文档库 最新最全的文档下载
当前位置:文档库 › 三角函数5.13

三角函数5.13

三角函数5.13
三角函数5.13

三角函数专题

一、解答题

1.已知函数2

()2sin ()3cos 234f x x x π

=-

+-,ππ42x ??

∈????

, (1)求()f x 的最大值和最小值;

(2)若方程()f x m =仅有一解,求实数m 的取值范围.

2.在ABC ?中,角A 、B 、C 的对边分别为,,a b c ,已知向量33(cos ,sin ),22

A A

m =(cos ,sin ),

22A A n =且满足3m n +=. (1)求角A 的大小;

(2)若3,b c a +=试判断ABC ?的形状.

3.已知

=

,那么sin

的值为 ,cos2

的值为

4.设函数()x x x x f cos sin 223sin +??

?

??-=π

(1)求函数()f x 的周期和单调递增区间;

(2)设A,B,C 为?ABC 的三个内角,若AB =1, 3()2C f ,9

3

2=AC ,求s1n B 的值.

5.已知函数2

1()3cos cos 2

f x x x x =-+. (1)求()f x 的最小正周期及对称轴方程;

(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若1

()22

A f =

,bc=6,求a 的最小值. 6.已知函数()2

()23sin cos 2cos y f x x x x a x R ==++∈,其中a 为常数. (1)求函数()y f x =的周期;

(2)如果()y f x =的最小值为0,求a 的值,并求此时)(x f 的最大值及图像的对称轴方程.

7.已知函数()sin 2cos 2()f x a b x c x x R =++∈的图像过点(0,1),(,1)4

A B π

,且b >0,又()f x 的最

大值为221.

(1)将()f x 写成含sin()(0)A ωx φωφπ+><,0<的形式;

(2)由函数y =()f x 图像经过平移是否能得到一个奇函数y =()g x 的图像?若能,请写出平移的过程;若不能,请说明理由.

8.已知22()sin (2)2sin(2)61([,])44242

f x x t x t t x π

πππ

=--?-+-+∈其最小值为()g t .

(1)求()g t 的表达式;

(2)当1

12

t -

≤≤时,要使关于t 的方程kt t g =)(有一个实根,求实数k 的取值范围. 9.已知函数)3

sin(2)(π

ω-

=x x f (0ω>)的最小正周期为π.

(1)求函数)(x f 的单调增区间; (2)将函数)(x f 的图像向左平移

6

π

个单位,再向上平移1个单位,得到函数()y g x =的图像.求()y g x =在区间[0,10]π上零点的个数.

10.已知函数()sin(3)(0,0)f x A x A ??π=+><<在12

x π

=

时取得最大值4.

(1)求()f x 的最小正周期; (2)求()f x 的解析式; (3)若[,0]4

x π

∈-

,求()f x 的值域.

参考答案

1.(1) m ()32ax f x =--,min ()4f x =- (2)(

{}32,34?---?-?

解:(1)

2()2sin ()3cos 23

4cos(2)3cos 22

2

f x x x x x ππ

=-+-=--+- 3cos 2sin 222cos(2)26

x x x π

=--=+

-

27,(2),42636x x πππππ??

??∈?+∈???????? 所以当7266x ππ+=,即2x π=时,m ()32ax f x =--

当26

x ππ+=,即512x π=时,min ()4f x =- (2) 方程()f x m =仅有一解,则函数

()2cos(2)26f x x π=+-在ππ42x ??

∈????

,的图像与函数()g x m =的图像仅有一个交点。

由图像得 m 的取值范围为(

{}32,34?---?-?

2.(1) 3

A π=; (2)ABC ?为直角三角形. 解()

222213,23,1,1m n m n m n m n +=∴++?===: 1331,cos cos sin sin 222222

A A A A m n ∴?=∴+=

1cos ,23A A π∴== 6分

()3223sin sin C 3sin ,B+C=23

b c a B A π+=∴+==又

233

sin sin (-B),sin()3262

B B ππ∴+=+=化简得

2520,0,366633

B B B ππππππ<<<+<∴+=或

C=,C=6226

B B ππππ∴==,或

所以:ABC ? 为直角三角形.

3.; ∵()2

=1+sin

=

∴sin

=

由倍角公式得cos2=1-2sin

2

=

4.(1)周期为π,单调递增区间为5[,]().1212k k k Z ππππ-

+∈(2)1

sin 3

B = 试题解析:()x x x x f cos sin 223sin +??

?

??-=π=??? ??

+32sin πx

(1)函数()f x 的周期为π. 令222,232k x k k Z πππππ-≤+≤+∈,则5,1212k x k k Z ππ

ππ-≤≤+∈

∴函数f(x)的单调递增区间为5[,]().1212

k k k Z ππππ-+∈

(2)由已知3()sin()23C f C π=+=2, 因为40,333

C C ππππ<<∴<+<

所以233

C ππ+=,3C π

=,∴s1n C 3

在ABC ?中,由正弦定理,sin sin AC AB B C =,得 1

sin 3

B =. 5.(1) ()23k x k Z ππ

=+∈6解:(1)()2

13cos cos 2

f x x x x =-+ =312cos 2sin 2226x x x π??-=- ??

? 3分 故最小正周期22

T ππ== 4分 令262x k πππ-=+ ,得()23k x k Z ππ

=+∈ 故图象的对称轴为()23k x k Z ππ

=+∈ 6分 (2)由1sin 262A f A π???

?=-= ? ?????

可知66A ππ-= 或566A ππ-=,即3A π=或A π=

又0A π<< ,故3

A π

=

6bc =

由余弦定理得2

2

2

2

2

2cos 6a b c bc A b c bc bc =+-=+-≥= 当且仅当b c = 时等号成立 故a

6.(1)T π=,(2)1=a ,最大值等于4,

()

26

k x k Z ππ

=

+∈

解(1

)1cos 222sin(2)1

6y x x a x a π

=++=+++.T π=. (2))(x f 的最小值为0,

所以210a -++= 故1=a 所以函数

2

)6

2sin(2++

x y .最大值等于4

()

262x k k Z ππ

π+=+∈,即()26k x k Z ππ=+∈时函数有最大值或最小值,

故函数)(x f 的图象的对称轴方程为()

26

k x k Z ππ

=

+∈. 14分

7.(1

)())14

f x x π

=+

-;

(2)能,过程见解析. 试题解析:(1

)()sin 2cos 2)(tan )b

f x a b x c x a x c

??=++=++=,

由题意,可得111a c a b a ?+=?+=??=?

,解得122a b c =-??

=??=?,

所以()12sin 2cos 2f x x x =-++,

()12sin 2cos 2)14

f x x x x π

=-++=+-.

(2)将()f x 的图像向上平移1

个单位得到函数())4

f x x π

=+

的图像,再向右平移

8

π

单位

得到2y x =

的图像,而函数y x =为奇函数,故将()f x 的图像先向上平移1个单位,再向右平移

8

π

单位就能够得到奇函数y =()g x 的图像. 8.(1)2

2515()421()611282(1)t t t g t t t t t t ?-+<-??

?

=-+≤≤??

?-+>??

??????(-)???;(2)8k ≤-或5k ≥-.

试题解析:(1)因为[

,]242x ππ

∈,所以32[,]464x πππ-∈-,所以1

sin(2)[,1]42x π-∈- 2()[sin(2)]614

f x x t t π

=---+([,]242x ππ

∈)

当12t <-时,则当1sin 2x =-时,2min 5

[()]54f x t t =-+

当1

12

t -≤≤时,则当sin x t =时,min [()]61f x t =-+

当1t >时,则当sin 1x =时,2

min [()]82f x t t =-+

故2

2515()421()611282(1)t t t g t t t t t t ?-+<-??

?

=-+≤≤??

?-+>??

??????(-)???

(2

()61g t t =-+,令()()h t g t kt =- 欲使kt t g =)(有一个实根,则只需1()02(1)0h h ?-≤???≥?或1()0

2

(1)0

h h ?

-≥???≤? 解得8k ≤-或5k ≥-.

9.(1)函数)(x f 的单调增区间5[,],Z 12

12

k k k π

π

ππ-

+

∈;

(2)()g x 在[]0,10π上有20个零点. 试题解析:(1)由周期为π,得2=ω,得()2sin(2)3

f x x π

=-

由正弦函数的单调增区间得

2222

3

2

k x k π

π

π

ππ-

≤-

≤+

,得5,Z 12

12

k x k k π

π

ππ-

≤≤+

∈ 所以函数)(x f 的单调增区间5[,],Z 12

12

k k k π

π

ππ-

+

(2)将函数)(x f 的图像向左平移

6

π

个单位,再向上平移1个单位 得到2sin 21y x =+的图像,所以()2sin 21g x x =+ 令()0g x =,得712x k ππ=+

或11(Z)12

x k k ππ=+∈ 所以函数在每个周期上恰有两个零点,[]0,10π恰为10个周期,故()g x 在[]0,10π上有20个零点.

10.(1)

23

π;(2)()4sin(3)4f x x π

=+;(3)[4,-.

解:(1)3

22π

ω

π

=

=

T (2)()412

f x x π

=

在时取得最大值,432,()12

2

A k k Z π

π

?π∴=?

+=

+∈且

2,(),0()4sin(3)4

44

k k Z f x x π

π

π

?π?π?=

+∈<<∴=

∴=+即又

(3)[,0]4

x π

∈-

时,3[,]4

24

x π

ππ

+

∈-

1sin(3)4x π-≤+≤

44sin(3)4x π

-≤+≤

()f x 的值域为[4,-

三角函数值表 sin0=0, sin15=(√6-√2)/4 , sin30=1/2, sin45=√2/2, sin60=√3/2, sin75=(√6+√2)/2 , sin90=1, sin105=√2/2*(√3/2+1/2) sin120=√3/2 sin135=√2/2 sin150=1/2 sin165=(√6-√2)/4 sin180=0 sin270=-1 sin360=0

sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383 sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346 sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087 sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931 sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074 sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474 sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027 sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015 sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675 sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994 sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027 sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731 sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375 sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582 sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475 sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941 sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771459614569708 sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090169943749474 sin55=0.8191520442889918 sin56=0.8290375725550417 sin57=0.8386705679454239 sin58=0.848048096156426 sin59=0.8571673007021122 sin60=0.8660254037844386 sin61=0.8746197071393957 sin62=0.8829475928589269 sin63=0.8910065241883678 sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9135454576426009

高考数学(文)难题专项训练:三角函数及三角恒等变换 1.已知O 是锐角三角形△ABC 的外接圆的圆心,且θ=∠A 若 AO m AC B C AB C B 2sin cos sin cos =+则=m ( ) A .θsin B. θcos C. θtan D. 不能确定 2.设函数)(x f 的定义域为D ,若存在非零实数l 使得对于任意)(D M M x ?∈,有 D l x ∈+,且)()(x f l x f ≥+,则称)(x f 为M 上的高调函数. 现给出下列命题: ①函数x x f -=2 )(为R 上的1高调函数; ②函数x x f 2sin )(=为R 上的高调函数; ③如果定义域为),1[+∞-的函数2 )(x x f =为),1[+∞-上m 高调函数,那么实数m 的取值范围是),2[+∞; ④函数)12lg()(+-=x x f 为),1[+∞上的2高调函数. 其中真命题的个数为( ) A .0 B .1 C .2 D .3 3. 已知)(x f 是定义在)3,3(-上的奇函数,当30<

4. 在ABC ?中,角C B A ,,所对的边分别为c b a ,,且c b a b 2sin 2sin log log ,22<>, bc a c b 3222+=+,若0

三角函数知识点公式定理记忆口诀 2008-9-2 14:12:26 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。 【文字:大小】 口口之和仍口口 赛赛之和赛口留 口口之差负赛赛 赛赛之差口赛收

高中数学三角函数公式定理口诀 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集

特殊角三角函数值表: 函数名 在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有 正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y 正弦(sin):角α的对边比斜边余弦(cos):角α的邻边比斜边 正切(tan):角α的对边比邻边余切(cot):角α的邻边比对边 特殊函数人倒数关系: tanα ?cotα=1sinα ?cscα=1cosα ?secα=1特殊函数人商数关系:tanα=sinα/cosαcotα=cosα/sinα 特殊函数人平方关系:sinα2+cosα2=11+tanα2=secα21+cotα=cscα2 以下关系,函数名不变,符号看象限 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 以下关系,奇变偶不变,符号看象限 sin(90°-α)=cosα cos(90°-α)=sinα tan(90°-α)=cotα cot(90°-α)=tanα sin(90°+α)=cosα cos(90°+α)=sinα tan(90°+α)=-cotαcot(90°+α)=-tanα 特殊三角函数人积化和差的关系: sinα ?cosβ=(1/2)*[sin(α+β)+sin(α-β)] cosα ?sinβ=(1/2)*[sin(α+β)-sin(α-β)] cosα ?cosβ=(1/2)*[cos(α+β)+cos(α-β)] sinα ?sinβ=(1/2)*[cos(α+β)-cos(α-β)] 特殊三角函数 - 和差化积公式 sinα+sinβ=2*[sin(α+β)/2]*[cos(α-β)/2] sinα-sinβ=2*[cos(α+β)/2]*[sin(α-β)/2]

三角函数与三角变形 一. 本周教学内容: 专题复习“三角函数与三角变形” 二. 重点与难点: 1. 三角函数的图象与性质; 2. 同角三角函数的差不多关系式,诱导公式,和、差、倍、半角公式,和积互化公式等三角公式的应用。 三. 要点综述: 1. 三角函数是一类重要的初等函数,因其在复数(如复数的三角形式)解析几何(如直线的倾斜角,参数方程,极坐标),立体几何(如两条异面直线成角,直线与平面的成角,二面角)中有着广泛的应用,因此对三角函数与三角变形要有足够的认识。 2. 三角函数的周期性,以及y=sinx ,y=cosx 的有界性是试题经常考查的重要内容。要把握形如y=Asin(ωx+?)或y=Acos(ωx+?)的函数的周期的求法;灵活应用y=sinx ,y=cosx 的有界性研究某些类型的三角函数的最值(或值域)问题。 3. 三角恒等式的证明因其技巧性较强,一度成为数学的难点,近些年的高考试题对这类题目的考查在减少,要求有所降低,但我们应该充分重视三角变形,因为其中表达了对三角公式的运用能力,专门表达了事物之间互相联系,互相转化的辩证思想。 4. 基于上述几点理由,建议同学们在复习这部分内容时,做到“立足课本,落实三基;重视基础,抓好常规”即复习时以中低档题目为主,注意求值化简题以及求取值范畴的习题,另外,注意充分利用单位圆,三角函数图象研究问题。 【典型例题分析与解答】 例1. 已知,且,则的值为 sin cos cos sin θθπθπ θθ?= <<-1842 分析:联想与的关系式:cos sin sin cos (cos sin )sin cos θθθθθθθθ±±=±2 12 可知,欲求的值,不妨先求的值,另外,应注意到,当 cos sin (cos sin )θθθθ--2π θπ θθθθ4 2 0<< >-<时,,故sin cos cos sin 解:(cos sin )sin cos θθθθ-=-=-?=2 12121834 而 π θπ 42 << ∴-

特殊角的三角函数值的巧记 特殊角的三角函数值在计算,求值,解直角三角形和今后的学习中,常常会用到,所以一定要熟记.要在理解的基础上,采用巧妙的方法加强记忆.这里关键的问题还是要明白和掌握这些三角函数值是怎样求出的,既便遗忘了,自己也能推算出来,切莫死记硬背. 那么怎样才能更好地记熟它们呢?下面介绍几种方法,供同学们借鉴。 1、“三角板”记法 根据含有特殊角的直角三角形的知识,利用你手里的一套三角板,就可以帮助你记住30°、45°、60°角的三角函数值.我们不妨称这种方法为“三角板”记法. 首先,如图所标明的那样,先把手中一套三角板的构造特点弄明白,记清它们的边角是什么关系. 对左边第一块三角板,要抓住在直角三角形中,30°角的对边是斜边的一半的特点,再应用勾股定理.可以知道在这个直角三角形中30°角的对边、邻边、 斜边的比是掌握了这个比例关系,就可以依定义求出30°、60°角的任意 一个锐角三角函数值,如:001sin 30,cos302== 求60°角的三角函数值,还应抓住60°角是30°角的余角这一特点. 在右边那块三角板中,应注意在直角三角形中,若有一锐角为45°,则此三 角形是等腰直角三角形,且两直角边与斜边的比是1∶1 住:00sin 45cos 452 == ,00tan 45cot 451==。这种方法形象、直观、简单、易记,同时巩固了三角函数的定义. 二、列表法:

说明:正弦值随角度变化,即0? →30?→45? →60? →90?变化;值从 0→2 1 →22→23→1变化,其余类似记忆. 三、口诀记忆法 口诀是:“一、二、三,三、二、一,三、九、二十七,弦是二,切是三,分子根号不能删.”前三句中的1,2,3;3,2,1;3,9,27,分别是30°,45°,60°角的正弦、余弦、正切值中分子根号内的值.弦是二、切是三是指正弦、余弦的分母为2,正切的分母为3.最后一句,讲的是各函数值中分子都加上根号, 不能丢掉.如tan60°= =tan45°1=.这种方法有趣、简单、易记. 四、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ①有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sinA <sinB ;tanA <tanB ;cosA >cosB ;cotA >cotB ;特别地:若0°<α<45°,则sinA <cosA ;tanA <cotA ;若45°<A <90°,则sinA >cosA ;tanA >cotA . 例1.tan30°的值等于( )

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

两角和与差的正弦、余弦、正切 1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2?利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2?灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键? 知识点回顾 1 ?两角和与差的余弦、正弦、正切公式 cos( a—0)= cos acos0+ sin ocsin0(C a- 0 cos( a+ 0)= cos. acos _ 0— sin__ asin_ 0(C a+ 0 sin( a—0 = sin a cos0- cos ocsin (S a—0 sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0 tan a—tan 卩 tan( a—? ;(T a—0 1 + tan atan 卩 tan a+ tan 卩 tan(%+ ? = (T a + 0 1 —tan %tan 0 2 ?二倍角公式 sin 2 a= 2sin : cos:; cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a; 2ta n a tan 2 a= . 1 —tan a 3 ?在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等?如 T a±0可变形为 tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0, tan a+ tan 0 tan a—tan 0 tan %tan 0= 1 —= —1. tan a+ 0 tan a—0 4 ? 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+

三角函数诱导公式及记忆方法 一、同角三角函数的基本关系式 (一)基本关系 1、倒数关系 tanα ·cotα=1 s inα ·cscα=1 cosα ·secα=1 2、商的关系 sinα/cosα=tanαsecα/cscα=tanα cosα/sinα=cotαcscα/secα=cotα 3、平方关系 sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α (二)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 1、倒数关系 对角线上两个函数互为倒数; 2、商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 3、平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 二、诱导公式的本质 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。(一)常用的诱导公式 1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα,k∈z cos(2kπ+α)=cosα,k∈z tan(2kπ+α)=tanα,k∈z cot(2kπ+α)=cotα,k∈z sec(2kπ+α)=secα,k∈z csc(2kπ+α)=cscα,k∈z 2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)= tanα cot(π+α)= cotα sec (π+α) =—secα csc (π+α) =—cscα 3、公式三:任意角α与-α的三角函数值之间的关系:

三角函数:正弦、余弦、正切 (一)复习指导 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在区间[0,2π ]的性质(如单调性、最大和最小值、图象与x 轴交点等) 3.理解正切函数在区间)2 π ,2π(- 的单调性. (二)基础知识 1、正弦函数和余弦函数的图象:正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0, 3,, ,22 2 π π ππ的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 2、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域:都是[]1,1-,对s i n y x =, 当()22x k k Z π π=+∈时,y 取最大值1; 当() 322 x k k Z ππ=+∈时,y 取最小值-1;对cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取 最小值-1。 (3)周期性:①sin y x =、cos y x =的最小正周期都是2 π;②()sin()f x A x ω?=+和 ()cos()f x A x ω?=+的最小正周期都是2|| T πω= 。 (4)奇偶性与对称性:正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线 ()2x k k Z π π=+ ∈;余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z π π?? + ∈ ?? ?,对称轴是直线 ()x k k Z π=∈(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴 的交点)。 (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈??? ?单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! 3、正切函数tan y x =的图象和性质: (1)定义域:{|,}2 x x k k Z π π≠+∈。遇到有关正切函数问题时,你注意到正切函数的定义域了吗? (2)值域是R ,在上面定义域上无最大值也无最小值; (3)周期性:是周期函数且周期是π,它与直线y a =的两个相邻交点之间的距离是一个周期π。绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定。 如x y x y sin ,sin 2==的周期都是π, 但sin y x = cos x +的周期为 2 π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ =-+=-+,|tan |y x =的周期不变; (4)奇偶性与对称性:是奇函数,对称中心是,02k π?? ??? ()k Z ∈,特别提醒:正(余)切型函数的对称中心 有两类:一类是图象与x 轴的交点,另一类是渐近线与x 轴的交点,但无对称轴,这是与正弦、余弦函数的不同之处。 (5)单调性:正切函数在开区间(),22k k k Z ππππ?? -++∈ ??? 内都是增函数。但要注意在整个定义域上不 具有单调性。如下图:

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan √3/3 1 √3 -√3 -1 -√3/3 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=2 1 ,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 2、列表法: 说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 1 22 23 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 30? 1 2 3 1 45? 1 2 1 2 60? 3

三角函数 一、任意角、弧度制及任意角的三角函数 1.任意角 (1)角的概念的推广 ①按旋转方向不同分为正角、负角、零角. ?? ??? 正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 ②按终边位置不同分为象限角和轴线角. 角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<

正切、余切函数图象和性质反三角函数[知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: y=tanx y=cotx 定义域值域R R 单调性在上单增(k∈Z) 在上单减(k∈Z) 周期性T=π T=π 对称性10 对称中心,奇函数(k∈Z) 20 对称轴;无10 对称中心,奇函数(k∈Z) 20 对称轴;无 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的.

3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数. y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象 由互为反函数的两个函数图象间的关系,可作出其图象. 注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是 (2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和. (4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π. 四、反三角函数的性质由图象,有 y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R 值域[0, π] (0, π) 单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减对称性10对称中心(0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无10对称中心 (0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无周期性无无无无 另外: 1.三角的反三角运算 arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π]) arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π)) 2.反三角的三角运算 sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])

三角函数特殊值 1、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°= 21 sin45°=cos45°=2 2 tan30°=cot60°=3 3 tan 45°=cot45°=1 2 30? 1 2 3 1 45? 1 2 1 2 60? 3

说明:正弦值随角度变化,即0? 30? 45? 60? 90?变化;值从0 2 3 1变化,其余类似记忆. 3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律: ① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时, 则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。 ②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为 2m 形式,正切、余切值可表示为3 m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七. 巧记特殊角的三角函数值 初学三角函数,记忆特殊角三角函数值易错易混。若在理解掌握的基础上,经过变形,使其呈现某种规律,再配以歌诀,则可浅显易记,触目成诵。 仔细观察表1,你会发现重要的规律。

三角函数恒等变形公式 以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数 两角和与差的三角函数: cos( a + 3)=cos a ? cos 3 -sin a ?sin 3 cos( a - 3)=cos a ? cos 3 +sin a ?sin 3 sin( a ±3 )=sin a ? cos 3 ±cos a ? sin 3 tan( a + 3)=(tan a +tan 3 )/(1-tan a ? tan 3 ) tan( a - 3)=(tan a -tan 3 )/(1+tan a ? tan 3 ) 三角和的三角函数: sin( a + 3 +Y )=sin a ? cos 3 ? cos 丫+cos a ? sin 3 ? cos 丫+cos a ? cos 3 ? sin 丫-sin a ? sin 3 ? sin 丫cos( a + 3 + Y )=cos a ? cos 3 ? cos 丫-cos a ? sin 3 ? sin Y -sin a ? cos 3 ? sin 丫-sin a ? sin 3 ? cos 丫 tan( a + 3 + Y )=(tan a +tan 3 +tan 丫-tan a ?tan 3 ? tan 丫)/(1-tan a ? tan 3 -tan 3 ? tan 丫-tan 丫? tan a ) 辅助角公式: Asin a +Bcos a =(A2+B2)A( 1/2)sin( a +t),其中 si nt=B/(A2+B2)A(1/2) cost=A/(A2+B2)A(1/2) tan t=B/A As in a -Bcos a =(A2+B2)A(1/2)cos( a -t) , tan t=A/B 倍角公式: sin (2 a )=2sin a? cos a :=2/(tan a +cot a ) cos(2 a )=cos2( a )- sin2( a )=2cos2( a )-仁1- 2sin2( a ) tan (2 a )=2tan a/[1- tan2( a )] 三倍角公式: sin (3 a )=3sin a-4sin3( a )=4sin a-sin(60+ a )sin(60- a ) cos(3 a )=4cos3( a )-3cos a =4cos a-cos(60+ a)cos(60- a ) tan(3 a )=tan a ? tan( n /3+a) ? tan( n /3-a) 半角公式: Sin( a /2)= ±V((1 -cos a )/2) cos( a /2)= ±V ((1+cos a )/2) tan( a /2)= ±V ((1 -cos a )/(1+cos a ))=sin a /(1+cos a )=(1-cos a )/sin a 降幕公式 sin2( a )=(1-cos(2 a ))/2=versin(2 a )/2 cos2( a )=(1+cos(2 a ))/2=covers(2 a )/2 tan2( a )=(1-cos(2 a ))/(1+cos(2 a )) 万能公式: sin a =2tan( a /2)/[1+tan2( a /2)] cos a =[1- tan2( a /2)]/[1+tan2( a /2)] tan a =2tan( a /2)/[1- tan2( a /2)] 积化和差公式:

正切函数值表 角度正弦sin 余弦cos 正切tan 0 0 1 1 0.017452406 0.999847695 0.017455065 2 0.034899497 0.999390827 0.034921 3 0.052335956 0.998629535 0.052407779 4 0.069756474 0.9975640 5 0.069926812 5 0.087155743 0.996194698 0.087488664 6 0.104528463 0.994521895 0.105104235 7 0.121869343 0.992546152 0.122784561 8 0.139173101 0.990268069 0.140540835 9 0.156434465 0.987688341 0.15838444 10 0.173648178 0.984807753 0.176326981 11 0.190808995 0.981627183 0.194380309 12 0.207911691 0.978147601 0.212556562 13 0.224951054 0.974370065 0.230868191 14 0.241921896 0.970295726 0.249328003 15 0.258819045 0.965925826 0.267949192 16 0.275637356 0.961261696 0.286745386 17 0.292371705 0.956304756 0.305730681 18 0.309016994 0.951056516 0.324919696 19 0.325568154 0.945518576 0.344327613 20 0.342020143 0.939692621 0.363970234 21 0.35836795 0.933580426 0.383864035 22 0.374606593 0.927183855 0.404026226 23 0.390731128 0.920504853 0.424474816 24 0.406736643 0.913545458 0.445228685 25 0.422618262 0.906307787 0.466307658 26 0.438371147 0.898794046 0.487732589 27 0.4539905 0.891006524 0.509525449 28 0.469471563 0.882947593 0.531709432 29 0.48480962 0.874619707 0.554309051 30 0.5 0.866025404 0.577350269 31 0.515038075 0.857167301 0.600860619 32 0.529919264 0.848048096 0.624869352 33 0.544639035 0.838670568 0.649407593 34 0.559192903 0.829037573 0.674508517 35 0.573576436 0.819152044 0.700207538 36 0.587785252 0.809016994 0.726542528 37 0.601815023 0.79863551 0.75355405 38 0.615661475 0.788010754 0.781285627 39 0.629320391 0.777145961 0.809784033

三角函数值表 三角函数 单位圆(及半径的圆)在三角函数的学习中具有举足轻重的地位。我们可以利用单位圆来定义三角函数、求解三角函数问题。在解决三角函数问题的过程中,单位圆是一个非常有用的工具。 设角的终边与单位圆(此处是以原点为圆心)交于点,则有 正弦:,余弦: 正切:,余切: 正割:,余割: (二)反三角函数 反三角函数是一种基本初等函数,它包括反正弦、反余弦、反正切、反余切、反正割、反余割,他们各自表示其正弦、余弦、正切、余切、正割、余割为时的角。例如,当时,;当时,,具体如,。 反三角函地并不能狭义地理解为三角函数的反函数。三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数对称。 三、同角三角函数基本关系 1.倒数关系: 2.商的关系:

3.平方关系: 四、三角函数的诱导公式 诱导公式记忆口诀:“奇变偶不变,符号看象限”.此处仅列出了几个易混的诱导公式,过于常规的就没有列出。个人认为,只需记住与、、的三角函数值关系,便可推出所有的诱导公式。 1.任意角与的三角函数值之间的关系: 2.任意角α与-α的三角函数值之间的关系: 3.任意角与的三角函数值之间的关系: 4.任意角与的的三角函数值之间的关系: 五、三角函数的和差角公式

六、倍角公式和半角公式 1.倍角公式 变形: 2.三倍角公式 3.半角公式(也叫降幂公式) 4.升幂公式 七、积化和差与和差化积公式 1.积化和差公式 2.和化积公式 八、万能公式

万能公式是将和均用表示。 九、辅助角公式 得到辅助角公式: 其中与。 又() 从而得到三角函数辅角公式:,;用余弦表示则为:,。 例如,,在实数域上,最大值为,最小值为十、三角函数和反三角函数的导数 十一、反三角函数相关公式 十二、其他常用结论

相关文档