文档库 最新最全的文档下载
当前位置:文档库 › 变压器绝缘油色谱分析单

变压器绝缘油色谱分析单

变压器绝缘油色谱分析单

xxxx变压器有限公司绝缘油分析试验报告单

变压器油色谱分析的基本原理及应用 字数:2509 字号:大中小 摘要:文中阐述了采用色谱分析判断变压器内部故障的意义、原理及方法,并列举了采用色谱分析判断变压器故障的实例。 关键词:变压器色谱分析潜伏性故障 概述 油色谱分析作为在线检测变压器运行的一项有效措施,由于它做到了监测时不需要将设备停电,而且灵敏度高,与其他试验配合能提高对设备故障分析准确性,而且不受外界因数的影响,可定期对运行设备内部绝缘状况进行监测。因此变压器油色谱分析已真正成为发现变压器等重要电气设备内部隐患、预防事故发生的有效途径,在严格色谱分析工作的开展下,使设备的潜伏性故障得到及时消除,确保变压器等设备安全稳定运行。 1.绝缘油色谱分析的基本原理 变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低于分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中,当充油电气设备内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。 2.绝缘油色谱分析的方法 2.1故障下产气的累计性 充油电力设备的潜伏性故障所产生的可燃性气体,大部分会溶解与油中,随着故障的持续,这些气体在油中不断积累,直至饱和甚至析出气泡。因此,油中故障气体的含量及其积累程度是诊断故障存在与发展的一个依据。 2.2故障下产气的速率 正常情况下充油电力设备在热和电场的作用下,同样老化分解出少量的可燃性气体,但产气速率应很慢。有的设备因某些原因使气体含量超过注意值,不能断定故障;有的设备虽低于注意值,如含量增长迅速,也应引起注意。产气速率对反映故障的存在、严重程度及其发展趋势更加直接和明显,可以进一步确定故障的有无及性质。因此,故障气体的产气速率,也是诊断故障的存在与发展程度的另一个依据。 2.3故障下产气的特征 变压器等电力设备内部不同故障下,产生的气体有不同的特征。如:局部放电时会有

方法概述 用气相色谱法测定绝缘油中溶解气体的组分含量,是发供电企业判断运行中的充油电力设备是否存在潜伏性的过热、放电等故障,以保障电网安全有效运行的有效手段。也是充油电气设备制造厂家对其设备进行出厂检验的必要手段。 GC-9310SD变压器油色谱分析系统采用一次进样、双柱并联、一次分流的三检测器流程,配TCD检测器和两个FID检测器,其中H2和O2通过TCD检测;烃类气体(甲烷、乙烯、乙烷、乙炔)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是乙炔的影响。 执行标准: GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 DL/T 722-2000《变压器油中溶解气体分析和判断导则》 气路系统流程图: 性能指标: (1)最小检测量:一次进样,进样量为1mL时的最小检测浓度: 溶解气体的分析(uL/L) H2 CO CO2 CH4 C2H4 C2H6 C2H2 2 2 2 0.1 0.1 0.1 0.1 (2)定性重复性:偏差≤1% (3)定量重复性:偏差≤3% (2)热导检测器(TCD) ◎采用半扩散式结构 ◎电源采用恒流控制方式 ◎敏感度:S≥3000mv.ml/mg(正十六烷/异幸烷) ◎基线噪音:≤20μv ◎基线漂移:≤50μv/30min ◎线性:≥105 ◎载气流速稳定性:≤1%。 (3)火焰离子化检测器(FID) ◎收集极采用圆筒型结构,石英喷口 ◎检测限:≤8×10-12g/s(正十六烷/异幸烷) ◎基线噪声:5×10-14A ◎基线漂移:≤2×10-13A/30min ◎线性:≥107 ◎自动点火 ◎稳定时间10min 主要特点 主机介绍 GC-9310SD变压器油色谱分析系统是上海荆和分析仪器有限公司最新推出的一款新型全微机控制气相色谱仪。仪器充分吸收了国外同类产品的先进技术,大量采用进口元件,使GC-9310的稳定性、可靠性以及灵敏度和重复性蓖美进口同类型产品;并且在结构上更加简洁合理;人性化的中文菜单式操作,精美的外观设计,让色谱分析工作者使用的更加自信。

变压器油的气相色谱分析浅析 【摘要】本文主要对变压器油的气相色谱分析的特征气体、产气原理以及气相色谱分析的取样方法和一些常用的便携式检测仪器做一说明。 【关键词】变压器绝缘油色谱分析 一、气相色谱分析的意义 变压器油是指用于变压器、电抗器、互感器、套管、油断路器等输变电设备的矿物型绝缘油。一般有25#和45#两种变压器油。运行中的电力设备一般只能按周期停电进行预试检查,而且变压器等密封设备根本看不到内部情况。电力变压器的绝缘油气相色谱分析可以很好的补充这一缺陷,而且经过精密的计算和分析可以大概判断出设备内部的情况。气相色谱分析是对设备内的油进行的分析,从分析溶解于变压器中气体来诊断内部存在的故障。 二、气相色谱分析的特征气体及产生的原理 体征气体:气相色谱分析的特征气体主要有氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。在对所做油样的品质进行判定时,还要对总烃含量做判断。总烃即甲烷、乙烷、乙烯、乙炔四种烃类气体的总和。在对油品检验之后,我们需要对不合格的油品分析其不合格的原因。那么,就需要我们

大概清楚在什么情况下会分解出什么气体。

产气原理:运行中的变压器油在进行气相色谱分析的时候一般会检测出特征气体和总烃。那么这些气体又是从哪里来的呢?首先,绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C-C键键合在一起。由电或热故障可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,它们通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体。在低能量故障时,如局部放电。通过离子反应促使最弱的C-H键断裂,主要重新化合成H2而积累。对C-C键的断裂需要较高的温度,然后逊色以C-C 键、C=C键和C三C键的形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。其次,固体绝缘材料的分解也会产生部分特征气体。纸、层压板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键,它的热稳定性比油中的碳氢键要软,并能在较低的温度下重新化合。在生成水的同时生成大量的CO和CO2及少量的烃类气体,同时油被氧化。 三、气相色谱分析油样的取样方法 气相色谱分析的取样部位应注意,所取油样应能代表油箱本体的油。一般应在设备下部的取样阀门取油样,在特殊情况下,可在不同的取样部位取样。取样量,对大油量的变压器、电抗器等均可为50-80mL,对少油量的设备要尽量少

绝缘油色谱分析报告 委托单位宁夏大地股份有限公司1#电炉分析日期2015.03.20 气体组分含量μL/L 组分 组分含量(运行设备) 组分含量注意值A相B相C相 H2 4.86 14.85 3.26 ≦150 CO 43.88 41.00 31.00 CO2 652.96 643.89 630.63 CH4 2.02 1.78 1.22 C2H6 1.22 1.30 0.70 C2H4 8.28 8.08 6.12 C2H2 2.71 2.31 2.16 ≦5 总烃14.23 13.47 10.20 ≦150 分析意见正常 审核:分析人: 1

绝缘油色谱分析报告 委托单位宁夏大地股份有限公司2#电炉分析日期2015.03.20 气体组分含量μL/L 组分 组分含量(运行设备) 组分含量注意值A相B相C相 H2 8.93 4.81 2.93 ≦150 CO 23.39 22.45 22.81 CO2 478.63 617.35 601.37 CH4 0.84 0.97 0.95 C2H6 0.10 0.36 0.10 C2H4 0 0.66 0.11 C2H2 0 0.70 0 ≦5 总烃0.94 2.69 1.16 ≦150 分析意见正常 审核:分析人: 2

绝缘油色谱分析报告 委托单位宁夏大地股份有限公司3#电炉分析日期2015.03.20 气体组分含量μL/L 组分 组分含量(运行设备) 组分含量注意值A相B相C相 H2 7.12 4.13 5.10 ≦150 CO 20.12 18.23 18.41 CO2 578.54 558.93 473.68 CH4 1.34 0.92 1.56 C2H6 0.30 0.18 0.16 C2H4 0.95 0.34 1.30 C2H2 0.18 0 4.59 ≦5 总烃 2.77 1.44 7.61 ≦150 分析意见正常 审核:分析人: 3

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

电力变压器的油色谱判别及分析 作者:中试高测时间:2013-6-18 阅读: 1 目前,在电力变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,中试高测电气变压器油色谱分析仪而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效。 变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。对应这些故障所增加含量的气体成分见表1-1。 表1-1 不同绝缘故障气体成分的变化 故障类型主要增大的气体成 分 次要增大的气体成 分 故障类型 主要增大的气体成 分 次要增大的气体成 分 油过热CH4、C2H4H2、C2H6油中电弧H2、C2H2CH4、C2H4、C2H6油纸过热C2H4、C2H4、CO、CO2H2、C2H6油纸中电弧H2、C2H2、CO、CO2CH4、C2H4、C2H6油纸中局放H2、CH4、C2H2、CO C2H6、CO2受潮或油有气泡H2 油质中火花放电C2H2、H2 根据色谱分析进行变压器内部故障诊断时,应包括: 1.分析气体产生的原因及变化。 2.判断有无故障及故障类型。如过热、电弧放电、火花放电和局部放电等。 3.判断故障的状况。中试高测电气如热点温度、故障回路严重程度及发展趋势等。 4.提出相应的处理措施。如能否继续进行,以及运行期间的技术安全措施和监 视手段,或是否需要吊心检修等。若需加强监视,则应缩短下次试验的周期。 经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部 存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规 程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经 验积累取得了显著的成效。 一、特征气体产生的原因 表1-2 变压器内部故障时气体及产生原因

变压器油气相色谱分析 一、基本原理 正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。这些气体大部分溶解在油中。当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。 故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。 因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。 当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。 二、用气相色谱仪进行气体分析的对象 氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。 三、试验结果的判断

1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。设备在 故障下产生的气体主要也是来源于油和纸的热裂解。 2、变压器内产生的气体: 变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。 有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中分解开关灭弧室的有向变压器本体的渗漏;设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾作过带油补焊;原注入的油就含有某些气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障也会反映到变压器本体的油中。 3、正常设备油中气体含量 4、《导则》推荐的油中溶解气体的注意值

绝缘油色谱分析在电气设备中的应用 发表时间:2017-12-07T11:52:21.007Z 来源:《电力设备》2017年第23期作者:程志奇 [导读] 摘要:绝缘油广泛应用于电气设备中,用来加强绝缘、冷却和灭弧。 (大唐河北发电有限公司马头热电分公司河北邯郸 056044) 摘要:绝缘油广泛应用于电气设备中,用来加强绝缘、冷却和灭弧。电气设备在故障的情况下,都会伴随着能量的释放,而这些能量会导致绝缘油的劣化和裂变,使得绝缘油分解出各种低分子烃类。在不同的能量等级下,绝缘油裂变产生的气体种类和数量是存在着一定的相互关系的,根据绝缘材料的产气特点,提出了三比值法。通过绝缘油中溶解的气体组分含量,进而判断电气设备可能存在的电气故障。 关键词:绝缘油;色谱分析;电气设备;故障 1 绝缘油在电气设备中的作用 目前使用最普遍的绝缘油是由石油的分馏产物经过多重工艺精制而成的,成品油仍多种烃类化合物的混合体。按族组成可划分为饱和烃、环烷烃、和芳香烃三种类型。不同来源的油其比例各不相同,同一来源的油工艺变更时其组成也会有差异。绝缘油广泛应用于电力变压器、油断路器、充油电缆、电力电容器、套管、互感器等高压电气设备中。其主要作用有以下3个方面: (1)加强绝缘。用油浸渍的纤维性固体绝缘,能有效的防止潮气的直接进入并填充了固体绝缘中的空隙,显著地加强了纤维性材料的绝缘。在油纸绝缘体系中,绝缘油不仅是重要的组成部分,也是了解油纸绝缘内部运行工况的信息载体。 (2)冷却作用。对变压器等电器设备,绝缘油同时承担热量传导的介质。因为绝缘油的比热较大,导热性能好,通常可以作用冷却剂。热油经过散热器冷却,再回到变压器本体,使箱体内的绝缘油循环冷却,保持变压器温度在一定范围内正常运行(3)灭弧作用。油断路器中的绝缘油,除了具有加强绝缘的作用外,同时还具有灭弧作用,在电弧的高温作用下,能分解大量的气体,产生较大压力,可以促使断路器迅速可靠地切断电弧。 2 绝缘油中溶解气体分析 在新绝缘油的溶解气体中,通常含有约70%的N2和30%的O2以及0.3%左右的CO2 气体,并不含有C1、C2之类的低分子烃。变压器、电抗器类的充油电气设备,其绝缘系统主要由绝缘油纸构成,正常运行中,绝缘油纸在电、热及机械应力的作用下会劣化,并产生一定量的酸、脂、油泥等氧化物。除此之外,还会产生一些气体,这些气体主要是低分子烃类气体以及氢气、一氧化碳和二氧化碳等。当设备内部有过热或者放电故障时,伴随故障产生的能量将使绝缘油、纸分解产生大量的气体。这些气体一部分会溶于绝缘油中。因此可以通过对油中的溶解气体的分析从而了解设备内部的绝缘状况。油中溶解气体的检测种类,我国只规定了9中气体,即CO2、CO、H2、CH4、C2H6、C2H4、C2H2、O2、N2,除了O2和N2是推荐检测气体外,其余7种都是故障下可能增长的气体。 在热动力学和时间的基础上,人们已经认识到故障气体的形成与故障的能量有关,不同的化学键具有不同的键能,在绝缘油中,最弱的分子键是C-H键,在较低温度下即可能发生断裂。因此在低温度下即可形成氢气、甲烷、乙烷,在500℃以上可以形成乙烯,而只有在800-1200℃才会形成乙炔组分。对于纤维素中的C-O键,其热稳定性比绝缘油中最弱的C-H键还要差,因此绝缘纸/纸板的分解温度比油还低,大于105℃时聚合链就会快速断裂,高压300℃就会完全分解和碳化。当油纸绝缘遇电弧作用时,还会分解出更多的乙炔等气体。绝缘油在温度、湿度、电场强度、紫外线等条件下裂变为各种烃类混合物,根据绝缘油所承受的能量大小,油裂变为烃类气体按照能量的增强,裂变顺序依次为CH4 、C2H6 、C2H4、 C2H2。一定种类的气体只能在一定的能级下产生,达不到所需的能量是不会产生那种气体的。但是在高能级时却能够同时产生那些在低能级下就可以产生的气体,并具有一定的比例(早在40年代发现了石油分馏塔中的气体总是含有相对固定的甲烷和乙烯)。 3 三比值法的原理和应用 基于绝缘材料的产气特点,我们可以利用油中溶解气体分析进行设备内部故障判断。不同的故障,由于故障点能量不同、温度不同以及涉及的绝缘材料不同其产气情况也不同,即不同的故障具有不同的特征气体。我们还要考察他们在数量上的比例关系,这种方法就是在罗杰斯三比值法的基础上改良的三比值法。五种气体的三比值法以不同的编码表示,通过不同的编码组合可以对应不同的故障类型。 这样我们就绝缘油中溶解气体的组分含量间接的分析出电气设备中发生的各种故障,当然三比值法也并不能完全覆盖所有故障类型,在具体事件分析中,还对考虑设备的运行状况、外部环境,并结合相关的电气试验来综合判断。 4 案例分析 某某发电厂220kV213回路电流互感器,型号LB9-220W3,在年度的停电预试计划中,对三支电流互感器采油样做色谱分析,分析数据如下: 电流互感器C相油中气相色谱分析显示H2含量为7890.24μL/L,严重超出注意值150μL/L ;总烃含量为500.75μL/L也超出注意值 100μL/L。随后对该C相电流互感器进行检查,检查内容包括:电流互感器一次引线接头检查、二次绕组匝间短路检查。通过检查结果,没有发现一次引线有放电迹象。二次绕组不能准确反映出是否存在匝间短路(因为二次绕组测量的条件、环境不同,误差较大)。结合实际运行中没有发现此电流互感器出现过热,油位不足现象。为进一步确认缺陷,对213电流互感器C相进行绝缘油置换,暂不更换电流互感器,密切跟踪监视油中的气体组分含量。跟踪取样的得到如下数据: 4次取样结果中油的微水含量为23—26mg/L之间。2016.9.30日,H2含量降低,分析原因可能为: (1)在短期运行情况下,氢气和烃类气体由于温度的影响,溶解度降低,部分气体析出,汇集到绝缘油的顶部的膨胀器内,而油的采样是在设备底部抽取的,油中的气体溶解度还没有达到平衡; (2)绝缘油裂变反应为可逆反应,而电流互感器的膨胀器含有Ni成分,具有绝缘油裂变反应催化剂功能,在H2成分过高,放电能量不足的的情况下会使绝缘油裂变反应向逆方向进行,造成H2会减少。乙炔含量从0到0.15,且在接下来的检验中,没有增长趋势,综合判断为电流互感器油纸绝缘中原绝缘油残留含有部分。 2016.10.08日,H2含量超出注意值,较8天前的含量增加,同时其他气体含量(C2H2除外)均略有增加。2016.10.17日,绝缘油的气体组分含量再度呈现增长趋势。设备停电时测量绝缘电阻和介质损失角正切值tanδ数据合格,说明设备整体绝缘良好,不存在整体受潮现象,同时参考油中的微水含量,排除油中水分过大受潮的原因。根据裂变反应所得产物,应用IEC推荐的三比值法,根据GB7252—87《变压器油中溶解气体分析和判断》导则,通过故障代码分析在213电流互感器C相中存在低能量的局部放电。主要原因判定:(1)二次绕组存在匝间短路现象;

变压器绝缘油色谱在线监测探究 发表时间:2018-09-17T11:38:28.330Z 来源:《基层建设》2018年第22期作者:张惠芝 [导读] 摘要:现在人们的生活对于电力越来越依赖,为了保证变压器的正常工作与电力的稳定供应,人们进行了不断的研究。 国网青海省电力公司海西供电公司青海省格尔木市 816000 摘要:现在人们的生活对于电力越来越依赖,为了保证变压器的正常工作与电力的稳定供应,人们进行了不断的研究。变压器油色谱的使用,使得变压器的在线监测得以实现,技术人员能够实时了解变压器的工作情况,并对于可能会出现的问题进行及时的修复。电力的稳定供应是人们生活与生产的保障,那么变压器的正常运转便显得尤为重要,变压器油色谱在电压器工作的检测上有着良好的效果,本文主要对变压器绝缘油色谱在线监测进行了讨论。 关键词:变压器油色谱;在线检测 电力系统通常采用定期取油样进行色谱监测的方法来判断变压器的运行状况。该方法虽然能够定期获取变压器油中溶解的故障特征气体的含量,但是受到检测周期的限制很难及时发现变压器内部潜在故障。并且这种检测方法过程复杂,对检测人员的检测水平和检测经验有较高的要求。现阶段,对于变压器油中溶解气体色谱分析的在线检测方法,仍然以检测油中溶解气体为反应故障的特征量,但能够在变压器正常运行时,可及时掌握变压器的运行状况,跟踪和发现可能潜伏的故障,并可依据专家系统对运行工况进行自动诊断,以便做出相关的措施。同时可通过长期、连续油色谱分析法的监测,提高对异常数据诊断的可靠性,可以在主控室对变电站每台主变的油色谱分析进行巡回在线监测,实现整个变电站运行工况的在线智能化监测与诊断。 1.在线监测系统的原理 变压器油色谱可以自动检测其安全条件,具有相应的系统,不影响变压器的运行。包括油气分离,数据采集,色谱分离,现场控制,气体测量等多种单位,以及相关的通信控制,监控软件,主单元,辅助单元。其中油气分离,色谱分离,气体检测是其最关键的部分。 1.1 油气分离单元 油气分离装置最重要的任务就是用平衡溶液法分离出油气。主要操作步骤是在恒温条件下,通过相应的装置到内部空间进行真空,并将样品分离成油和气。泵泡的运行相当于搅拌,可使两者完全溶解,平衡,实验室脱气方法具有相同的地方,增加了数据的可比性。 1.2色谱分离单元 单位的主要组成部分是色谱柱,通过色谱柱进行检测。它主要是气体样品进入色谱柱,通过柱的吸附能力,让它显示不同的状态,结合不同的固定分布系数,其分离的组成。该方法使用简单,但精度高。 1.3气体检测单元 监控单元主要是释放气体。溶解在油气中需要通过柱分离,通过相应的检测设备,其气体含量进行准确的检测。光谱型半导体气体传感器的检测原理是吸附在半导体气体传感器表面上的氧气产生电子俘获氧离子,表面捕获的电荷导致半导体的能带弯曲并消散表面移动使其可以分解可燃气体,并通过氧化反应,使其内部电子释放,从而减少相应数量的电阻。根据检测到的电阻数量和相应的值,进行相应的处理,产生相应的成分和总烃含量。 2.变压器油中溶解气体在线监测装置的作用 变压器油中溶解气体在线监测装置主要包括油中气体组分含量的检测和故障的诊断两大部分。现有的大多数在线监测装置主要功能是在线监测油中气体组分含量及超闭值报警。从运行部门来考虑,采用变压器油中溶解气体在线监测装置的目的是实时或定时监视变压器的运行状态,监测正常运行工况,诊断变压器内部存在的故障性质、类型、严重程度并预测缺陷的发展趋势,指导运行部门对变压器的管理和维修。 2.1运行状态监测 由于变压器油中溶解气体的离线色谱分析是在运行状态下取油样、试验分析,而在线监测也是在运行状态下取油样,并且直接对油中溶解气体进行分析。因此,严格来说,如果排除各种人为因素,两者的油中溶解气体检测数据的绝对值应当可比,随检测时间的变化趋势也应当一致,并且数据值应具有重复性和再现性。因此,变压器油中溶解气体在线监测的任务与离线色谱分析应具有一致性,即了解和掌握变压器的运行状态,结合在线监测项目(如局部放电等)和投运前后的状况,对变压器运行状态进行评估,判断其处于正常或非正常状态,对状态给予显示、存储,并对异常状态予以超值报警,以便运行人员及时给予处理,并为变压器的故障分析诊断提供信息和准备基础的数据。 2.2故障诊断 故障诊断的任务是根据状态监测获得的在线信息,专家系统结合被监测变压器自身的结构特性、参数及运行环境,考虑变压器的运行历史,即存储的运行记录、曾发生过的故障等,根据诊断判据对变压器已发生或可能发生的故障进行判断,确定故障的性质、类别、程度、原因、故障发生和发展的趋势甚至后果,提出控制故障继续发展和维修的对策。由于故障和征兆之间不是一一对应关系,即一种故障可能对应多种征兆,一种征兆可能对应着多种故障,除主要征兆外还存在一系列其它征兆。因此,一种油中溶解气体在线监测装置的功能是否齐全和优良,其故障诊断的方法也非常重要。 2.3对变压器状态维修的指导能力 虽然实践证明定期预防性检修制度对预防事故的发生起到很大的作用,但也可能出现过剩维修或不足维修的弊病。因此状态检修已成为各国追求的一种科学而合理的检修制度,但是状态维修在很大程度上要依赖于状态监测及故障智能诊断技术的实施和进一步发展。因此,只有变压器油中溶解气体在线监测装置监测的特征气体种类、组分含量的准确度、诊断方法的科学性、专家系统的可靠性以及整个装置的稳定性等均满足工程要求的条件,对变压器的状态维修才具有指导意义,同时价格合理,才能得到广泛采用。 3.总结 色谱在线监测系统可以实现大型变压器内部运行状态的在线监控,随时掌握设备的运行状况,为保证变压器的安全经济运行和状态检修提供了技术支持,是保证变压器及电网系统安全经济运行的重要手段。色谱在线监测装置的开发与应用,有效的补充了变压器油中溶解气体监督的手段,本系统监测数据与实验室色谱分析数据,具有较好的可比性,满足国标要求,其与实验室色谱仪及便携式色谱仪一起,建立了完善的变压器油中溶解气体监测模式,为变压器状态检修工作的顺利开展提供了坚实的技术保障。

绝缘油气相色谱分析技术 在判定变压器内部绝缘状况中的应用 焦煤集团供电处王冬青 摘要:本文通过具体的试验数据,阐述了在判断大型电气设备内部故障时,仅依靠传统的电气设备预防性试验方法难以发现潜伏性故障,应结合气相色谱分析技术才能对电气设备内部绝缘状况进行准确的分析和判断。 关键词:电气设备内部故障判断传统的预防性试验气相色谱分析 前言:早期预测变压器等充油电气设备内部故障,对于安全发供电防止事故于未然,是极为重要的。作为绝缘监督的手段,以往国内外广泛应用直流泄漏绝缘电阻、介损测量、交流耐压和局部放电等电气特性试验。但是这些试验的共同缺点是要求被测试设备停运,很难测出事故发生前的极小的内部局部故障。众所周知,在正常情况下,充电电气设备内的油/纸绝缘材料在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类、二氧化碳和一氧化碳等。若设备内部存在潜伏性过热性放电故障时,就会加快这些气体的产生速度,这些气体一部分溶解于油中,一部分则析出,应用气相色谱分析仪对溶解于油中的气体进行组分分析,从而可以判定电气设备内部存在潜伏性故障,进而采取措施预防突发性事故发生。下面我们就以焦煤集团供电工程分公司古汉山变电站110KV2#变压器为例,分析绝缘油气相色谱分析技术在预防电气设备内部故障中的应用。 2009年8月在对古汉山2#110KV变压器进行周期性预防试验和绝缘油气相色谱分析时,发现两种测试方法在判断内部故障方面存在偏差,即通过变压器周期预防性试验,测试数据不存在数据不合格情

况。其具体数据如下: 通过近年数据来看,存在绝缘略微下降现象,但各项数据并未超标,仍在合格范围内,无法准确对内部绝缘状况作出判断。当进行绝缘油气相色谱分析时,发现油中溶解气体存在超标现象,具体数据如下(包括近两年): 由上述数据说明: 1、07年、08年油中气体含量符合标准规定的注意值,即总烃<150 H2<150 C2H2<5 , 09年油中气体含量总烃、C2H2超过注意值。 2、我们按照IEC三比值法(即下表)对09年气体含量进行分析: 依照上表计算:C2H2/C2H4=0.10 CH4/H2=1.55

绝缘油溶解气体的在线色谱分析 一、气相色谱分析及在线监测方法简介 油中溶解气体分析就是分析溶解在充油电气设备绝缘油中的气体,根据气体的成分、含量及变化情况来诊断设备的异常现象。例如当充油电气设备内部发生局部过热、局部放电等异常现象时,发热源附近的绝缘油及固体绝缘(压制板、绝缘纸等)就会发生过热分解反应,产生CO2、CO、H2和CH4、C2H4、C2H2等碳氢化合物的气体。由于这些气体大部分溶解在绝缘油中,因此从充油设备取样的绝缘油中抽出气体,进行分析,就能够判断分析有无异常发热,以及异常发热的原因。气相色谱分析是近代分析气体组分及含量的有效手段,现已普遍采用。图4-7所示为油色谱分析在线监测的原理框图。 图4-7 油色谱分析在线监测原理框图 进行气相色谱分析,首先要从运行状态下的充油电气设备中取油样,取样方法和过程的正确性,将严重影响到分析结果的可信度。如果油样与空气接触,就会使试验结果发生一倍以上的偏差。因此,在IEC和国内有关部门的规定中都要求取样过程应尽量不让油样与空气接触。其次,要从抽取的油样中进行脱气,使溶解于油中的气体分离出来。脱气方法有多种,常用的是振荡脱气法,即在一密闭的容器中,注入一定体积的油样,同时再加入惰性气体(不同于油中含有的待测气体),在一定温度下经过充分振荡,使油中溶解的气体与油达到两相动态平衡。于是就可将气体抽出,送进气相色谱仪进行气体组分及含量的分析。 常规的油色谱分析法存在一系列不足之处,不仅脱气中可能存在较大的人为误差,而且监测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;监测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的限制,不可能每个电站都配备油色谱分析仪,运行人员无法随时掌握和监视本站变压器的运行状况,从而会加大事故率。因此,国内外不仅要定期作以预防性试验为基础的预防性检修,而且相继都在研究以在线监测为基础的预知性检修策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。 绝缘油气相色谱在线监测主要解决油气分离问题,目前在线监测油气分离采用的是不渗

浅谈变压器油的气相色谱分析 一、色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。二、实例变压器内部放电性故障产生的特征气体主要是乙炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。 表1 从上表可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。氢气含量也比较高。我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。我们分析该变压器可能有进水现象。经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。 表2 变压器油的气相色谱分析在绝缘监督中具有很重要的作用:第一,可检测设备内部故障,预报故障的发展趋势,使实际存在的故障得到有计划且经济的检修,避免设备损坏和无计划的停电;第二,当确诊设备内部存在故障时,要根据故障的危害性、设备的重要性、负荷要求和安全及经济来制定合理的故障处理措施,确保设备不发生损坏;第三,对于已发生事故的设备,有助于了解设备事故的性质和损坏程度,以指导检修。三、气相色谱分析过程气相色谱分析是一种物理分离分析技术,分析程序是先将取样变压器油经真空泵脱气装置将溶解

龙源期刊网 https://www.wendangku.net/doc/ef17989779.html, 电力绝缘油色谱分析注意事项 作者:汪霞 来源:《中国新技术新产品》2016年第13期 摘要:经济进步之中的电力体系拥有不可缺失的价值,电力体系调配了各区域内的电 能,在最大范围内维持了常态的送电。在电力系统中,绝缘油随时调节了各构件现存的状态,且增设了外在的绝缘保护。绝缘油防控了异常形态的外在干扰,选取优良的绝缘油是应当注重的。针对绝缘油,采纳了色谱分析以此来探测油液的色谱特性,提升绝缘油本身的质量。 关键词:电力绝缘油色谱;分析方式;注意事项 中图分类号:TM205 文献标识码:A 构建电网内含多样的操控步骤,各环节都设定了高水准的操控要求。解析绝缘油表现出来的色谱状态,慎重把控了油液本体的特性。在这种基础上,操作者应能精确予以调配油液,发挥了最佳范围内的绝缘实效。绝缘油拥有冷却及绝缘的多样性能,解析这些性能,依循设定好的标准流程予以完善。调配各阶段内消耗的绝缘油都应依照规程,不应忽视细微的分析事项。 一、绝缘油的价值 电力体系含有内在多类设备,可综合调度某一区段的电能,维持了长久的输电供电。在送电线路内不可缺失绝缘油,耗电设备也留存了这种油液。电力系统配有日常可选用的绝缘油,这种油液被留存至指定好的用电设备。从总体来看,绝缘油可确保常规的电力构件性能,防控缓慢的装置磨损。由此可见,电力绝缘油拥有自身的必要价值。 首先,作为绝缘材料,电力绝缘油首先可用作绝缘,防控电荷的伤害。从绝缘特性看,运转状态下的各类设备都会附带电荷。添加了绝缘油,是为防控某一时点的电流及电压击打因而损毁外在表层。这是由于,电力设备有着本身较高的运转负荷,绝缘油含有优良的绝缘特性以此来妥善防控外在的流通电流。这样做,防控了过载态势的设备被损毁,有序保护系统。高峰耗电期内,若突发了某一故障则会减低总体架构内的绝缘特性,减弱根本的内在性能。涂抹绝缘油液以后,额外负荷即可被减低,由此也避免故障。 其次,绝缘油可用作冷却。电力体系预设了高低温彼此的互换,针对这种流程增添绝缘油品,冷却了原本的电力体系。经过油液的冷却,慎重防控了超标情形的设备运转,限定了最合适的温度。润滑油添加了某比值的抗氧剂,依照设定好的比例着手调配了油液。这种混合油品可用作设备介质,导出了构件冗余的内在热能以此来制冷。遇有较高温度,扩散形态下的油液也可增设绝缘;与之相比,低温油液还可防控凝结,发挥绝缘的更高价值。 第三,绝缘油也可减低本体的损耗,带有稳定的作用。在给定电场内,油液维持了较长的稳定,减低损耗的总体油液。绝缘油有着抵抗氧化这类的优良特质,可以保持稳定。随着技术

浅谈变压器油的色谱分析 时间:2011-04-27 15:04来源:《电气世界》 朱莉莉,朱明明摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。 摘要:从技术和专业管理的角度叙述变电站变压器、互感器内油的气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。油气相色谱分析在检验充油设备试验中占有十分重要的地位。文章详细介绍了绝缘油、纸热解产气的理化过程。并对油样的提取要点进行了论述。最后根据本地区的电网等实际情况,举例说明故障后设备油中气体成份的分析判断。在研究、分析的基础上,论证了色谱分析与电气试验的关系。 关键词:变压器色谱油分析 0引言 随着地方经济迅速发展,及电气设备的不断更新换代的需要,给我们供电部门不论是从设备上还是技术上提出了更高的要求。为保证供给足够的优质电能,减少停电时间在采取原有的状态检修基础上,进一步实行在线监测。变压器类设备是变电站最关键的设备,它不仅是因为价值昂贵,最重要的是它发生事故后,影响面广,给工农业生产造成巨大的损失。目前对此类设备的安全运行给予高度的重视,而对变压器、互感器等用油的电气设备类最好的监测手段之一,就是对设备内的油进行气相色谱分析,以分析溶解于变压器油中气体来诊断设备内部存在的故障。所以油气相色谱分析在检验充油设备试验中占有十分重要的地位。我们公司从上世纪80年代中期就对220kV、110kV及35kV8000kVA及以上的主变压器、电流互感器、电压互感器、充油套管进行色谱分析,并发现了部分设备存在缺陷,及时处理保证了设备安全正常运行。 1绝缘油、纸热解产气的理化过程 变压器的绝缘材料主要是油、纸组合绝缘,变压器内部潜伏性故障产生的气体主要是来源于油和纸的热裂解。热解产气特征与材料的化学结构有着密切的关系,矿物质绝缘油的化学组成是石油烃类;绝缘纸的化学成分是纤维素。在它们的分子结构上有不同类型的化学键,键能越高,分子越稳定,由于具有不同化学键结构的碳氢化合物分子在高温下的不同稳定性,因此需要了解一下绝缘油热裂解产气的一般规律,即产生的烃类气体的不饱和度是随裂解能量密度(温度)的增加而增加的。随着热裂解温度增高的过程裂解的顺序是:烷烃—烯烃—炔烃—焦炭。 不同性质的故障,产生气体组份的特征不一样,例如局部放电时产生氢;较高温度过热时产生甲烷与乙烯,当严重过热时也会产生少量的乙炔;电弧故障时产生乙炔和氢气。另外,不同性质和不同能源大小的故障,产气量和产气速度也不一样。初始阶段的潜伏性故障产气少,产气速度慢;故障源温度高、面积大的故障产气多、产气速度快。要明白这个道理,必须对绝缘油、纸在故障下热裂解产气的化学原理有一个基本了解,这对我们分析和判断变压器类设备的故障有所帮助。 绝缘油、纸热裂解产气过程所涉及的化学原理主要有:绝缘油、纸的化学结构,热解产气过程的化学反应及其热力动力学。当然还涉及到其他理、化机理如气体的析气、溶解和扩散作用等问题。 2简述

变压器油的气相色谱分析与研究 摘要】以某公司送来两台运行中变压器的油样,经 色谱分析,其中台有C2H2气体(4.9PPm)为例,以实例 分析说明:在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 关键词】压器油;色谱分析;气相色谱;误差分析 1. 色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱 分析绝缘油中溶解气体, 能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 2. 实例 1)变压器内部放电性故障产生的特征气体主要是乙 炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中

相关文档