文档库 最新最全的文档下载
当前位置:文档库 › SD325-1989电力系统电压和无功电力技术导则

SD325-1989电力系统电压和无功电力技术导则

SD325-1989电力系统电压和无功电力技术导则
SD325-1989电力系统电压和无功电力技术导则

中华人民共和国能源部部标准

电力系统电压和无功电力技术导则

(试行)

SD 325—89

1 总则

1.1 电压是电能质量的重要指标。电压质量对电力系统的安全与经济运行,对保证用户安全生产和产品质量以及电器设备的安全与寿命,有重要的影响。本导则规定了电力系统各级母线和用户受电端电压的允许偏差值以及电压与无功调整的技术措施。

1.2 电力系统的无功补偿与无功平衡,是保证电压质量的基本条件。有效的电压控制和合理的无功补偿,不仅能保证电压质量,而且提高了电力系统运行的稳定性和安全性,充分发挥了经济效益。

1.3 电力系统各部门(包括自备电厂和用电单位)在进行规划、设计、基建、运行及用电管理等方面的工作时,应遵守本导则。

2 名词、术语

2.1 系统额定电压

电力系统各级电压网络的标称电压值。

系统额定电压值是:220V、380V、3kV、6kV、10kV、35kV、63kV、110kV、220kV、330kV、500kV。

其中,220V为单相交流值,其余均为三相交流值。

2.2 电压偏差

由于电力系统运行状态的缓慢变化,使电压发生偏移。其电压变化率小于每秒1%时的实际电压值与系统额定电压值之差。

2.3 无功电源

发电机实际可调无功出力、线路充电功率、以及包括电业部门及电力用户无功补偿设备在内的全部容性无功容量。

2.4 自然无功负荷

电力用户补偿前的无功负荷、发电厂(变电所)厂用无功负荷、以及各级电压网络变压器和电抗器及线路的无功消耗之总和。

2.5 无功补偿设备

包括电业及电力用户网络中的并联电容器、串联电容器、并联电抗器、同期调相机和静止型动态无功补偿装置。

2.6 无功补偿容量

电业部门及电力用户无功补偿设备的全部容性无功和感性无功容量。

2.7 逆调压方式

在电压允许偏差值范围内,供电电压的调整使电网高峰负荷时的电压值高于电网低谷负荷时的电压值。

3 基本要求

3.1 电力系统各级网络,必须符合电压允许偏差值的要求。

3.2 电力系统的无功电源与无功负荷,在高峰或低谷时都应采用分(电压)层和分(供电)区基本平衡的原则进行配置和运行,并应具有灵活的无功电力调节能力与检修备用。

3.3 在规划、设计电力系统时,必须包括无功电源及无功补偿设施的规划。

在发电厂和变电所设计中,应根据电力系统规划设计的要求,同时进行无功电源及无功补偿设施的设计。

3.4 电力系统应有事故无功电力备用,以保证负荷集中地区在下列运行方式下,保持电压稳定和正常供电,而不致出现电压崩溃。

3.4.1 正常运行方式下,突然失去一回线路、或一台最大容量无功补偿设备、或本地区一台最大容量发电机(包括发电机失磁)。

3.4.2 在正常检修方式下,发生3.4.1所述事故,允许采取必要的措施,如切负荷、切并联电抗器等。

3.5 无功补偿设备的配置与设备类型选择,应进行技术经济比较。220kV及以上电网,应考虑提高电力系统稳定的作用。

3.6 加强受端系统最高一级电压网络的联系及电压支持,创造条件尽可能提高该级系统短路容量,对保持电压正常水平及防止电压失稳具有重要意义。配电网络则应采用合理的供电半径。

3.7 要按照电网结构及负荷性质,合理选择各级电压网络中升压和降压变压器分接开关的调压范围和调压方式。电网中的各级主变压器,至少应具有一级有载调压能力,需要时可选用两级有载调压变压器。

4 电压允许偏差值

4.1 用户受电端的电压允许偏差值

4.1.1 35kV及以上用户的电压变动幅度,应不大于系统额定电压的10%。其电压允许偏差值,应在系统额定电压的90%~110%范围内。

4.1.2 10kV用户的电压允许偏差值,为系统额定电压的±7%。

4.1.3 380V电力用户的电压允许偏差值,为系统额定电压的±7%。

4.1.4 220V用户的电压允许偏差值,为系统额定电压+5%~-10%。

4.1.5 特殊用户的电压允许偏差值,按供用电合同商定的数值确定。

4.2 发电厂和变电所的母线电压允许偏差值

4.2.1 500(330)kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一线电压的调节。

向空载线路充电,在暂态过程衰减后线路末端电压不应超过系统额定电压的1.15倍,持续时间不应大于22min。

4.2.2 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压的0~+10%;事故运行方式时为系统额定电压的-5%~+10%。

4.2.3 发电厂和220(330)kV变电所的110~35kV母线:正常运行方式时,为相应系统额定电压的-3%~+7%;事故后为系统额定电压的±10%。

4.2.4 发电厂和变电所的10(6)kV母线:应使所带线路的全部高压用户和经配电变压器供电的低压用户的电压,均符合4.1.2、4.1.3、4.1.4、4.1.5各条款中的规定值。

5 无功电力平衡和补偿

5.1 330~500kV电网,应按无功电力分层就地平衡的基本要求配置高、低压并联电抗器,以补偿超高压线路的充电功率。一般情况下,高、低压并联电抗器的总容量不宜低于线路充电功率的90%。高、低压并联电抗器的容量分配应按系统的条件和各自的特点全面研究决定。

5.2 330~500kV电网的受端系统,应按输入有功容量相应配套安装无功补偿设备。其容量(kvar)宜按输入容量(kW)的40%~50%计算。分别安装在由其供电的220kV及以下变电所中。

5.3 220kV及以下电网的无功电源安装总容量,应大于电网最大自然无功负荷,一般可按最大自然无功负荷的1.15倍计算。

5.4 220kV及以下电网的最大自然无功负荷,可按式(1)计算

(1)

式中——电网最大自然无功负荷,kvar;

——电网最大有功负荷,kW,

K——电网最大自然无功负荷系数。

电网最大有功负荷,为本网发电机有功功率与主网和邻网输入的有功功率代数和的最大值。

K值与电网结构、变压级数、负荷组成、负荷水平及负荷电压特性等因素有关,应经过实测和计算确定(实例和计算方法见附录A),也可以参照表1中的数值估算。

表1 220kV及以下电网的最大自然无功负荷系数

电网电压(kV)

220 110 63 35 10

变压级数

最大自然无功负荷系数K(kvar/kW)

220/110/35/10 1.25~4 1.1~1.25 1.0~1.15 0.9~1.05 220/110/10 1.15~1.30 1.0~1.15 0.9~1.05 220/63/10 1.15~1.30 1.0~1.15 0.9~1.05 注:本网中发电机有功功率比重较大时,宜取较高值;主网和邻网输入有功功率比重较大时,宜取较低值。

5.5 220kV及以下电网的容性无功补偿设备总容量,可按式(2)计算

(2)

式中——容性无功补偿设备总容量;

——最大自然无功负荷;

——本网发电机的无功功率;

——主网和邻网输入的无功功率;

——线路和电缆的充电功率。

5.6 电网的无功补偿水平用无功补偿度表示,可按式(3)计算

(3)

式中 ——无功补偿度,kvar/kW ;

——容性无功补偿设备容量,kvar ;

——最大有功负荷(或装机容量),kW 。

5.7 220kV 及以下电压等级的变电所中,应根据需要配置无功补偿设备,其容量可按主变压器容量的0.10~0.30确定。在主变压器最大负荷时,其二次侧的功率因数不小于表2中所列数值,或者由电网供给的无功功率与有功功率比值不大于表2中所列数值。 表2 220kV 及以下变电所二次侧功率因数规定值

注:1)由发电厂直接供电的变电所,其供电线路较短时,功率因数可取表2中较低值。其它变电所的功率因数应取较高值。

2)经技术经济比较合理时,功率因数可高于表中上限值。

5.8 10(6)kV 配电线路上宜配置高压并联电容器,或者在配电变压器低压侧配置低压并联电容器。电容器的安装容量不宜过大,一般约为线路配电变压器总容量的0.05~0.10,并且在线路最小负荷时,不应向变电所倒送无功。如配置容量过大,则必须装设自动投切装置。

5.9 电力用户的功率因数应达到下列规定。

5.9.1 高压供电的工业用户和高压供电装有带负荷调整电压装置的电力用户,功率因数为0.90以上。

5.9.2 其他100kVA (kW )及以上电力用户和大、中型电力排灌站,功率因数为0.85以上。

5.9.3 趸售和农业用电,功率因数为0.80以上。

5.10 对发电机(包括汽轮发电机、水轮发电机和抽水蓄能发电机)的要求。

5.10.1 发电机额定功率因数(迟相)值,应根据电力系统的要求决定:

a.直接接入330~500kV 电网处于送端的发电机功率因数,一般选择不低于0.9;处于受端的发电机功率因数,可在0.85~0.9中选择。

b.直流输电系统的送端发电机功率因数,可选择为0.85;交直流混送的可在0.85~0.9中选择。

c.其它发电机的功率因数可按0.8~0.85选择。

5.10.2 发电机吸收无功电力的能力:

a.新装机组均应具备在有功功率为额定值时,功率因数进相0.95运行的能力。

b.对已投入运行的发电机,应有计划地按系列进行典型的吸收无功电力能力试验,根据试验结果予以应用。

5.10.3 水轮发电机的调相。远离负荷中心的,一般不考虑调相。处在受端系统内的,经技术经济比较认为有必要时,应配备有关调相运行的设施进行调相运行。

5.11 变电所的并联电容器组,应具备频繁投切功能,并装设自动控制装置,经常保持变电所二次母线的功率因数在表2规定的范围内。

5.12 在系统轻负荷时,对110kV 及以下的变电所,当电缆线路较多且在切除并联电容器组后,仍出现向系统侧送无功电力时,应在变电所中、低压母线上装设并联电抗器;对220kV 变电所,在切除并联电容器后,其一次母线功率因数高于0.98时,应装设并联电抗器。 电压等级(kV )

220 35~110 功率因数

0.95~1 0.9~1 无功功率/有功功率 0.33~0 0.48~0

5.13 用户的并联电容器组,应安装按功率因数和电压控制的自动控制装置,并应有防止向系统送无功功率的措施。

5.14 在计算并联电容器和并联电抗器等无功补偿设备的实际出力时,应扣除由于各种原因而影响的容量。

5.15 无功电源中的事故备用容量,应主要储备于运行的发电机、调相机和静止型动态无功补偿装置中,以便在电网发生因无功不足可能导致电压崩溃事故时,能快速增加无功电源容量,保持电力系统的稳定运行。

在电网电压支撑点和220kV枢纽变电所中,应有适当的无功补偿设备备用容量,以便在运行方式变化时,仍然保持电压符合第4.2条的规定。

6 无功补偿设备的选用

6.1 并联电容器和并联电抗器是电力系统无功补偿的重要设备,应优先选用此种设备。6.2 当发电厂经过长距离的线路(今后不再П接中间变电所)送给一个较强(短路容量较大)的受端系统时,为缩短线路的电气距离,宜选用串联电容器,其补偿度一般不宜大于50%,并应防止次同步谐振。

6.3 当220~500kV电网的受端系统短路容量不足和长距离送电线路中途缺乏电压支持时,为提高输送容量和稳定水平,经技术经济比较合理时,可采用调相机。

6.3.1 新装调相机组应具有长期吸收70%~80%额定容量无功电力的能力。

6.3.2 对已投入运行的调相机应进行试验,确定吸收无功电力的能力。

6.4 电力系统为提高系统稳定、防止电压崩溃、提高输送容量,经技术经济比较合理时,可在线路中点附近(振荡中心位置)或在线路沿线分几处安装静止补偿器;带有冲击负荷或负荷波动、不平衡严重的工业企业,本身也应采用静止补偿器。

7 网络结构

7.1 电力系统规划、设计中,应对主要负荷集中地区的最高一级电压电网(包括电源),加强网络联结及电压支持(增大短路容量),逐步形成坚固的受端系统。

7.2 受端变电所应深入市区,靠近负荷中心。为了提高可靠性,可采用双T(三T)或环路布置断环运行等结构方式,在事故运行方式时,也应满足有关电压的要求。

7.3 各级配电线路的最大允许电压损失值,可参照下列数值选用:

110kV——10kV线路首末端(正常方式):5%

380V线路(包括接户线):5%

220V线路(包括接户线):7%

7.4 10kV及以下网络的供电半径,应根据电压损失允许值、负荷密度、供电可靠性并留有一定裕度的原则予以确定。

8 变压器调压方式及调压范围的选择

8.1 各级变压器的额定变压比、调压方式、调压范围及每档调压值,应满足发电厂、变电所母线和用户受电端电压质量的要求,并考虑电力系统10~15年发展的需要。

8.2 升压变压器高压侧的额定电压,220kV及以下电压等级者,宜选1.1倍系统额定电压。330kV、500kV级变压器高压侧的额定电压,宜根据系统无功功率分层平衡要求,经计算论证,确定其额定电压值。

8.3 降压变压器高压侧的额定电压,宜选系统额定电压。中压侧和低压侧的额定电压,宜选1.05倍系统额定电压。

8.4 发电机升压变压器,一般可选用无励磁调压型。330kV、500kV级升压变压器,经调压计算论证可行时,也可采用不设分接头的变压器。

8.5 发电厂的联络变压器,经调压计算论证有必要时,可选用有载调压型。

8.6 330kV、500kV级降压变压器宜选用无励磁调压型,经调压计算论证确有必要且技术经济比较合理时,可选用有载调压型。

8.7 直接向10kV配电网供电的降压变压器,应选用有载调压型,经调压计算,仅此一级调压尚不能满足电压控制的要求时,可在其电源侧各级降压变压器中,再采用一级有载调压型变压器。

8.8 电力用户对电压质量的要求高于本导则4.1条规定的数值时,该用户的受电变压器应选用有载调压型。

8.9 变压器分接开关调压范围应经调压计算确定。无励磁调压变压器一般可选±2×2.5%(10kV配电变压器为±5%)。对于有载调压变压器,63kV及以上电压等级的,宜选±8×(1.25~1.5)%;35kV电压等级的,宜选±3×2.5%。位于负荷中心地区发电厂的升压变压器,其高压侧分接开关的调压范围应适当下降2.5%~5.O%;位于系统送端发电厂附近降压变电所的变压器,其高压侧调压范围应适当上移2.5%~5%。

9 电力系统电压的调整和监测

9.1 各级变压器分接开关的运行位置,应按保证发电厂和变电所母线以及用户受电端的电压偏差不超过允许值(满足发电机稳定运行的要求)、并在充分发挥无功补偿设备的经济技术效益及降低线损的原则下,通过优化计算确定。

9.2 为保证用户受电端电压质量和降低线损,220kV及以下电网电压的调整,宜实行逆调压方式。

9.3 当发电厂、变电所的母线电压超出允许偏差范围时,首先应按无功电力分层、分区就地平衡的原则,调节发电机和无功补偿设备的无功出力。若电压质量仍不符合要求时,再调整相应有载调压变压器的分接开关位置,使电压恢复到合格值。

9.4 发电厂、变电所的无功补偿和调压设备的运行调整,应按9.1、9.2、9.3条规定的原则实行综合优化控制。

9.5 为了掌握电力系统的电压状况,采取有效的措施,以保证电压质量,应在具有代表意义的发电厂、变电所和配电网络中,设置足够数量的电压监测点;在各级电压等级的用户受电端,设置一定数量的电压考核点。

9.6 电压监测应使用具有连续监测和统计功能的仪器或仪表,其测量精度应不低于1级。

9.7 电压质量统计的时间单位为“分”。其计算公式为:

电压质量合格率(%)= (4)

附录 A

电网自然无功负荷系数K值的计算

A.1 K值确定原则

电网自然无功负荷系数K,为电网自然无功负荷Q与有功负荷P的比值。此值与电网结构,电压层次、用电器的有功负荷特性和无功负荷特性等因素有关。计算电网最大无功负荷时的K值,应按全年不同季节及运行方式下、最大无功负荷所对应的自然无功负荷系数K的

平均值确定,同时应记录被测电网的供电电压U、发电机的有功出力和无功出力、

邻网输入(输出)的有功功率和无功功率、电网中实际投运的无功补偿设备总出力

和线路充电功率。

A.2 K值的计算公式

K=……………………………(A—1)

式中α——电压有功负荷系数;

β——电压无功负荷系数;

——系统额定电压。

A.3 K值的简化计算公式

经测定,目前我国几大电网的电压有功负荷系数与电压无功负荷系数为:α=0.3~0.9;β=2.0~3.0。

一般可取:α=0.5;β=2.5。

此时电网自然无功负荷系数K值的计算公式可简化为:

K==……………………………………(A—2)

附加说明:

本标准由能源部节能司提出并归口。

本标准主要起草人:宋森、汪延宗、卢本平、徐德生、蒙定中、陈明光、汪启槐、谢世璋。

电力系统频率及有功功率的自动调节

电力系统频率及有功功率的自动调节 摘要 在现实中系统功率并不是一个恒定的值,而是随时变化的,在系统中,每时每刻发电功 率和用电功率基本平衡。而功率又是影响频率的主要因素,当发电功率与用电功率平衡时,频率基本稳定,当发电功率大于用电功率时系统频率则上升,反之则下降,所以系统对有功 功率和频率进行调整。本文研究了电力系统频率及有功功率的自动调节进行了详细的研究与论证。 关键词:频率有功功率自动调节 第一章频率和有功功率自动控制的必要性 1电力系统频率控制的必要性A频率对电力用户的影响 (1)电力系统频率变化会引起异步电动机转速变化,这会使得电动机所驱动的加工工业产品的机械的转速发生变化,转速不稳定会影响产品质量”甚至会出现次品和废品。 (2)电力系统频率波动会影响某些测量和控制用的电子设备的准确性和性能,频率过低时有 些设备甚至无法工作。这对一些重要工业和国防是不能允许的。 (3)电力系统频率降低将使电动机的转速和输出功率降低,导致其所带动机械的转速和出力降低,影响电力用户设备的正常运行。 B频率对电力系统的影响 (1)频率下降时,汽轮机叶片的振动会变大,轻则影响使用寿命,重则可能产生裂纹。对于额定频率为50Hz的电力系统,当频率低到45Hz附近时,某些汽轮机的叶片可能因发生共振而断 裂,造成重大事故。(次同步谐振,1970、1971年莫哈维电厂790MV机组的大轴损坏事故) (2)频率下降到47-48HZ时,火电厂由异步电动机驱动的辅机(如送风机、送煤机)的出力随之下降,从而使火电厂发电机发出的有功功率下降。这种趋势如果不能及时制止,就会在短时间内使电力系统频率下降到不能允许的程度。这种现象称为频率雪崩。出现频率雪崩会造 成大面积停电,甚至使整个系统瓦解。 (3)在核电厂中,反应堆冷却介质泵对供电频率有严格要求。当频率降到一定数值时,冷却介质泵即自动跳开,使反应堆停止运行。 (4)电力系统频率下降时,异步电动机和变压器的励磁电流增加,使无功消耗增加,引起系统 电压下降,频率下降还会引起励磁机出力下降,并使发电机电势下降,导致全系统电压水平降

电力系统电压等级与规定

电力系统的电压等级与规定 1、用电设备的额定电压 要满足用电设备对供电电压的要求,电力网应有自己的额定电压,并且规定电力网的额定电压和用电设备的额定电压相一致。为了使用电设备实际承受的电压尽可能接近它们的额定电压值,应取线路的平均电压等于用电设备的额定电压。 由于用电设备一般允许其实际工作电压偏移额定电压±5%,而电力线路从首端至末端电压损耗一般为10%,故通常让线路首端的电压比额定电压高5%,而让末端电压比额定电压低5%。这样无论用电设备接在哪一点,承受的电压都不超过额定电压值的±5% 2、发电机的额定电压 发电机通常运行在比网络额定电压高5%的状态下,所以发电机的额定电压规定比网络额定电压高5%。具体数值见表4.1-1的第二列。 表4.1-1 我国电力系统的额定电压 网络额定电压发电机额定电压 变压器额定电压 一次绕组二次绕组 3 6 103.15 6.3 10.5 3及3.15 6及6.3 10及10.5 3.15及3.3 6.3及6.6 10.5及11 13.8 15.75 18 20 13.8 15.75 18 20 35 110 220 330 500 35 110 220 330 500 38.5 121 242 363 550 3、变压器的额定电压 根据功率的流向,规定接收功率的一侧为一次绕组,输出功率的一侧为二次绕组。对于双绕组升压变压器,低压绕组为一次绕组,高压绕组为二次绕组;对于双绕组降压变压器,高压绕组为一次绕组,低压绕组为二次绕组。 ①变压器一次绕组相当于用电设备,故其额定电压等于网络的额定电压,但当直接与发电机连接时,就等于发电机的额定电压。 ②变压器二次绕组相当于供电设备,再考虑到变压器内部的电压损耗,故当变压器的短

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励 磁损耗为 0/100Ty TN Q I S V (Mvar)(5-1-1)

另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约 为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S V (Mvar)(5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综合负荷的电压静态

(完整版)电力系统分析基础知识点总结

一.填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定 电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路 电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本 形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联 电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参 数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为(220KV)(214.5KV)(209KV) (225.5KV)(231KV)。 二:思考题 1.电力网,电力系统和动力系统的定义是什么?(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 2.电力系统的电气接线图和地理接线图有何区别?(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 3.电力系统运行的特点和要求是什么?(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。 要求:(1)保证可靠的持续供电。(2)保证良好的电能质量。(3)保证系统运行的经济性。 4.电网互联的优缺点是什么?(p7) 答:可大大提高供电的可靠性,减少为防止设备事故引起供电中断而设置的备用容量;可更合理的调配用电,降低联合系统的最大负荷,提高发电设备的利用率,减少联合系统中发电设备的总容量;可更合理的利用系统中各类发电厂提高运行经济性。同时,由于个别负荷在系统中所占比重减小,其波动对系统电能质量影响也减小。联合电力系统容量很大,个别机组的开停甚至故障,对系统的影响将减小,从而可采用大容高效率的机组。 5.我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压如何确定? (p8-9) 答:额定电压等级有(kv):3、6、10、35、110、220、330、500 平均额定电压有(kv):3.15、6.3、10.5、37、115、230、345、525 系统各元件的额定电压如何确定:发电机母线比额定电压高5%。变压器接电源侧为额定电压,接负荷侧比额定电压高10%,变压器如果直接接负荷,则这一侧比额定电压高5%。 6.电力系统为什么不采用一个统一的电压等级,而要设置多级电压?(p8) S 。当功率一定时电压越高电流越小,导线答:三相功率S和线电压U、线电流I之间的固定关系为

第五章 电力系统有功功率和

第五章 电力系统有功功率和频率调整 第一节 电力系统中有功功率的平衡 一、有功功率负荷的变动和调整控制 L L G P P P ?∑+∑=∑ 如图5-1中所示,负荷可以分为三种。第一种变动幅度很小,周期又很短,这种负荷变动有很大的偶然性。第二种变动幅度较大,周期也较长,属于这一种的主要有电炉、压延机械、电气机车等带有冲击性的负荷。第三种变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变化引起的负荷变动。第三种负荷基本上可以预计。 据此,电力系统的有功功率和频率调整大体上也可分为一次、二次、三次调整三种。一次调整或频率的一次调整指由发电机组的调速器进行的、对第一种负荷变动引起的频率偏移的调整。二次调整或频率的二次调整指由发电机的调频器进行的、对第二种负荷变动引起的频率偏移的调整。三次调整实际上就是按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事先给定的发电负荷曲线发电。 二、有功功率电源和备用容量 装机容量——所有发电设备容量总和。 电源容量——可投入使用的容量之和。 备用容量——系统电源容量减去最大发电负荷(包括网损、负荷、厂用电等)。

系统备用容量可分为热备用和冷备用或负荷备用、事故备用、检修备用和国民经济备用等。 所谓热备用运转中的发电设备可能发的最大功率与系统发电负荷之差。冷备用则指未运转的发电设备可能发的最大功率。 负荷备用是指调整系统中短时的负荷波动并担负计划外的负荷增加而设置的备用。 事故备用是使电力用户在发电设备发生偶然性事故时不受严重影响,维持系统正常供电所需的备用。 检修备用是使系统中的发电设备能定期检修而设置的备用。 电力工业是线性工业,除满足当前负荷的需要设置上述备用外,还应计及负荷超计划增长而设置一定的备用。这种备用就称国民经济备用。 具备了备用容量,才可能谈论它们在系统中各发电设备和发电厂之间的最优分配以及系统的频率调整问题。 第二节电力系统中有功功率的最优分配 一、有功功率最优分配 电力系统中有功功率的分配有两个主要内容,即有功功率电源的最优组合和有功功率负荷的最优分配。 有功功率电源的最优组合是指系统中发电设备或发电厂的合理组合,也就是通常所说谓的合理开停。 有功功率负荷的最优分配是指系统的有功功率负荷在各个正在运行的发电设备或发电厂之间的合理分配。最常用的是按所谓等耗量微增率准则分配。 二、最优分配负荷时的目标函数和约束条件 1.耗量特性 电力系统中有功功率负荷合理分配的目标是在满足一定约束条件的前提下,尽可能节约消耗的一次能源。因此,必须先明确发电设备单位时间内消耗的能源与发出有功功率的关系,即发电设备输入与输出的关系。这关系称耗量特性,如图5-2所示。 耗量特性曲线上某一点纵坐标和横坐标的比值,即单位时间内输入能量与输 μ。耗量特性曲线上某点切线的斜率称耗量微增出功率之比称比耗量μ。P F/ =

漫谈电力系统无功功率

漫谈电力系统无功功率 目前世界范围内掀起环境保护的热潮,电力系统是一种的特定环境,公用电网中出现的无功功率,是电网本身的运行规律所决定,但它给电网运行带来了许多麻烦。无功功率是一种既不能作有功,但又会在电网中引起损耗,而且又是不能缺少的一种功率。 在实际电力系统中,异步电动机作为传统的主要负荷使电网产生感性无功电流;电力电子装置大多数功率因数都很低,导致电网中出现大量的无功电流。无功电流产生无功功率,给电网带来额外负担且影响供电质量。因此,无功功率补偿(以下简称无功补偿)就成为保持电网高质量运行的一种主要手段之一,这也是当今电气自动化技术及电力系统研究领域所面临发展的一个重大课题,且正在受到越来越多的关注。 设置无功补偿电容器是补偿无功功率的传统方法,目前在国内外均获广泛应用。电容器与网络感性负荷并联,以并联电容器补偿无功功率具有结构简单、经济方便等优点,但其阻抗是固定的,故不能跟踪负荷无功需求的变化,即不能实现对无功功率的动态补偿。 随着电力系统的发展,要求对无功功率进行动态补偿,从而产生了同步调相机(Synchronous Condenser--SC)。它是专门用来产生无功功率的同步电机,在过励磁或欠励磁的情况下,能够分别发出不同大小的容性或感性无功功率。自20世纪2、30年代以来的几十年中,同步调相机在电力系统中作为有源的无功补偿曾一度发挥着主要作用,所以被称为传统的无功动态补偿装置。然而,由于它是旋转电机,运行中的损耗和噪声都比较大,运行维护复杂,而且响应速度慢,难以满足快速动态补

偿的要求。 20世纪70年代以来,同步调相机开始逐渐被静止型无功补偿装置(Static Var Compensator--SVC)所取代,目前有些国家已不再使用同步调相机。早期的静止无功补偿装置是饱和电抗器(Saturated Reactor--SR)型的,1967年英国GEC公司制成了世界上第一批该型无功补偿装置。饱和电抗器比之同步调相机具有静止、响应速度快等优点;但其铁芯需磁化到饱和状态,因而损耗和噪声还是很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负荷的不平衡,所以未能占据主流。电力电子技术的发展及其在电力系统中的应用,将晶闸管的静止无功补偿装置推上了无功补偿的舞台。1977年美国GE公司首次在实际电力系统中演示运行了晶闸管的静止无功补偿装置。1978年此类装置投入实际运行。随后,世界各大电气公司都竟相推出了各具特色的系列产品。近10多年来,占据了静止无功补偿装置的主导地位。于是静止无功补偿装置(SVC)成了专指使用晶闸管的静止无功补偿装置,包括晶闸管控制电抗器(Thyristor ontrolled Reactor--TCR)和晶闸管投切电容器(Thyistor Switched Capactor--TSC),以及这两者的混合装置(TCR+TSC),或者TCR与固定电容器(Fixed Capacitor--FC)或机械投切电容器(Mechanically Switched Capacitor--MSC)混合使用的装置(即TCR+FC、TCR+MSC)等。随着电力电子技术的进一步发展,20世纪80年代以来,一种更为先进的静止型无功补偿装置出现了,这就是采用自换相变流电路的无功补偿,有人称为静止无功发生器(Static Var Generator--SVG),也有人称其为高级静止无功补偿器(Advanced Static Var Compensator--ASVC)或静止调相器

电力系统无功电压综合控制

电力系统无功电压综合控制 【摘要】本文通过对无功功率对用户和电力系统安全稳定电能质量经济运行至关重要性;电力系统无功电源及无功补偿原则;电压--无功调节实现方法、实现方式和控制调整策略及泉州地区无功电压调整和控制分析。泉州地区的电压无功控制采用ACV智能控制系统,此系统可对电压、功率因数和网损进行优化控制。 【关键词】无功电压无功电源VQC A VC调整方法调整策略 无功功率对用户和电力系统安全稳定、电能质量和经济运行至关重要。从电力系统潮流计算和电力系统综合负荷电压静态特性得知,电压与无功功率密切关系。无功功率不足系统电压将下降,反之将上升。过高电压和过低电压将影响到用户和电力系统本身的正常工作。电压过高,用户的用电设备的绝缘将受到威胁;电压过低,用户的电器设备的正常工作受到影响。特别是电动机负荷,电压过低,电动机的转矩将成平方级的下降,正在运行的电动机可能停转,带重负荷的电动机可能起动不了,严重影响到用电设备的正常工作。对于电力系统本身,电压过低除了影响到电力系统的发电厂辅机正常工作外,还影响到电力系统电压的稳定问题。故电力系统电压保持在质量范围里至关重要。 1.电力系统无功电源及无功补偿原则 1.1电力系统无功电源 电力系统无功电源有同步发电机、电力电容器、同步调相机、静止补偿器及电力线路。发电机通过改变励磁电流改变发电机无功的输出。根据发电机P Q曲线图得知,同步发电机要多发无功功率,势必要少发有功功率。对于小电力系统或孤立运行的电力系统的调压很有效,对大电力系统一般只作为辅助的调压措施。电力电容器并网只能发出无功,不能吸收无功,调压是有级的,但它价廉实用,它广泛应用于电力系统变电站母线的调压和负荷侧的调压。同步调相机也是靠改变其励磁电流为过励或欠励来改变输出或吸收无功大小,它既能发出无功又能吸收无功,调压是连续的,但旋转的无功补偿设备需要大量的维护,故应用较少。静止补偿器是对电力电容器的改进,它可通过可控的电抗元件来调节无功功率,它既能发出无功又能吸收无功,调压也是连续的,它是新型的无功功率补偿设备,补偿成本较高,主要是设备贵重,目前泉州供电公司有两个变电站采用此无功补偿设备。 1.2电力系统无功补偿原则 电力系统无功功率补偿原则是分层分区就地平衡。对于220kV以上电网是分层平衡,对于110kV以下是分区就地平衡。从潮流计算或从功率损耗计算可知,电力系统无功功率不远距离输送,远距离输送将增加有功损耗。

电力系统题库

第一章电力系统基本知识 一、单项选择题(每题的备选项中,只有一项最符合题意) 1.电力系统是由(B)、配电和用电组成的整体。 A.输电、变电 B.发电、输电、变电 C.发电、输电 2.电力系统中的输电、变电、(B)三个部分称为电力网。 A.发电 B.配电 C.用电 3.直接将电能送到用户的网络称为(C)。 A.发电网 B.输电网 C.配电网 4.以高压甚至超高压将发电厂、变电所或变电所之间连接起来的送电网络称为(B)。 A.发电网 B.输电网 C.配电网 《 5.电力生产的特点是(A)、集中性、适用性、先行性。 A.同时性 B.广泛性 C.统一性 6.线损是指电能从发电厂到用户的输送过程中不可避免地发生的(C)损失。 A.电压 B.电流 C.功率和能量 7.在分析用户的负荷率时,选(A)中负荷最高的一个小时的平均负荷作为高峰负荷。 A.一天24小时 B.一个月720小时C一年8760小时 8.对于电力系统来说,峰、谷负荷差越(B),用电越趋于合理。 A.大 B.小 C.稳定 D.不稳定 9.为了分析负荷率,常采用(C)。 > A.年平均负荷 B.月平均负荷 C.日平均负荷 10.突然中断供电会造成经济较大损失、社会秩序混乱或在政治上产生较大影响的

负荷属(B)类负荷。 A.一类 B.二类 C.三类 11.高压断路器具有开断正常负荷和(B)的能力。 A.过载 B.过载、短路故障 C.短路故障 12.供电质量指电能质量与(A) A.供电可靠性 B.供电经济性 C.供电服务质量 13.电压质量分为电压允许偏差、三相电压允许不平衡度、(C)、电压允许波动与闪变。 A.频率允许偏差 B.供电可靠性 C.公网谐波 三相供电电压允许偏差为额定电压的(A) ) A.±7% B. ±10% C.+7%-10% 15.当电压上升时,白炽灯的(C)将下降。 A.发光效率 B.光通量 C.寿命 16.当电压过高时,电动机可能(B)。 A.不能起动 B.绝缘老化加快 C.反转 17.我国国标对35~110kV系统规定的电压波动允许值是(B)。 % 的电压急剧波动引起灯光闪烁、光通量急剧波动,而造成人眼视觉不舒适的现象,称为闪变。 A.连续性 B.周期性 C.间断性 19.电网谐波的产生,主要在于电力系统中存在(C)。 A.电感和电容元件 B.三相参数不对称 C.非线性元件 } 20.在并联运行的同一电力系统中,任一瞬间的(B)在全系统都是统一的。 A.电压 B.频率 C.波形

电网无功功率计算.docx

电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中 S——视在功率,kVA P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用: 1、提高功率因数 如图2所示图中

P——有功功率 S1——补偿前的视在功率 S2——补偿后的视在功率 Q1——补偿前的无功功率 Q2——补偿后的无功功率 φ1——补偿前的功率因数角 φ2——补偿后的功率因数角 由图示可以看出,在有功功率P一定的前提下,无功功率补偿以后(补偿量Qc=Q1-Q2),功率因数角由φ1减小到φ2,则cosφ2>cosφ1提高了功率因数。 2、降低输电线路及变压器的损耗 三相电路中,功率损耗ΔP的计算公式为 式中 P——有功功率,kW; U——额定电压,kV; R——线路总电阻,Ω。 由此可见,当功率因数cosφ提高以后,线路中功率损耗大大下降。 由于进行了无功补偿,可使补偿点以前的线路中通过的无功电流减小,从而使线路的供电能力增加,减小损耗。 例:某县电力公司某配电所,2005年1月~2月份按实际供售电量情况进行分析。该站1~2月份,有功供电量152.6万kW·h,无功供电量168.42万kvar·h,售电量133.29万kW·h,功率因数0.67,损耗电量19.31万kW·h,线损率12.654%。装设电容器进行无功补偿后,如功率因数由原来的0.67提高到0.95 时, (1)可降低的线路损耗

浅谈变电站电压及无功的综合控制

浅谈变电站电压及无功的综合控制 发表时间:2019-07-02T14:04:29.703Z 来源:《防护工程》2019年第6期作者:梁华银李毛根 [导读] 通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。 国网安徽省电力有限公司宿州供电公司安徽省 234000 摘要:以变电站为单位,自动调节电压和无功功率就地平衡,变电站电压和无功控制主要是采用有载调压变压器和补偿并联电容器组,通过调节有载调压变压器分接开关和投切并联电容器组,实现调节电压合格和无功平衡的目的。 关键词:变电站;电压;无功;控制 1电力系统调压的措施 1.1利用发电机调压 发电机的端电压可以通过改变发电机励磁电流的办法进行调整,这是一种经济,简单的调压方式。在负荷增大时,电网的电压损耗增加,用户端电压降低,这时增加发电机励磁电流,提高发电机的端电压;在负荷减小时,电力网的电压损耗减少,用户端电压升高,这时减少发电机励磁电流,降低发电机的端电压。按规定,发电机运行电压的变化范围在发电机额定电压的-5%~+5%以内。 1.2电压无功自动控制装置 在以往的变电站运行中,常常是采用人工的方式进行相关的电压无功调控,这种陈旧老套的控制方法不但需要耗费变电站值班人员的大量精力,加重了其负担,增大了工作量,同时也不能很好的实现电压无功控制的目的。这是因为人工调节的主观因素太大,如果值班人员的判断或操作失误,就会严重影响到调控的合理性,不利于变电站的稳定电力供应。随着人们对供电质量的要求更高,大多数变电站都是采用的无人值班变电站,这样以来,人工操控电压无功就很难实现。 1.3利用无功功率补偿调压 改变变压器分接头调压虽然是一种简单而经济的调压手段,但改变分接头位置不能增减无功功率。当整个系统无功功率不足引起电压下降时,要从根本改变系统电压水平问题,就必须增设新的无功电源。无功功率补偿调压就是通过在负荷侧安装同步调相机、并联电容器或静止补偿器,以减少通过网络传输的无功功率,降低网络的电压损耗而达到调压的目的。 1.4改变输电线路的参数调压 从电压损耗的计算公式可知改变网络元件的电阻R和电抗X都可以改变电压损耗,从而达到调压的目的。变压器的电阻和电抗已经由变压器的结构固定,不宜改变。一般考虑改变输电线路的电阻和电抗参数以满足调压要求。但减少输电线路的电阻意味着增加导线截面。多消耗有色金属。所以一般不采用此方法。 2 变电站电压无功控制方式 目前,变电站电压无功控制方式主要有3种:集中控制方式、分散控制方式和关联分散控制方式。 2.1 集中控制方式 集中控制是指在调度中心根据采集的各项数据,通过遥控装置对各个变电站的调压设备、无功补偿设备统一进行控制。从理论上讲,集中控制方式应该是保持配电网电压合格、无功平衡的最佳方案。但它对调度中心的要求相对较高,在软件方面要求配备实时控制软件,在硬件方面要求配电中心达到“三遥”的水平,最好在各个配电中心针对这一环节配备单独的智能模块。目前,各地变电站的基础设施条件和智能化水平参差不齐:有的地方相对发达一些,设备比较先进,智能化水平较高;有的地方相对落后一些,设备比较陈旧,基本没有自动化装置;有的地方变电站各方面建设虽然比较先进,但是缺少相关操作人才,也难以实现集中控制。因此,当前要想实现整个电力系统全部采用集中控制方式还是比较困难的,只能在相对发达的地区先建设一部分,逐步在其他地区循序渐进地推开。 2.2 分散控制方式 分散控制方式是指在每个变电站专门建设一台电压无功自动控制平台,该装置根据采集的数据,自动调节分接头位置或投切并联电容器组,从而实现对电压调节装置和无功补偿设备的控制,当主变压器负荷发生变化时,保证该变电站供电半径内配电网电压质量合格、无功功率合格。分散控制的优点是控制简易、投入较小,符合当前我国大部分地区的基本情况;缺点是难以实现整个地区大面积的统一操控。随着计算机、通信技术在电力行业的应用越来越广泛,实现对整个地区进行集中控制是大势所趋,分散控制装置由于其自身的条件所限,逐步会被淘汰,但在局部地区其使用还具有一定的优越性。 2.3 关联分散控制方式 集中控制方式理论上能够及时掌握整个地区变电站的相关情况并进行最好的集中控制,但是此控制方式对变电站的软硬条件的要求比较高,需要投入更多资金,并且由于多个变电站在一个调度中心进行集中操作管理,控制系统比较复杂,操作难度较大,一旦发生问题,影响很大。目前,国内大部分地区应用比较广泛的是分散控制方式,但此控制方式不能实现整个地区的集中管理。关联分散控制方式是指在正常运行情况下,由安装在各变电站的控制装置根据编好的控制程序进行调控。在保障整个系统安全可靠运行的前提下,分别计算出正常运行、紧急情况、系统运行方式发生大变动时的调控范围,由调度中心根据采集的数据情况直接进行操作或修改变电站母线电压和无功功率值,以满足辖区内电力系统安全、可靠运行的要求。关联分散控制的最大优点是无论在正常情况下还是在紧急状态下,都能有效保障辖区内的供电可靠性和经济性。关联分散控制装置要求必须满足对受控厂站分析、判断和控制的强大通信功能,以及时将采集到的信息报告给调度中心,并执行好调度中心下达的各项调控命令。 3 变电站电压无功综合控制方式调节判据 变电站电压无功综合控制调节判据分为以下5个方面:1)按功率因数控制;2)按电压控制;3)按电压综合控制有载分接开关和电容器组;4)按电压和功率因数复合控制;5)按电压、时间序列复合控制。 3.1 按功率因数控制 根据功率因数的大小,来确定投切并联电容容量。如果功率因数低于确定值则通过自动控制装置投入电容,如果高于确定值则通过自动控制装置切除电容。此办法没有把电容对母线电压的影响考虑进来,并且当变压器负荷较小时,可能存在自动控制装置动作频繁的问

电力系统的电压等级

电力系统的电压等级 额定电压:各用电设备、发电机、变压器都是按一定标准电压设计和制造的。当它们运行在标准电压下时,技术、经济性能指标都发挥得最好。此标准电压就称为~。 一、电力系统的额定电压等级 1、电力系统的额定电压等级(输电线路的额定线电压) 220,kV 3,kV 6,kV 10,kV 35,kV 60,kV 110,kV 220,kV 330,kV 500,kV 750,kV 1000一般来说:110kv 以下的电压等级以3倍为级差:10kv 35kv 110kv 110kv 以上的电压等级,则以两倍为级差:110kv 220kv 500kv 确定额定电压等级的考虑因素: 三相功率S 和线电压U 、线电流I 的关系是UI S 3=。 当输送功率一定时,输电电压越高,电流越小,导线等载流部分的截面积越小,投资越小;但电压越高,对绝缘的要求越高,杆塔、变压器、断路器等绝缘的投资也越大。所以,对应于一定的输送功率和输送距离应有一个最合理的线路电压。 但从设备制造的角度考虑,线路电压不能任意确定。规定的标准电压等级过多也不利于电力工业的发展。 2、发电机、变压器、用电设备的额定电压的确定 1)用电设备的额定电压=线路额定电压 允许其实际工作电压偏离额定电压% 5±2)线路的额定电压: 指线路的平均电压(Ua+Ub )/2, 线路首末端电压损耗为10%;因为用电设备允许的电压波动是±5%,所以接在始端的设备,电压最高不会超过5%;接在末端的设备最低不会低于-5%; 3)发电机的额定电压 总在线路始端,比线路额定电压高5%;3kv 的线路发电机电压为3.15kv。

4)变压器的额定电压 一次侧:相当于用电设备 A、直接与发电机相连,额定电压与发电机一致。 B、直接与线路相连,额定电压与线路额定电压相同; 二次侧:相当于电源 A、二次侧位于线路始端,比线路额定电压高5%。计及自身5%的电压损耗,总共比线路额定电压高10%。 B、二次侧直接接用电设备(负荷)时,只需考虑自身5%的电压损耗。

变电站电压无功综合控制策略的分析

变电站电压无功综合控制策略的分析 发表时间:2019-03-13T14:42:09.377Z 来源:《河南电力》2018年18期作者:李亚雄苏力[导读] 电压是衡量电网电能质量的重要指标之一。电压过高或者过低,都会影响到电力系统中各类电力设备的正常运行。 (华电电力科学研究院有限公司中南区域中心湖北武汉 430000)摘要:电压是衡量电网电能质量的重要指标之一。电压过高或者过低,都会影响到电力系统中各类电力设备的正常运行。而电力系统的电压水平与无功功率有着十分密切的关系,故维持电网中的无功功率平衡可以有效地提高电能质量,并保证电力系统的安全、可靠、经济运行。本文结合智能变电站中电压无功综合控制子系统的目标,介绍了一些学者提出的电压无功控制综合策略的内容,分析它们各自所 具有的特点,最后结合已有成果对这一领域的发展进行了展望。 关键词:电压无功控制;无功补偿;控制策略;智能变电站 引言 我国国民经济不断发展,工业贡献了其中非常重要部分。工业的发展离不开合格的电能质量。改善电压质量可以有效地节约能源,防止电力系统电压出现崩溃以及提高电网的安全运行水平。由于电力系统中无功功率与电压水平紧密相关,变电站往往通过补偿无功功率实现系统中无功功率的平衡。 无功补偿的作用主要有以下几点[1]: 1)提高供用电系统及负载的功率因数,降低设备容量,减少功率损耗。 2)稳定受电端及电网的电压,提高供电质量。在长距离输电线中合适的地点设置动态无功补偿装置还可以改善输定系统的稳定性,提高输电能力。 3)在电气化铁道等三相负载不平衡的场合,通过适当的无功补偿可以平衡三相的有功及无功负载。 1 无功补偿的方法 电网无功补偿方案有以下4种:变电站集中补偿、低压集中补偿、配电线路固定补偿和用户终端分散补偿。 变电站集中补偿的装置包括同步调相机、并联电容器、静止补偿器等。这种补偿方式一般将装置集中接在变电站的10kV母线上,其优点是便于实现自动投切,利用率高,降低了事故出现的概率,有效减少电网的无功负荷。但是该方式不能解决下一级电网的网损或线损,因此10kV配电网降损不能采取这种补偿方案。 目前无功补偿的方式主要是220kV、110kV、35kV变电站低压侧集中补偿,以及在配电台区装设固定联接的电容器补偿和高压配电线路分散补偿。220kV变电站、110kV变电站配置的无功补偿容量较大,而35kV变电站及配电台区配置无功补偿容量偏小,大部分无功补偿装置采用的是手动投切[2]。 2 变电站自动化 变电站在电力系统中占有非常重要的地位。变电站是否正常运行,对电力系统的安全、稳定运行起到决定性的作用。在当今我国大力提倡智能电网的背景下,进一步提高变电站自动化和发展变电站智能化已成为电力系统研究中的热点。 在IEC61850标准中,对变电站自动化系统SAS的定义为:变电站自动化系统就是在变电站内提供包括通信基础设施在内的自动化。 变电站自动化系统中的子系统有监控子系统,继电保护子系统,自动控制子系统等。 3 变电站电压无功综合控制子系统 变电站自动化系统需要保证设备的安全、可靠运行以及提高电能质量。为此,在变电站自动化系统中,需要电压无功综合控制子系统,低频低压减负荷控制子系统,单相接地选线控制子系统,备用电源自投控制子系统等。这些系统均采用了独立的自动装置。 3.1 电压无功综合调控的意义 电压无功综合调控的目的是:维持供电电压在给定范围内;保持电力系统达到合适的无功平衡;在保证电压质量合格的前提下尽量降低电能损耗。 目前,在我国变电站应用最广泛的调压方式是结合并联补偿电容器组与有载调压变压器来对电压和无功功率进行调节。对补偿电容器进行投切操作,可以改变电力系统中的无功分布,从而提高电能质量,改善功率因数,减少网络中的电能与电压损耗。而通过切换有载调压变压器的分接头位置就可以改变变压器的变比,从而对电压进行调整。 3.2 电压无功综合控制的实现 目前我国变电站主要使用基于微机技术的电压无功综合控制系统(VQC)来解决电压和无功的调节问题。常用的VQC有两类:变电站监控系统实现的电压无功控制和独立的VQC成套装置。 利用变电站监控系统实现电压无功控制,是通过在变电站自动化系统站控层监控机中装设VQC控制软件实现的。该软件通过RTU远动装置获取到模拟量、开关量等信息后对所得信息进行分析和计算,从而确定所采取的调控决策,发出调控指令交由RTU远动装置进行执行,故而这种VQC也被称为基于RTU的VQC控制系统。 独立的VQC成套装置则包括独立的微计算机系统和模拟量采集、信号采集I/O系统以及控制输出回路,同时具有测量、显示、统计、打印功能和专门的控制软件,故其可以独立地对变电站的电压和无功进行控制。 4 变电站电压无功综合控制策略 对电压无功进行控制时,采用传统的功率因数补偿法容易对电网造成过补偿。经过理论研究和实践证明后,变电站的电压无功综合控制选取无功功率Q为无功控制量。因此,所谓电压无功综合控制,即根据电压和无功功率这两个判别量来对电压和无功进行综合调节。 变电站电压无功综合控制的目标是在保证电压合格和无功功率基本平衡的前提下,尽可能少地对并联电容器进行投切以及对有载分接开关进行调节。为了更好地实现这个目标,不断有学者对现有电压无功综合控制策略进行修正,从而提出新的策略。 4.1 基于区域图的控制策略

电力系统有功功率和

第五章 电力系统有功功率和频率调整 第一节 电力系统中有功功率的平衡 一、有功功率负荷的变动和调整控制 L L G P P P ?∑+∑=∑ 如图5-1中所示,负荷可以分为三种。第一种变动幅度很小,周期又很短,这种负荷变动有很大的偶然性。第二种变动幅度较大,周期也较长,属于这一种的主要有电炉、压延机械、电气机车等带有冲击性的负荷。第三种变动幅度最大,周期也最长,这一种是因为生产、生活、气象等变化引起的负荷变动。第三种负荷基本上可以预计。 据此,电力系统的有功功率和频率调整大体上也可分为一次、二次、三次调整三种。一次调整或频率的一次调整指由发电机组的调速器进行的、对第一种负荷变动引起的频率偏移的调整。二次调整或频率的二次调整指由发电机的调频器进行的、对第二种负荷变动引起的频率偏移的调整。三次调整实际上就是按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事先给定的发电负荷曲线发电。 二、有功功率电源和备用容量 装机容量——所有发电设备容量总和。 电源容量——可投入使用的容量之和。 备用容量——系统电源容量减去最大发电负荷(包括网损、负荷、厂用电等)。 系统备用容量可分为热备用和冷备用或负荷备用、事故备用、检修备用和国民经济备用等。

所谓热备用运转中的发电设备可能发的最大功率与系统发电负荷之差。冷备用则指未运转的发电设备可能发的最大功率。 负荷备用是指调整系统中短时的负荷波动并担负计划外的负荷增加而设置的备用。 事故备用是使电力用户在发电设备发生偶然性事故时不受严重影响,维持系统正常供电所需的备用。 检修备用是使系统中的发电设备能定期检修而设置的备用。 电力工业是线性工业,除满足当前负荷的需要设置上述备用外,还应计及负荷超计划增长而设置一定的备用。这种备用就称国民经济备用。 具备了备用容量,才可能谈论它们在系统中各发电设备和发电厂之间的最优分配以及系统的频率调整问题。 第二节电力系统中有功功率的最优分配 一、有功功率最优分配 电力系统中有功功率的分配有两个主要内容,即有功功率电源的最优组合和有功功率负荷的最优分配。 有功功率电源的最优组合是指系统中发电设备或发电厂的合理组合,也就是通常所说谓的合理开停。 有功功率负荷的最优分配是指系统的有功功率负荷在各个正在运行的发电设备或发电厂之间的合理分配。最常用的是按所谓等耗量微增率准则分配。 二、最优分配负荷时的目标函数和约束条件 1.耗量特性 电力系统中有功功率负荷合理分配的目标是在满足一定约束条件的前提下,尽可能节约消耗的一次能源。因此,必须先明确发电设备单位时间内消耗的能源与发出有功功率的关系,即发电设备输入与输出的关系。这关系称耗量特性,如图5-2所示。 耗量特性曲线上某一点纵坐标和横坐标的比值,即单位时间内输入能量与输 μ。耗量特性曲线上某点切线的斜率称耗量微增出功率之比称比耗量μ。P F/ = λ。 率λ。即dP ? ? = F/ dF P /= 2.目标函数和约束条件

电力系统中的无功功率

电力系统中的无功功率 集控值班员2016-07-02 1.1.1 无功功率对有功功率的影响 输电线路的主要任务足输送有功功率,而为了实现有功功率的传输和电网无功功率的平衡也需要输送一定量的无功功率。输送无功功率时需要消耗有功功率。当有功功率一定时,无功功率越大,则网络中的有功功率损耗就越大。当电力线路的传输能力一定时,传输无功功率越小,则传输有功功率的能力越大。 1.1.2无功功率对电压的影响 (1)无功功率平衡水平对电压水平的影响。电力系统中无功功率平衡水平对电压水平有较大的影响。如果发电机有足够的无功功率备用,系统的无功电源比较充足,就能满足较高电压质量下大功功率平衡的需要,系统就有较高质量的运行电压水平。反之,如果无功功率不足,系统只能在较低质量的电压水平下运行。另外,电能在电力网中传输时,要损失掉部分有功功率和无功功率。当无功功率损耗较大时。将引起系统电压大幅度下降,影响系统运行的稳定性、经济性。 (2)无功功率对电压质量的影响。电力系统是向用户提供电能的网络,因而电能质量是供电部门生产;经营活动中的一个重要经济技术指标。电压是电能质量的主要指标之一,电压质量对电力系统稳定运行,降低线路损耗和保证工农业的安全生产有着重要意义。在保证工农业生产和人民生活个使用的各种用电设备都是按照额定电压米设计制造的。这些设备在额定电压厂运行时,才能取得最佳的运行状态。电压超出所规定的范围时,对用电设备将产生不良的后果。 目前大多数国家规定的电压允许变化范围一般为l 5%——10%UN (额定电压)。电力部门为了确保电力系统正常运行时能够提供优质的电压,确保优质的供电服务,必须确保各输配电线路的母线电压稳定在允许的偏差范围之内。电力系统正常运行时,应有充足的无功电源。无功电源的总容量要能满足系统在额定电压下对无功功率的需求。否则.电压就会偏离额定值。 当电力网有能力向负荷供给足够的无功功率时,负荷的电压才能维持在正常的水平上。如果无功电源容量水足,负荷的端电压就会降低。所以,我们要保证电力系统的电压质量,就必须先保证电力系统无功功率的平衡。 1.1.3 无功功率对线损的影响 无功电源的布局、无功功率的传输以及无功功率的管理,直接影响线路的损耗和电力系统的经济运行。当有功功率和无功功率通过网络电阻时,会造成有功功率损耗。当网络结构已定,输送有功功率一定时,总的功率损耗完全决定于无功功率的大小。

相关文档
相关文档 最新文档