助作用。 MPEG-2 TS中的PSI PSI信息主要包括以下的表: PAT(Program Association Table):节目关联表,该表的PID是固定的0x0000,它的主要作用是指出该传输流ID,以及该路传输流中所对应的几路节目流的MAP 表和网络信息表的PID。节目关联表(PAT Program Association Table) 是数字电视系统中节目指示的根节点。其包标识符(Packet IDentifier、简称PID)为0。终端设备(如机顶盒)搜索节目时最先都是从这张表开始搜索的。从PAT中解析出节目映射表(Program Map Table、简称PMT),再从PMT解析出基本元素(如视频、音频、数据等)的PID及节目号、再根据节目从节目业务描述表(Service Description Table、简称SDT)中搜索出节目名称。CA T相关表是从PMT中得到。[ PMT(Program Map Table):节目映射表,该表的PID是由PA T提供给出的。通过该表可以得到一路节目中包含的信息,例如,该路节目由哪些流构成和这些流的类型(视频,音频,数据),指定节目中各流对应的PID,以及该节目的PCR所对应的PID。 NIT(Network Information Table):网络信息表,该表的PID是由PAT提供给出的。NIT 的作用主要是对多路传输流的识别,NIT提供多路传输流,物理网络及网络传输的相关的一些信息,如用于调谐的频率信息以及编码方式。调制方式等参数方面的信息。 CA T(Conditional Access Table):条件访问表,PID -0x0001。除了上述的几种表外,mpeg-2还提供了私有字段,用于实现对MPEG-2的扩充。

HLS,Http Live Streaming 是由Apple公司定义的用于实时流传输的协议,HLS基于HTTP 协议实现,传输内容包括两部分,一是M3U8描述文件,二是TS媒体文件。 1、M3U8文件 用文本方式对媒体文件进行描述,由一系列标签组成。 #EXTM3U #EXT-X-TARGETDURATION:5 #EXTINF:5, ./0.ts #EXTINF:5, ./1.ts #EXTM3U:每个M3U8文件第一行必须是这个tag。 #EXT-X-TARGETDURATION:指定最大的媒体段时间长度(秒),#EXTINF中指定的时间长度必须小于或等于这个最大值。该值只能出现一次。 #EXTINF:描述单个媒体文件的长度。后面为媒体文件,如./0.ts 2、ts文件 ts文件为传输流文件,视频编码主要格式h264/mpeg4,音频为acc/MP3。 ts文件分为三层:ts层Transport Stream、pes层 Packet Elemental Stream、es层 Elementary Stream. es层就是音视频数据,pes层是在音视频数据上加了时间戳等对数据帧的说明信息,ts层就是在pes层加入数据流的识别和传输必须的信息

注:详解如下 (1)ts层 ts包大小固定为188字节,ts层分为三个部分:ts header、adaptation field、payload。ts header固定4个字节;adaptation field可能存在也可能不存在,主要作用是给不足188字节的数据做填充;payload是pes数据。 ts header sync_byte 8b 同步字节,固定为0x47 transport_error_indicator 1b 传输错误指示符,表明在ts头的adapt域后由一个无用字节,通常都为0,这个字节算在adapt域长度内 payload_unit_start_indicator 1b 负载单元起始标示符,一个完整的数据包开始时标记为1 transport_priority 1b 传输优先级,0为低优先级,1为高优先级,通常取

#include #include using namespace std; struct programs //封装节目信息的结构体 { int programID;//节目编号 int pmtPID;//所属PMT的pid int videoPID;//视频pid int audioPID1;//音频pid int audioPID2;//音频pid }myProg[20]; bool FindAndParsePAT(unsigned char *buffer,int pID,int curPack);//传入BUF和PID的值bool FindAndParsePMT(unsigned char *buffer,int pID,int curPack); int program=0; int prog_count=0; void main() { unsigned char *buffer=new unsigned char[500]; int startPos=0;//第一个TS分组在流中的位置序号 int packageLen=0;//分组长度 int pmtCount=-1;//PMT表序号 int pID=0; int nullpack=0; //0.以二进制方式打开TS文件 ifstream myFile("test.ts",ios::binary|ios::in); //1.读入文件的前500个字节,找同步头、确定包长 myFile.read((char *)buffer,500); for(int i=0;i<500;i++) { //判断有无压缩 if(buffer[i]==0x47&&buffer[i+188]==0x47) { startPos=i;//第一个TS分组在流中的位置序号 packageLen=188;//分组长度 break; } else if(buffer[i]==0x47&&buffer[i+204]==0x47) { startPos=i; packageLen=204; break; } }

MPEG-2传输流及其PSI信息的解析 在数字电视业务中,为了节约带宽资源,常常将不同的节目复用到一个信道上,并且,为了在容易发生错误的信道上进行可靠的传输,复用后的数据流称为传输流;终端在收到其中的某套节目时,必须从码流中对该节目进行提取,即在解码端必须对传输流进行解复用。如果在传输流中不包含引导信息,由于传输流存在多套节目,数字电视终端设备将无法正确找到需要解码的信息,从而不能正确解码。针对这一问题,MPEG2专门定义了节目专用信息PSI(Program Specific Information),它的作用是自动设置和引导终端设备进行解码。这就需要在前端向传输流TS(Transport Stream)中进行PSI信息的复用,并用特定的包标识符(PID)进行标识。本文就传输流TS的组成及其PSI信息进行了解析,重点对PSI信息的组成及功能进行了说明,并对终端如何利用PSI信息进行自动解码进行了阐述。 一、MPEG2传输流结构 在MPEG2 中,系统编码有两种方法:程序流和传输流,其分别适用于不同的应用环境。程序流是针对错误相对较少的环境内设计的,适用于像交互式多媒体一些涉及软件处理系统信息的应用,程序流分组是可变的而且相对较长。MPEG2的传输流是相对于程序流而言,其主要是针对那些容易发生错误的环境而设计的,如在容易在丢失或高噪音的媒体中存储和传送,为便于处理和信道编码,传输流的分组长度一般是固定的,为188字节。其结构如下图1所示。 图1 传输流结构 如图1所示,在MPEG2的传输流中,可以包含多个节目,而每个节目又

是由多个基本码流(如视频、音频、数据等)组成,基本码流、PSI信息及其他控制数据都被打成固定长度的包分组,这些数据流分组的区分都是通过PID (packet ID)来区分的。传输流的实例可如图2表示。 TS流实例 图2 传输流实例 图中,PAT,PMT,NIT,CAT为PSI信息,下面将进行说明,而VIDEO,AUDIO则为视、音频传输流,ECM(Entitlement Control Message)、EMM (Entitlement Management Massage)为授权信息,用于对视音频数据的解扰。 二、PSI信息组成及功能 传输流中的PSI信息主要包括四种表。这四种表分别为: ●节目组合表PAT(Program Association Table) ●节目映射表PMT(Program mapping Table) ●有条件接收表CAT(Conditional Access Table) ●网络信息表NIT(Network Information Table) 1、PAT包含了传输流中所有节目的清单,并为每个节目定义了一个节目 号码。它具有固定的PID值为0X0000,其他任何传输流的PID都不能 使用0X0000,它的作用是给出了各个节目相对应PMT表的PID值, 即它具有指针作用。PAT表的内容包含了很多分段,每个分段对应一套 节目,该分段包含该节目的全部信息,其目的是在错误发生时将数据丢 失最小化,也就是分组丢失或位错误可定位于更小的PAT段,这样就允 许其他分段被接收和正确解码。如果整个PAT信息置于一个分段中,则

基于ADL5317的APD偏压控制/光功率监测电路的设计 1 引言 目前,雪崩光电二极管(APD)作为一种高灵敏、能精确接收数据和测量光功率的光探测器件广泛应用于光纤传感、光纤通信网络中。它借助于内部强电场作用产生雪崩倍增效应,具有极高的内部增益(可达102~104量级)。然而,APD随温漂的变化严重影响其增益的稳定性.甚至引起测量精度的恶化。理论上可以证明APD的增益是其偏压V和温度T的函数,二者共同决定APD工作时的增益,而且在维持APD增益比较恒定的条件下,其偏压和温度之间存在一定的关系。因此。可以控制APD的偏压使之随温度按一定的规律改变。这样就可以维持APD增益基本恒定,保证其正常工作。这就是对APD温度漂移的偏压补偿原理。 由此可知.施加在APD上的偏置电压必须能够精确受控是保证光纤系统性能的首要要求。本文针对该要求。采用ADL5317器件。给出了一种具有高精度、宽动态范围的APD偏压控制/光功率监测功能的核心电路。 2 引脚排列及功能 ADL5317是ADI公司率先在业界推出的一款片上集成雪崩光电二极管(APD)偏置电压控制和光电流监测功能的器件。 ADL5317的主要特性如下: 通过3 V线性偏置控制电路,在6 V~75 V范围内精确设置雪崩二极管(APD)偏置电压; 在106范围(5 nA一5 mA)内以5:1的比率监测光电流,其线性误差仅为0.5%; 允许使用固定的高电压转换电路,降低传统APD偏置设计中对电源解耦和低通滤波的要求; 过流保护和过热保护。 ADL5317采用3 mm*3 mm的16引脚LFCSP封装,其引脚排列。各引脚功能描述如表1所列。 3 内部结构及工作原理 ADL5317的内部结构。其内部包括电流监测电路、偏置控制电路、GARD电路、VCLH电路、过流和过热保护电路。 3.1 电流监测电路 ADL5317的核心部分是一个具有电压跟随性质的精密电流衰减电路,为监测电路输入端提供精确偏置。该电路采用了结型场效应管输入形式的放大器.驱动监测电路的两极,同时保持VAPD端电压的稳定度及非常低的漏电流。该监测电路将流经VAPD端的光电流衰减至其1/5,然后传送至APD光电流监测输出端(IPDM)。在APD偏置电压范围内,监测电流与APD 光电流之间都保持极高的线性度。 3.2偏置控制电路 VAPD端与VSET端通过一个运算放大器相连,在线性工作模式下,两者电压之间存在一个简单的关系: 同时VAPD端电压调节范围与高电压电源端VPHV之间存在以下关系: 3.3 GARD电路 GARD电路主要用来屏蔽VAPD线路不受漏电流的影响,以及滤除偏置控制电路的噪声。GARD电路由VSET端运算放大器通过一个20 k欧姆的电阻进行驱动。该电阻与GARD端外接

前些天有人问我如何实现精密的分压,他认为电阻分压不够精密.其实分压的目的就是为了符合AD转换的输入范围,但其实有时候不但输入范围超出AD量程,甚至会是一个负电压,这个时候需要将电压平移.反正今天双休有空,我就说说自己的做法,疏漏之处敬请谅解 现今大多数的AD芯片都采用单电源+5V、+3.3V甚至更低的+1.8V供电,其差模输入范围一般是±Vref(差分输入)、0~ +Vref,部分允许使用外部基准的芯片允许0~ VDD的输入范围,但是无论如何无法对一个负的输入电压进行A to D的转换(也许有一些双电源的AD芯片可以,但我是个新手没仔细研究过)。如果要对一个过零的正负信号进行AD转换就必须进行电平的平移。理论上如图1所示的差分放大器就可以完成电平平移的效果,差分放大器的增益等于1,因此V out = Vin + 5.000。Vin = -5 ~ +5V,因此经过平移后V out = 0 ~ 10V,再经过电阻R18、R19二分压到符合AD系统输入范围的电压。 但是图1所示的电路并不理想。第一,放大电路的输入阻抗约等于R16 + R17 = 20K,低的输入阻抗要求信号源必须是低内阻具有衡压输出特性的信号源,否则将造成很大的误差;第二,R8 R9 R16 R17的匹配程度将直接影响增益精度;第三,R18 R19的二分压也将带来2%的最大误差,如果并非二分压那么R18≠R19,由于消耗的功率不一样导致R18温度与R19不相等,温漂将使得分压误差加大;第四,任何接入的电路将等效成一个负载,即使AD系统只吸收很低的电流,等效阻抗很大,也将进一步加大分压的误差。

对于第一个问题,可以在差分放大前加入一级电压跟随器作为缓冲,利用运放的高输入阻抗减少对信号源的影响,并且运放的低输出阻抗衡压输出的特性可以很好的满足差分放大级的“特殊”要求。对于第二和第三个问题,使用0.1%低温漂的精密电阻器可以大为改善。对于第四个问题,再运放负载能力允许的情况下使用阻值更小的电阻器可以将影响降低,但是应当注意的是-----使用阻值更小的电阻器将会使消耗功率增加,而消耗功率的增加又使得温度上升,温漂问题加重。经过改进的电路如图2所示: 当然,你还可以使用单片集成差分放大器去替换后端的用精密运放和精密电阻器构建的差分放大电路,例如单位增益的AMP03。其高共模抑制比(CMRR):100 dB(典型值) 、低非线性度:0.001%(最大值) 、低失真:0.001%(典型值) 、总增益误差0.0080% 的性能是绝对优胜于分立器件构建的差分放大电路的。然而成本是否增加很多我就不知道了,我不是采购不知道价格,哈哈。

2×8低噪声InGaAs/InP APD读出电路设计 0 引言 在红外通信的1 310~1 550 nm波段,高灵敏度探测材料主要有Ge—APD和InGaAs/InP APD,两者相比较,InGaAs/InP APD具有更高的量子效率和更低的暗电流噪声。In0.53Ga0.47As/InP APD采用在n+-InP衬底上依次匹配外延InP缓冲层、InGaAs吸收层、InGaAsP能隙渐变层、InP电荷层与InP顶层的结构。 APD探测器的最大缺点是暗电流相对于信号增益较大,所以设计APD读出电路的关键是放大输出弱电流信号,限制噪声信号,提高信噪比。选择CTIA作为读出单元,CTIA是采用运算放大器作为积分器的运放积分模式,比较其他的读出电路,优点是噪声低、线性好、动态范围大。 1 工作时序和读出电路结构 作为大阵列面阵的基础,首先研制了一个2×8读出电路,图1给出了该电路的工作时序,其中Rl、R2为行选通信号;Vr为复位信号;SHl、SH2是双采样信号;C1、C2、…、C8为列读出信号。电路采用行共用的工作方式,R1选通(高电平)时,第一行进行积分,SH1为高电平时,电路进行积分前采样,SH2为高电平时,进行积分结束前的采样,C1、C2、…、C8依次为高电平,将行上的每个像元上信号输出;然后R2为高电平,重复上面的步骤,进行第二行的积分和读出。 图2是2×8读出电路的结构框图,芯片主要由行列移位寄存器、CTIA和CDS单元组成,图中用虚线框表示:移位寄存器单元完成行列的选通,CTIA功能块将探测器电流信号按行进行积分,CDS功能块能抑

制电路的噪声,如KTC(复位噪声)、FPN(固定图形噪声)等;FPGA主要产生复位信号(Vr)和采样信号(SH1、SH2),触发电路的复位和采样动作,C8为该组信号的触发信号,解决和芯片内行列选通信号同步问题。 为了便于和读出电路的连接仿真,首先根据器件特性建立了器件的电路模型,如图3(a)中的虚线框所示,其中Idet、Rdet、Cdet分别表示器件的光电流、阻抗、寄生电容。图3(a)还给出了CTIA读出单元电路结构,主要由一个复位开关KR和积分电容Cint以及低噪声运放A构成。在CTIA结构中,设计一个高增益、低噪声、输入失调小、压摆率大的运放是确保读出电路信噪比高、动态范围大的关键。除此之外,积分电容Cint的设计也非常重要,在设计过程中发现,选择合适的积分电容也是关键之一。图3(b)是CDS 单元,由采样管Ml、M2、采样保持电容C1、C2及M3~M6构成的差分器组成,Vin为CDS输入电位,也即CTIA的输出电位。Voou1和Vout2为两次采样输出,经过减法器后可以进行噪声抑制。

SI表分析方法 一名词解释 EMM:Entitlement Management Messages,授权管理信息。提供特定的条件接收信息,规定了解码器的授权级别或业务的授权级别。可以为单个解码器寻址,也可能为解码器组寻址。 组件(Component):又叫基本流(Elementary Stream)。共同构成事件的一个或多个实体。例如:视频、音频、图文。 事件(event):一组给定了起始时间和结束时间、属于同一业务的基本广播数据流。例如:一场足球比赛的半场、新闻快报或娱乐表演的第一部分。 节目(programme):由广播者提供的一个或多个连续的事件。例如:新闻广播,娱乐广播。业务(service):在广播者的控制下,可以按照时间表分步广播的一系列节目。 业务提供者(service provider):又叫广播者(broadcaster)。组织一系列事件或节目,并按时间表将其传送给观众的机构。 业务群(bouquet):同一实体在市场中提供的业务集合。 条件接受系统():可以控制用户接收业务、节目和事件的系统。 表(table):由具有相同的表标识符(table_id)的一系列子表构成。 段(section):一个语法结构,用于将定义的所有业务信息映射成为传输流包。 二SI与PSI SI(Service Information):业务信息。 PSI(Program Specific Information):节目特定信息。节目特定信息指GB/T 17975.1-2000中的业务信息,用于对复用流中的不同节目流进行解复用和解码。PSI主要包括三种类型表,每类表按段传输。包括节目关联表(PAT)、条件接受表(CAT)、节目映射表(PMT)。其中,1)节目关联表(PAT):(PID = 0x00) -Program Association Table -针对复用的每一路业务,PAT提供了相应的节目映射表(PMT)的位置(传输流(TS)包的包标识符(PID)的值),同时还提供网络信息表(NIT)的位置。 -针对某个频点,以TS为单位。 2)条件接收表(CAT):(PID = 0x01) -Conditional Access Table -条件接收表提供了在复用流中条件接收系统的有关信息。这些信息属于专用数据,并依赖于条件接收系统。当有EMM时,它还包括了EMM流的位置。 -以TS为单位,提供EMM_PID、ECM_PID。 3)节目映射表(PMT): -Program Map Table -节目映射表标识并指示了组成每路业务的流的位置,及每路业务的节目时钟参考(PCR)字段的位置。 -针对某个Service,以Service为单位,提供A_PID(音频PID)、V_PID(视频PID)及PCR_PID(同步PID)。 另外,SI主要包括以下十个表:(最主要为前5个表)

相关文档
相关文档 最新文档