文档库 最新最全的文档下载
当前位置:文档库 › 自适应信号处理论文-基于MATLAB的自适应滤波算法研究

自适应信号处理论文-基于MATLAB的自适应滤波算法研究

自适应信号处理论文-基于MATLAB的自适应滤波算法研究
自适应信号处理论文-基于MATLAB的自适应滤波算法研究

自适应信号处理论文

基于MATLAB 的自适应滤波算法研究

摘要:自适应滤波算法是自适应滤波器设计的核心部分,本文主要介绍了两种算法: LMS 算法和DCT 变换。LMS 算法是时域变换,DCT 是频域变换,文章采用 MATLAB 相关函数实现了对信号变换的仿真,并对这两种算法进行了一定的对比。

关键词:Matlab ,LMS 算法,DCT 变换

1、引言

LMS 算法是自适应滤波算法中最基本的算法,它包含了自适应滤波的许多基本的概念,是其它许多算法的基础,是实际中使用的最广泛的一种算法。LMS 算法是在最陡下降法的基础上导出的,可以说LMS 算法是最陡下降法的随机实现。表1详细地给出LMS 算法,其中x(n)为n 时刻滤波器的输入信号,w(n)为n 时刻的滤波器系数,y(n)为滤波器的输出信号,d(n)为滤波器的期望信号,e(n)为滤波器的估计误差,u 为更新步长。

表 1

LMS 算法

1.

滤波(Filtering ):

T ()()()y n n n =w x

2.

误差估计(Error estimation ):

()()()e n d n y n =-

3.

权值更新(Tap-weight update ):

(1)()2()()n n e n n μ+=+w w x

为了保证最陡下降法收敛,步长μ的取值决定于特征值最大的那个收敛模式。

max

1

0μλ<<

其中max λ为特征值中的最大值。这必然导致其它收敛模式的收敛速度下降,输入信号自相关矩阵R 的特征值分散度在很大程度上影响了算法的收敛性能。

针对LMS 算法存在特征值分散度的问题,我们可以采用牛顿法来进行克服,牛顿法使得滤波器各系数(各收敛模式)的收敛速度一致,与特征值分布无关,

从根本上消除了最陡梯度下降法受特征值分布影响的缺陷。牛顿方法其实就是KL 变换域的最陡下降法,由于KL 变换是最理想的正交变换,它依赖于自相关矩阵R 特征矢量,统计特性不同的输入信号有不同的KL 变换,所以很难在实际中使用。

因此我们可以用常用的变换来替代KL 变换,这样就得到了TDAF 算法。TDAF 就是变换域中的LMS 算法,所以也称为TDLMS 算法。详细算法如下所示。

表 2 TDLMS 算法

1. 变换(Transformation ):

()()T n n =x Tx

2. 滤波(Filtering ):

T

()()()T T y n n n =w x

3. 误差估计(Error estimation ):

()()()e n d n y n =-

4. 功率估计(Power estimation ):

,2

?()T i

x n σ,22,?(1)(1)()T i

x T i n n βσ

β=-+-x

5. 权值更新(Tap-weight update ):

,,,,2

2(1)()()()?()T i T i T i T i x w n w n e n x n n μ

σψ

+=+

+

TDAF 中的常用变换主要有 离散傅立叶变换(DFT )、实数离散傅立叶变换(RDFT )、离散哈特利变换(DHT )、离散余弦变换(DCT )和离散正弦变换(DST )。

在这里主要研究DCT 变换,DCT 变换是一种性能接近于最佳正交变换KL 变换的频域变换,由于其相比离散余弦变换很多有快速算法,便于实现,所以经常被信号处理和图像处理使用,用于对信号和图像进行有损数据压缩。

2、DCT 变换

离散余弦变换(Discrete Cosine Transform ,简称DCT )变换是一种与傅立叶变换紧密相关的数学运算。在傅立叶级数展开式中,如果被展开的函数是实偶函数,那么其傅立叶级数中只包含余弦项,再将其离散化可导出余弦变换,因此称之为离散余弦变换。该变换有八种表达形式,其中主要的四种变换形式如下图(1) 所示。

图(1) 四种DCT 变换形式

DCT-I : ()2

011

1(1)cos 0,...,121N k k N n n X x x x nk k N N π--=??

=+-+=-??

-??∑

DCT-II : 1

1c o s ()0,...,1

2N k n n X x n k k N N π

-=??=+=-????∑ DCT-III : 1

01

11cos ()0,...,122N k n n X x x n k k N N π

-=??=++=-??

??∑

DCT-IV : 1

11cos ()()0,...,122N k n n X x n k k N N π

-=??=++=-??

??∑

本文采用其中第二种来进行讨论。 一维N 点离散余弦变换(DCT)可表示为:

1

(21)cos 2N k k n n n k y C x N π

-=+=∑

其中,xn 是输入时域序列中的第n 项,yk 是输出频域序列的第k 项,系数Ck

定义如下:

1,2,...,1

k k C k N ===-

一维N 点离散余弦逆变换(IDCT)可以表示为:

1

(21)c o s 2N n k k n n k x C y N π

-=+=∑

3、MATLAB仿真实验

3.1 DCT变换对语音信号的压缩

DCT 变换的MATLAB实现方法,基于FFT 的快速算法,这是通过MATLAB 工具箱提供的dct 和idct 函数实现的,仿真结果如下

程序:

t=0:1/1000:0.2;x=sawtooth(2*pi*45*t);

subplot(4,1,1);plot(t,x);title('原始信号');

y=dct(x); %DCT 变换输出

subplot(4,1,2); plot(y);title('DCT输出信号');

y1=y.*(abs(y)>0.5); %将DCT 结果中绝对值小于0.5 的令为0,相当于

压%缩了数据率

subplot(4,1,3);plot(y1);title('DCT 压缩后的信号');

z=idct(y1); %DCT 反变换

subplot(4,1,4);plot(t,z);title('恢复的信号');

仿真结果图:

原始信号

00.020.040.060.080.10.120.140.160.180.2

DCT输出信号

050100150200250

DCT 压缩后的信号

050100150200250

恢复的信号

00.020.040.060.080.10.120.140.160.180.2

可以看出,当波形数据做DCT 变换后压缩到原数据的12.94%左右时,根据压缩信号重建的时域波形存在失真,但在工程上这样的失真是允许的。在一定失真度指标下,通过DCT变换可以使数据得到很大程度的压缩。

3.2LMS算法及DCT变换仿真

程序:

length=1024*8;%设置信号长度

N=500;

a=zeros(1,length+N);

for i=0:0.005:0.5

if i==0

a=0.5*cos(2*pi*i*(0:length+N-1));

else

a=a+cos(2*pi*i*(0:length+N-1));%产生输入信号

end

end

%%%%% 1、LSM算法%%%%%%%%%%%%%%%%%%%%% a=a';

d=zeros(1,length+N); %期望信号初始为零

for i=0:0.005:0.2

if i==0

d=d+.5*cos(2*pi*i*(0:length+N-1));

else

d=d+cos(2*pi*i*(0:length+N-1));%产生期望信号

end

end

d=d';

w=zeros(N,1);

E=zeros(1,length); %误差信号初始为零

u=0.00001; %收敛因子

for i=1:length

E(i)=d(i)-a(i:i+N-1)'*w;

w=w+2*u*E(i)*a(i:i+N-1);%LMS算法

end

%%%%% 2、DCT算法%%%%%%%%%%%%%%%%%%%%% y=dct(a);% DCT变换

%%%%% 3、画图%%%%%%%%%%%%%%%%%%%%%%%% figure:subplot(211),plot(a),title('输入信号a')

subplot(212),plot(d),title('期望信号d')

figure:subplot(211),plot(a),title('输入信号a')

subplot(211),plot(w),title('LMS输出信号w')

subplot(212),plot(y),title('DCT输出信号y')

figure:plot((1:length),E),title('误差E');% 误差的变化情况

仿真结果图:

1000

2000

3000

4000

5000

6000

7000

8000

9000

-50

050100

150输入信号a

1000

2000

3000

4000

5000

6000

7000

8000

9000

-20

02040

60期望信号d

50

100

150

200

250

300

350

400

450

500

LMS 输出信号w

50

100

150

200

250

300

350

400

450

500

DCT 输出信号y

误差E

0100020003000400050006000700080009000随着自适应算法迭代次数的增加,滤波器输出估计误差逐渐变小。

4、总结

变换域自适应滤波器(TDAF)与时域自适应滤波器之间的主要差异之一在于信号输入和滤波器输入之间加入了正交变换,LSM最大的优点是具有简单的滤波器权值更新方程,它有利于进行数值计算,稳定性好,对于有限字长的误差不敏感,而其它的一些复杂算法,则不具备这个特点。但是它的性能不好,直接依赖于输入信号的频谱特点,当输入信号为高度有色信号(特征值分散度广)时,LMS算法的收敛速度很慢。

TDAF对特征值分散度不敏感,在特征值分散度大的情况下,仍然保持了很快的收敛速度。其中DCT变换就是对KLT的最优近似,相对于其它常用变换,DCT输出系数之间的正交性最好,且是实数变换,有利于其后的自适应算法的计算,在语音信号处理及图像处理中有着广泛的应用。

自适应均衡算法LMS研究 一、自适应滤波原理与应用 所谓自适应滤波器,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。根据环境的改变,使用自适应算法来改变滤波器的参数和结构。 1.1均衡器的发展及概况 均衡是减少码间串扰的有效措施。均衡器的发展有史已久,二十世纪60年代前,电话信道均衡器的出现克服了数据传输过程中的码间串扰带来的失真影响。但是均衡器要么是固定的,要么其参数的调整是手工进行。1965年,Lucky在均衡问题上提出了迫零准则,自动调整横向滤波器的权系数。1969年,Gerhso和Porkasi,Milier分别独立的提出采用均方误差准则(MSE)。1972年,ungeboekc将LMS算法应用于自适应均衡。1974年,Gedard 在kalmna滤波理论上推导出递推最小均方算法RLS(Recursive least-squares)。LMS类算法和RLS类算法是自适应滤波算法的两个大类。自适应滤波在信道均衡、回波抵消、谱线增强、噪声抑制、天线自适应旁瓣抑制、雷达杂波抵消、相参检测、谱估计、窄带干扰抑制、系统辨识、系统建模、语音信号处理、生物医学、电子学等方面获得广泛的应用。 1.2均衡器种类 均衡技术可分为两类:线性均衡和非线性均衡。这两类的差别主要在于自适应均衡器的输出被用于反馈控制的方法。如果判决输出没有被用于均衡器的反馈逻辑中,那么均衡器是线性的;如果判决输出被用于反馈逻辑中并帮助改变了均衡器的后续输出,那么均衡器是非线性的。

LMS RLS 快速RLS 平方根RLS 梯度RLS LMS RLS 快速RLS 平方根RLS 梯度RLS LMS RLS 快速RLS 平方根RLS 算法图1.1 均衡器的分类 1.3自适应算法LMS算法 LMS算法是由widrow和Hoff于1960年提出来的,是统计梯度算法类的很重 要的成员之一。它具有运算量小,简单,易于实现等优点。 LMS算法是建立在Wiener滤波的基础上发展而来的。Wiener解是在最小均方误差(MMSE)意义下使用均方误差作为代价函数而得到的在最小误差准则下的最优解。因其结构简单、稳定性好,一直是自适应滤波经典有效的算法之一,被广泛应用于雷达、通信、声纳、系统辨识及信号处理等领域。 1.3.1 MSE的含义 LMS 算法的推导以估计误差平方的集平均或时平均(即均方误差,MSE)为基础。下面先介绍MSE的概念。 设计一个均衡系统如下图所示:

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

信息工程系课程设计报告 课程MATLAB课程设计 专业通信工程 班级 2级本科二班 学生姓名1 景学号114 学生姓名2 学号1414 学生姓名3 王学号6 学生姓名4 学号31 学生姓名4 学号02 二〇一四年十二月

目录 目录 (1) 摘要: (2) 关键词: (2) 1.算法描述 (2) 1.1 噪声点 (3) 1.2 窗口尺寸选择 (3) 1.3求滤波窗口内中值,并替换像素点。 (3) 2程序实现 (4) 2.1准备和描述 (4) 2.2扩大窗口、确定窗口 (5) 2.3 确定最大、最小值和中值 (6) 2.4中值替换像素点、输出图像 (7) 实验结果 (9) 参考文献 (9)

摘要:通过本次课程设计,主要训练和培养学生综合应用所学MATLAB课程的自适应中值的相关知识,独立学习自适应中值滤波的原理及处理方式。学会扩大窗口并找到其区域内的中值、最小值、以及最大值,然后用中值代替像素点。通过自主学习和查阅资料来了解程序的编写及改进,并用MATLAB进行仿真。 关键词:自适应中值滤波灰度值椒盐噪声像素点.

1.算法描述 1.1 噪声点 脉冲噪声是图像处理中常见的一类,中值滤波器对消除脉冲噪声非常有效。噪声脉冲可以是正的(盐点),也可以是负的(胡椒点),所以也称这种噪声为“椒盐噪声”。椒盐噪声一般总表现为图像局部区域的最大值或最小值,并且受污染像素的位置是随机分布的,正负噪声点出现的概率通常相等。图像噪声点往往对应于局部区域的极值。 1.2窗口尺寸选择 滤波窗口尺寸的选择影响滤波效果,大尺寸窗口滤波能力强,但细节保持能力较弱;小尺寸窗口能保持图像大量细节但其滤波性能较低。根据噪声密度的大小自适应地选择滤波窗口可以缓和滤波性能与细节保持之间的矛盾,同时也增加了算法的时间复杂度。从形状看来窗口方向要沿着边缘和细节的方向,不能穿过它们也不能把它们和周围相差很大的像素包含在同一窗口中否则边缘和细节会被周围像素模糊。 1.3求滤波窗口内中值,并替换像素点。 设f ij为点(i,j)的灰度,A i,j为当前工作窗口,f min、f max 和f med分别为A i,j中的灰度最小值、灰度最大值和灰度中值, A

LMS与RLS自适应滤波算法性能比较 马文民 【摘要】:介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、算法性能分析。计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。检测特性相比之下,RLS 算法具有良好的收敛性能,除收敛速度快于LMS算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大的抑噪能力。 【关键词】:自适应滤波;原理;算法;仿真 引言: 自适应滤波是近30年以来发展起来的一种最佳滤波方法。它是在维纳滤波,kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。自适应滤波的研究对象是具有不确定的系统或信息过程。"不确定"是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是我们事先不知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示,这些扰动通常是不可测的,它们可能是确定的,也可能是随机的。此外一些测量噪音也是以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。面对这些客观存在的各种不确定性,如何综合处理信息过程,并使某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。 在这几十年里,数字信号处理技术取得了飞速发展,特别是自适应信号处理技术以其计算简单、收敛速度快等许多优点而广泛被使用。它通过使内部参数的最优化来自动改变其特性。自适应滤波算法在统计信号处理的许多应用中都是非常重要的。 在工程实际中,经常会遇到强噪声背景中的微弱信号检测问题。例如在超声波无损检测领域,因传输介质的不均匀等因素导致有用信号与高噪声信号迭加在一起。被埋藏在强背景噪声中的有用信号通常微弱而不稳定,而背景噪声往往又是非平稳的和随时间变化的,此时很难用传统方法来解决噪声背景中的信号提取问题。自适应噪声抵消技术是一种有效降噪的方法,当系统能提供良好的参考信号时,可获得很好的提取效果。与传统的平均迭加方法相比采用自适应平均处理方法还能降低样本数量。 1自适应滤波器的基本原理 所谓的自适应滤波,就是利用前一时刻以获得的滤波器参数的结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节其自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。 由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用FIR和IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系数的自适应算法。 自适应噪声抵消系统的核心是自适应滤波器,自适应算法对其参数进行控制,以实现最佳滤波。不同的自适应滤波器算法,具有不同的收敛速度、稳态失调和算法复杂度。根据自

自适应滤波器:根据环境的改变,使用自适应算法来改变滤波器的参数和结构。这样的滤波器就称之为自适应滤波器。 数学原理编辑 以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。 20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。 以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得 式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。 B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量 式中憕【ε2(n)】为均方误差梯度估计, k s为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。 自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。

学号: 课程设计 学院 专业 年级 姓名 论文题目 指导教师职称 成绩 2013年 1 月 10 日

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1 自适应滤波器原理 (2) 2 自适应滤波器算法 (3) 3 自适应滤波算法的理论仿真与DSP实现 (5) 3.1 MATLAB仿真 (5) 3.2 DSP的理论基础 (7) 3.3 自适应滤波算法的DSP实现 (9) 4 结论 ............................................... 错误!未定义书签。致谢 ................................................. 错误!未定义书签。参考文献 ............................................. 错误!未定义书签。

自适应滤波器算法的DSP实现 学生姓名:学号: 学院:专业: 指导教师:职称: 摘要:本文从自适应滤波器的基本原理、算法及设计方法入手。本设计最终采用改进的LMS算法设计FIR结构自适应滤波器,并采用MATLAB进行仿真,最后用DSP 实现了自适应滤波器。 关键词:DSP(数字信号处理器);自适应滤波器;LMS算法;FIR结构滤波器 DSP implementation of the adaptive filter algorithm Abstract:In this article, starting from the basic principles of adaptive filter and algorithms and design methods. Eventually the design use improved the LMS algorithm for FIR adaptive filter,and use MATLAB simulation, adaptive filter using DSP. Key words:DSP;adaptive filter algorithm;LMS algorithm;FIR structure adaptive filter 引言 滤波是电子信息处理领域的一种最基本而又极其重要的技术。在有用信号的传输过程中,通常会受到噪声或干扰的污染。利用滤波技术可以从复杂的信号中提取所需要的信号,同时抑制噪声或干扰信号,以便更有效地利用原始信号。滤波器实际上是一种选频系统,它对某些频率的信号予以很小的衰减,让该部分信号顺利通过;而对其他不需要的频率信号则予以很大的衰减,尽可能阻止这些信号通过。在电子系统中滤波器是一种基本的单元电路,使用很多,技术也较为复杂,有时滤波器的优劣直接决定产品的性能,所以很多国家非常重视滤波器的理论研究和产品开发[1]。近年来,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此我们需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

自适应滤波算法的研究 第1章绪论 1.1课题背景 伴随着移动通信事业的飞速发展,自适应滤波技术应用的范围也日益扩大。早在20世纪40年代,就对平稳随机信号建立了维纳滤波理论。根据有用信号和干扰噪声的统计特性(自相关函数或功率谱),用线性最小均方误差估计准则设计的最佳滤波器,称为维纳滤波器。这种滤波器能最大程度地滤除干扰噪声,提取有用信号。但是,当输入信号的统计特性偏离设计条件,则它就不是最佳的了,这在实际应用中受到了限制。到60年代初,由于空间技术的发展,出现了卡尔曼滤波理论,即利用状态变量模型对非平稳、多输入多输出随机序列作最优估计。现在,卡尔曼滤波器己成功地应用到许多领域,它既可对平稳的和非平稳的随机信号作线性最佳滤波,也可作非线性滤波。实质上,维纳滤波器是卡尔曼滤波器的一个特例。 在设计卡尔曼滤波器时,必须知道产生输入过程的系统的状态方程和测量方程,即要求对信号和噪声的统计特性有先验知识,但在实际中,往往难以预知这些统计特性,因此实现不了真正的最佳滤波。 Widrow B等于1967年提出的自适应滤波理论,可使自适应滤波系统的参数自动地调整而达到最佳状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多象维纳滤波器那样简单,而滤波性能几乎如卡尔曼滤波器一样好。因此,近十几年来,自适应滤波理论和方法得到了迅速发展。[1] 自适应滤波是一种最佳滤波方法。它是在维纳滤波,Kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。 自适应滤波的研究对象是具有不确定的系统或信息过程。“不确定”是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。

自适应滤波算法理解与应用 什么是自适应滤波器自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。 对于一些应用来说,由于事先并不知道所需要进行操作的参数,例如一些噪声信号的特性,所以要求使用自适应的系数进行处理。在这种情况下,通常使用自适应滤波器,自适应滤波器使用反馈来调整滤波器系数以及频率响应。 总的来说,自适应的过程涉及到将代价函数用于确定如何更改滤波器系数从而减小下一次迭代过程成本的算法。价值函数是滤波器最佳性能的判断准则,比如减小输入信号中的噪声成分的能力。 随着数字信号处理器性能的增强,自适应滤波器的应用越来越常见,时至今日它们已经广泛地用于手机以及其它通信设备、数码录像机和数码照相机以及医疗监测设备中。 下面图示的框图是最小均方滤波器(LMS)和递归最小平方(en:Recursive least squares filter,RLS,即我们平时说的最小二乘法)这些特殊自适应滤波器实现的基础。框图的理论基础是可变滤波器能够得到所要信号的估计。 自适应滤波器有4种基本应用类型:1)系统辨识:这时参考信号就是未知系统的输出,当误差最小时,此时自适应滤波器就与未知系统具有相近的特性,自适应滤波器用来提供一个在某种意义上能够最好拟合未知装置的线性模型 2)逆模型:在这类应用中,自适应滤波器的作用是提供一个逆模型,该模型可在某种意义上最好拟合未知噪声装置。理想地,在线性系统的情况下,该逆模型具有等于未知装置转移函数倒数的转移函数,使得二者的组合构成一个理想的传输媒介。该系统输入的延迟构成自适应滤波器的期望响应。在某些应用中,该系统输入不加延迟地用做期望响应。3)预测:在这类应用中,自适应滤波器的作用是对随机信号的当前值提供某种意义上的一个最好预测。于是,信号的当前值用作自适应滤波器的期望响应。信号的过去值加到滤

大学 数字信号处理课程要求论文 基于LMS的自适应滤波器设计及应用 学院名称: 专业班级: 学生姓名: 学号: 2013年6月

摘要自适应滤波在统计信号处理领域占有重要地位,自适应滤波算法直接决定着滤波器性能的优劣。目前针对它的研究是自适应信号处理领域中最为活跃的研究课题之一。收敛速度快、计算复杂性低、稳健的自适应滤波算法是研究人员不断努力追求的目标。 自适应滤波器是能够根据输入信号自动调整性能进行数字信号处理的数字滤波器。作为对比,非自适应滤波器有静态的滤波器系数,这些静态系数一起组成传递函数。研究自适应滤波器可以去除输出信号中噪声和无用信息,得到失真较小或者完全不失真的输出信号。本文介绍了自适应滤波器的理论基础,重点讲述了自适应滤波器的实现结构,然后重点介绍了一种自适应滤波算法最小均方误差(LMS)算法,并对LMS算法性能进行了详细的分析。最后本文对基于LMS算法自适应滤波器进行MATLAB仿真应用,实验表明:在自适应信号处理中,自适应滤波信号占有很重要的地位,自适应滤波器应用领域广泛;另外LMS算法有优也有缺点,LMS算法因其鲁棒性强特点而应用于自回归预测器。 关键词:自适应滤波器,LMS算法,Matlab,仿真

1.引言 滤波技术在当今信息处理领域中有着极其重要的应用。滤波是从连续的或离散的输入数据中除去噪音和干扰以提取有用信息的过程,相应的装置就称为滤波器。滤波器实际上是一种选频系统,他对某些频率的信号予以很小的衰减,使该部分信号顺利通过;而对其他不需要的频率信号予以很大的衰减,尽可能阻止这些信号通过。滤波器研究的一个目的就是:如何设计和制造最佳的(或最优的)滤波器。Wiener于20世纪40年代提出了最佳滤波器的概念,即假定线性滤波器的输入为有用信号和噪音之和,两者均为广义平稳过程且己知他们的二阶统计过程,则根据最小均方误差准则(滤波器的输出信号与期望信号之差的均方值最小)求出最佳线性滤波器的参数,称之为Wiener滤波器。同时还发现,在一定条件下,这些最佳滤波器与Wiener滤波器是等价的。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求,设计不出最佳滤波器。这就促使人们开始研究自适应滤波器。自适应滤波器由可编程滤波器(滤波部分)和自适应算法两部分组成。可编程滤波器是参数可变的滤波器,自适应算法对其参数进行控制以实现最佳工作。自适应滤波器的参数随着输入信号的变化而变化,因而是非线性和时变的。 2. 自适应滤波器的基础理论 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。所谓“最优”是以一定的准则来衡量的,最常用的两种准则是最小均方误差准则和最小二乘准则。最小均方误差准则是使误差的均方值最小,它包含了输入数据的统计特性,准则将在下面章节中讨论;最小二乘准则是使误差的平方和最小。 自适应滤波器由数字结构、自适应处理器和自适应算法三部分组成。数字结构是指自适应滤波器中各组成部分之间的联系。自适应处理器是前面介绍的数字滤波器(FIR或IIR),所不同的是,这里的数字滤波器是参数可变的。自适应算法则用来控制数字滤波器参数的变化。 自适应滤波器可以从不同的角度进行分类,按其自适应算法可以分为LMS自适应滤波

- 23 - 一种卡尔曼滤波自适应算法 黄波郑新星刘凤伟 (中船重工750试验场,云南昆明 650051

【摘要】自适应滤波是指随着外部信号的变化,滤波器能够自我调节滤波参数,使得滤波器的某一性能指标达到最优。文章以卡尔曼滤波理论为基础,给出一种新的自适应卡尔曼滤波算法。 【关键词】数字信号处理;卡尔曼滤波器;MATLAB 【中图分类号】TP391【文献标识码】A【文章编号】1008-1151(201203-0023-02 An adaptive Algorithm on Kalman Filtering Abstruct:Adaptive-filtering means the filter could adjust filtration parameters by itself and make some performance index optimal when the external signals vary. This paper will give a new Kalman filter algorithm whose base is Kalman filter theory. Key word: Digital Signal Processing;Kalman Filter;MATLAB 1 引言 自适应滤波理论是20世纪60年代开始发展起来的。它 是现代信号处理技术的重要组成部分,对复杂信号的处理具 有独特的功能。自适应卡尔曼滤波算法在很多理论和工程实 践中都取得了广泛的应用[1][2][3]。卡尔曼滤波理论的建立的 标志是1960年卡尔曼发表的用递归的方法解决离散数据线 性滤波问题的论文。在那之后,得益于数字计算技术的进步, 卡尔曼滤波器就成为了推广研究和应用的主题,并且在自主 或协助导航领域取得了长足的发展[4][5]。常见的自适应滤波器

基于RLS算法自适应滤波器的设计 摘要 自适应滤波器是统计信号处理的一个重要组成部分。在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此需要研究自适应滤波器。凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供非自适应方法所不可能提供的新的信号处理能力。而且其性能通常远优于用常方法设计的固定滤波器。 本文从自适应滤波器研究的意义入手,介绍了自适应滤波器的基本理论思想,具体阐述了自适应滤波器的基本原理、算法及设计方法。自适应滤波器的算法是整个系统的核心。对 RLS算法自适应滤波器做了详细的介绍,采用改进的RLS算法设计自适应滤波器,并采用MATLAB进行仿真,通过实验结果来体现该滤波器可以根据信号随时修改滤波参数,达到动态跟踪的效果,使滤波信号更接近于原始信号。 关键词:自适应滤波器,RLS算法,噪声消除,FIR

第1章绪论 1.1 课题研究意义和目的 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。 对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。Windrow等于1967年提出的自适应滤波系统的参数能自动的调整而达到最优状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统计知识。这种滤波器的实现差不多像维纳滤波器那样简单,而滤波器性能几乎如卡尔曼滤波器一样好。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系统具有很强的自学习、自跟踪能力和算法的简单易实现性。 自适应滤波技术的核心问题是自适应算法的性能问题,提出的自适应算法主要有最小均方(LMS)算法、递归最小二乘(RLS)算法及相应的改进算法如:归一化(NLMS)算法、变步长(SVSLMS)算法、递归最小二乘方格形(RLSL)算法等。这些算法各有特点,适用于不同的场合。研究自适应算法是自适应滤波器的一个关键内容。递归最小二乘(RLS)算法是线性自适应滤波算法中最基本的两类算法之一,由于基于LMS准则的自适应滤波算法的收敛速度通常较慢,有些在调整过程种的延时也较大。为了克服LMS的算法,我们采用在每个时刻对所有已输入信号重估的平方误差之和最小这样的准则,即RLS算法。RLS算法复数乘法正比于2k,使其自适应速度更快。目前应用最多的是系统辨识、回波消除、自适应谱线增强、自适应信道均衡、语音线性预测、自适应天线阵等诸多领域。 1.2 国内外研究发展状况 自适应滤波的基本理论通过几十年的发展已日趋成熟,近十几年来自适应滤波器的研究主要针对算法与硬件实现。算法研究主要是对算法速度和精度的改

目录 摘要…………………..………………………………………………………..….............I 第1章绪论....................................................................................................................错误!未定义书签。 1.1引言……………………………………………...…..…………...……………...错误!未定义书签。 1.2课题研究意义和目的 (1) 1.3国内外研究发展状况 (2) 1.4本文研究思路与主要工作 (4) 第2章自适应滤波器理论基础 (5) 2.1自适应滤波器简介 (5) 2.2自适应滤波器的原理 (5) 2.3自适应滤波算法 (7) 2.4TMS320VC5402的简介 (8) 第3章总体方案设计 (10) 3.1无限冲激响应(IIR)滤波器 (10) 3.2有限冲激响应(FIR)滤波器 (11) 3.3电路设计 (11) 4基于软件设计及仿真 (17) 4.3 DSP的理论基础 (17) 4.4自适应滤波算法的DSP实现 (18) 5总结 (21) 参考文献 (22) 致谢 (23) 附录自适应滤波源代码 (24)

第1章绪论 1.1引言 随着微电子技术和计算机技术的迅速发展,具备了实现自适应滤波器技术的各种软硬件条件,有关自适应滤波器的新算法、新理论和新的实施方法不断涌现,对自适应滤波的稳定性、收敛速度和跟踪特性的研究也不断深入,这一切使该技术越来越成熟,并且在系统辨识、通信均衡、回波抵消、谱线增强、噪声抑制、系统模拟语音信号处理、生物医学电子等方面都获得了广泛应用口。自适应滤波器实现的复杂性通常用它所需的乘法次数和阶数来衡量,而DSP强大的数据吞吐量和数据处理能力使得自适应滤波器的实现更容易。目前绝大多数的自适应滤波器应用是基于最新发展的DSP 来设计的. 滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波。自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。 1.2课题研究意义和目的 自适应滤波理论与技术是现代信号处理技术的重要组成部分,对复杂信号的处理具有独特的功能,对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。因此,自适应数字系

基于LMS算法的图像自适应滤波方法研究 【摘要】:在图象处理工作中,为了免除噪声的干扰,需要对图像进行预处理。本论文对现有的图像滤波方法与LMS算法进行了介绍,并针对目前的基于LMS的自适应滤波方法进行了介绍和研究。 【关键词】:图像滤波; 自适应滤波; LMS 现实中我们得到的图象信号都或多或少的被噪声污染,因此在进行进一步的边缘检测、图象分割、特征提取、模式识别等处理之前,尽量减少噪声是一个非常重要的预处理步骤。遗憾的是,迄今为止没有一种通用的滤波算法能对不同类型的图象都能取得很好的效果,就是对同一幅图象,如果噪声类型不同,滤波的效果也各异。而且不同的研究目的、实际图象特点、噪声的统计特征和频谱分布的规律,滤波算法也应不同。因为噪声伴随在图象中,根据不同的研究目的,而且为了进一步进行更高层次的处理,有必要对图象进行去除噪声。这也是在图像处理系统中,图像预处理工作如此重要的原因。 滤波器研究的一个基本问题就是:如何设计和建立最佳或最优的滤波器。所谓最佳滤波器是指能够根据某一最佳准则进行设计的滤波器。20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。假定线形滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程;并且已知它们的二阶统计特性,根据最小均方误差准则,维纳求得了最佳线形滤波器的参数。这种滤波器成为维纳滤波器。要实现维纳滤波,就要求:(1)输入信号时广义平稳的;(2)输入信号的统计特征是已知的。根据其他最佳准则的滤波器已有同样要求,比如卡尔曼滤波器。然而,由于输入过程取决于外界的信号、干扰环境,这种统计特性常常是未知的、变化的,因而不能满足上述两个要求,用维纳滤波器实现不了最优滤波。在这种情况下,自适应滤波能够提供卓越的滤波性能。 1.自适应滤波器概述 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数的结果,自动地调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。 常用的一些自适应滤波器的结构有开环和闭环自适应结构等,如图1-1所示。自适应算法主要根据滤波器输入的统计特性进行处理。它可能还与滤波器输出和其他数据有关。开环算法的控制输出仅取决于滤波器的输入和某些其他输入函数,但绝小取决于滤波器的输出。闭环算法的控制输出则是滤波器输入、滤波器输出以及某些其他输入的函数。图1-2给出了两种典型的闭环结构自适应滤波器结构图。

将下面代码直接贴入matlab中,并将读入图像修改成自己机子上的,就可以运行了。可以按照“%%”顺序分步来运行 %% function 自适应中值滤波器 %%%%%%%%%%%%%%% %实现两个功能: %1.对高密度的椒盐噪声有好的滤除效果; %2.滤波时减少对图像的模糊; %%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %原理: %1.椒盐噪声概率越大,滤波器窗口需越大。故若滤波器窗口随噪声概率自适应变化,才能有好的滤除效果 %2.为减少对图像的模糊,需在得出原图像值并非椒盐噪声点时,保留原图像值不变; %3.椒盐噪声点的特点:该点的值为该点领域上的最大或最小;%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %步骤(得到图像中某点(x,y)(即窗口中心点)的值的步骤): %1.设定一个起始窗口,以及窗口的最大尺寸; %2.(此步用于确定窗口大小)对窗口内像素排序,判断中值是否是噪声点,若不是,继续第3步,若是,转到第5步; %3.判断中心点是否是噪声点,若不是,则输出该点的值(即图像中该点的原值不变);若是,则输出中值; %4.窗口尺寸增大,若新窗口尺寸小于设定好的最大值,重复第2步,若大于,则滤波器输出前一个窗口的中值; %%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %参数说明:

%被噪声污染的图像(即退化图像也即待处理图像):Inoise %滤波器输出图像:Imf %起始窗口尺寸:nmin*nmin(只取奇数),窗口尺寸最大值:nmax*nmax %图像大小:Im*In %窗口内图像的最大值Smax,中值Smed,最小值Smin %%%%%%%%%%%%%%%%%%%% %% clear clf %% 读入图像I I=imread('e:/photo/cat.jpg'); %转化为灰度图Ig Ig=rgb2gray(I); %被密度为0.2的椒盐噪声污染的图像Inoise Inoise=imnoise(Ig,'salt & pepper',0.2); %或者是被方差为0.2的高斯噪声污染的图像Inoise %Inoise=imnoise(Ig,'gaussian',0.2); %显示原图的灰度图Ig和噪声图像Inoise subplot(2,2,1),imshow(Ig);xlabel('a.原始灰度图像'); subplot(2,2,2),imshow(Inoise);xlabel('b.被噪声污染的图像'); %% 定义参数 %获取图像尺寸:Im,In [Im,In]=size(Inoise); %起始窗口尺寸:nmin*nmin(窗口尺寸始终取奇数) nmin=3; %最大窗口尺寸:nmax*nmax nmax=9; %定义复原后的图像Imf Imf=Inoise; %为了处理到图像的边界点,需将图像扩充

第三章 几种横向自适应滤波算法及其改进研究 3.1 自适应横向滤波器的定义及其性能函数 3.1.1 横向自适应滤波器 横向自适应滤波器是一类基本的自适应滤波器形式[8]。所谓自适应实现是指:M 阶滤波器的抽头权系数01,...,M w w -,可以根据估计误差()e n 的大小自动调节,使得某个代价函数最小。 令()W n 表示图2.1中的滤波系数矢量,011()[(),(),...,()]M W n w n w n w n -=,滤波器抽头输入信号矢量()[(),(1),...,(1)]U n u n u n u n M T =--+,显然,输出信号()y n 为 1 0()()()()M i i y n wu n i W n U n -T ==-=∑ (3-1) 式中T 表示转置。利用图2.5中的输出信号和输入信号之间的关系,误差序列 ()()()()e n d n W n U n H =- (3-2) 显然,自适应滤波器的控制机理是用误差序列()e n 按照某种准则和算法对其系数()W n 进行控制的,最终使自适应滤波的目标(代价)函数最小化,达到最佳滤波效果。 按照均方误差(MSE )准则所定义的目标函数是: 22()(){|()|}{|()()|}def J n n E e n E d n W U n ξH ===- (3-3) 将式(3-1)代入式(3-3),目标函数可以重新写为 2[()]2[()()()][()()()()]E d n E d n W n U n E W n U n U n W n ξH H H =-+ (3-4) 当滤波器的系数固定时,目标函数可以写为 2[()]2E d n W P W RW ξT T =-+ (3-5) 其中,[()()]R E U n U n T =是输入信号的自相关矩阵,[()()]P E d n U n =是期望信号和输入信号的互相关矢量。

相关文档
相关文档 最新文档