文档库 最新最全的文档下载
当前位置:文档库 › 最新数学必修三综合测试卷

最新数学必修三综合测试卷

最新数学必修三综合测试卷
最新数学必修三综合测试卷

数学必修三综合测试卷

一,选择题(共12小题,每题5分,共60分)

1.下面对算法描述正确的一项是:( )

A .算法只能用自然语言来描述

B .算法只能用图形方式来表示

C .同一问题可以有不同的算法

D .同一问题的算法不同,结果必然不同

2.在下列各图中,每个图的两个变量具有相关关系的图是( )

(1) (2) (3) (4)

A .(1)(2)

B .(1)(3)

C .(2)(4)

D .(2)(3)

3.右图给出的是计算0

101614121+???+++的值的一个程序框图, 其中判断框内应填入的条件是 ( )

A . i<=100

B .i>100

C .i>50

D .i<=50

4.从分别写有A ,B ,C ,D ,F ,的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为( )

A .52

B .51

C .103

D .10

7 5.右边程序执行后输出的结果是( )

A.1- B .0 C .1 D .2 6.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩

下2000人再按系统抽样的方法进行,则每人入选的机会( )

A. 不全相等

B. 均不相等

C. 都相等

D. 无法确定

7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是( )

A.分层抽样法,系统抽样法

B.分层抽样法,简单随机抽样

C.系统抽样法,分层抽样法

D.简单随机抽样法,分层抽样法

8. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表:

若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( )

A. 6y x =+

B. 42y x =+

C. 260y x =-+

D. 378y x =-+

9. 已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-2

1t ,t ]的概率是( ). A .61 B .103 C .31 D .2

1 10.从装有2个红球和2个白球的红袋内任取两个球,那么下列事件中,对立事件是( )

A.至少有一个白球;都是白球

B.至少有一个白球;至少有一个红球

C.恰好有一个白球;恰好有2个白球

D.至少有1个白球;都是红球

11.如果数据1x 、2x 、……n x 的平均值为x ,方差为2S ,则31x +5,32x +5,…… 3n x +5的平均值和方差分别为( )

A .x 和2S

B .3x +5和92S

C .3x +5和2S

D .3x +5 和92

S +30S +25

12. 某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的

产品净重(单位:克)数据绘制的频率分布直方图,其中产品

净重的范围是[96,106],样本数据分组为[96,98),[98,100),

[100,102),[102,104),[104,106],已知样本中产品净重小于

100克的个数是36,则样本中净重大于或等于98克并且

小于104克的产品的个数是( ).

A.90

B.75

C. 60

D.45

二,填空题(共4个小题,每题5分,共20分)

13.下列各数)9(85 、 )6(210 、 )4(1000 、 )2(111111

中最小的数是____________。

14.用辗转相除法求210与162的最大公约数为 。

15.某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有__ __学生.

16. 假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你依次写出最先检测的4颗种子的编号 , , , .

(下面摘取了随机数表第7行至第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 三,解答题(必须有解答的详细过程,共70分)

17.(10分)设计算法求S=50

491431321211?+???+?+?+?的值, 写出用基本语句编写的程序,并求出S 的值.(12分)

18.(12分)为了了解高三年级一、二班的数学学习情况,从两个班各抽出 10名学生进行数学水平测试,成绩如下(单位:分)

一班:76,90,84,86,81,87,86,82,85,83

二班:82,84,85,89,79,80,91,89,79,74

比较两组数据的方差,并估计一、二两个班哪个班学生的数学成绩比较整齐.19.(12分)下表给出了某校120名12岁男孩身高的资料

挑战数学系列-----统计 出卷人:李务兵姓名:………….. 班级……………记分:…………… (本试卷共20道题,总分150 时间120分钟) 一、选择题(本题有10个小题,每小题5分,共50分) 1.为了了解所加工的一批零件的长度,抽测了200个零件的长度,在这个问题中,200个零件的长度是()A.总体 B. 个体 C. 总体的一个样本 D. 样本容量 2.要采用分层抽样方法从100道选择题、50道判断题、50道填空题、20道解答题中选取22道题目组成一份试卷,则从中选出填空题的道数是() A.10 B.5 C.2 D.20 3.容量为20的样本,已知某组的频率为0.25,则该组的频数为() A.5 B.15 C.2 D.80 4. 为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40 B. 30 C. 20 D. 12 5. 一批热水器共98台,其中甲厂生产的有56台,乙厂生产的有42台,用分层抽样从中抽出一个容量为14的样本,那么甲、乙两厂各抽得的热水器的台数是()A.甲厂9台,乙厂5台 B. 甲厂8台,乙厂6台 C. 甲厂10台,乙厂4台 D. 甲厂7台,乙厂7台 6. 下列叙述中正确的是()A.从频率分布表可以看出样本数据对于平均数的波动大小 B. 频数是指落在各个小组内的数据 C. 每小组的频数与样本容量之比是这个小组的频率 D. 组数是样本平均数除以组距 7. 某工厂生产产品,用传送带将产品送至下一个工序,质检人员每隔十分钟在传送带某一位置取一件检验,则这种抽样的方法为()A.简单随机抽样 B. 系统抽样 C. 分层抽样 D. 非上述情况 8. 频率分布直方图红,小长方形的面积等于()A.组距 B. 频率 C. 组数 D. 频数 9. 一组数据的方差为3,将这组数据中的每一个数据都扩大到原来的3倍,所得到的一组数据的方差是()A.1 B. 27 C. 9 D. 3

数学必修三综合测试卷 一,选择题(共12小题,每题5分,共60分) 1.下面对算法描述正确的一项是:( ) A .算法只能用自然语言来描述 B .算法只能用图形方式来表示 C .同一问题可以有不同的算法 D .同一问题的算法不同,结果必然不同 2.在下列各图中,每个图的两个变量具有相关关系的图是( ) (2)(3)(4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 3.右图给出的是计算0 101614121+???+++ 的值的一个程序框图, 其中判断框内应填入的条件是 ( ) A . i<=100 B .i>100 C .i>50 D .i<=50 4.从分别写有A ,B ,C ,D ,F ,的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为( ) A .52 B .51 C .103 D .10 7 5.右边程序执行后输出的结果是( ) A.1- B .0 C .1 D .2 6.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会( ) A. 不全相等 B. 均不相等 C. 都相等 D. 无法确定 7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是( ) A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样 C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法 8. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( ) A. 6y x =+ B. 42y x =+ C. 260y x =-+ D. 378y x =-+

高一数学必修3测试题 一、选择题 1.给出以下四个问题,①输入一个数x ,输出它的绝对值.②求周长为6的正方形的面积;③求三个数a,b,c 中的最大数.④求函数1,0, ()2,0x x f x x x -≥??+

2018-2019学年必修三第二章训练卷 统计(二) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知x ,y 是两个变量,下列四个散点图中,x ,y 是负相关趋势的是( ) A. B. C. D. 2.一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( ) A.40.6,1.1 B.48.8,4.4 C.81.2,44.4 D.78.8,75.6 3.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如右图,则下面结论中错误的一个是( ) A.甲的极差是29 B.乙的众数是21 C.甲罚球命中率比乙高 D .甲的中位数是24 4.某学院A ,B ,C 三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生,B 专业有420名学生,则在该学院的C 专业应抽取的学生人数为( ) A.30 B.40 C.50 D.60 5.在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4、8.4、9.4、9.9、9.6、9.4、9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A.9.4,0.484 B.9.4,0.016 C.9.5,0.04 D.9.5,0.016 6.两个变量之间的相关关系是一种( ) A.确定性关系 B.线性关系 C.非确定性关系 D.非线性关系 7.如果在一次实验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( ) A.y =x +1.9 B.y =1.04x +1.9 C.y =0.95x +1.04 D.y =1.05x -0.9 8.现要完成下列3项抽样调查: ①从10盒酸奶中抽取3盒进行食品卫生检查. ②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈. ③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( ) A.①简单随机抽样,②系统抽样,③分层抽样 B.①简单随机抽样,②分层抽样,③系统抽样 C.①系统抽样,②简单随机抽样,③分层抽样 D.①分层抽样,②系统抽样,③简单随机抽样 9.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下: 此卷只装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

高一数学必修三测试题答 案 Newly compiled on November 23, 2020

高一数学必修三总测题(A组) 一、选择题 1. 从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽 样的方法,则所选5名学生的学号可能是 ( ) A. 1,2,3,4,5 B. 5,16,27,38,49 C. 2,4,6,8,10 D. 4,13,22,31,40 2. 给出下列四个命题: ①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 ②“当x为某一实数时可使20 x ”是不可能事件 ③“明天顺德要下雨”是必然事件 ④“从100个灯泡中取出5个,5个都是次品”是随机事件. 其中正确命题的个数是 ( ) A. 0 B. 1 3. 下列各组事件中,不是互斥事件的是 ( ) A. 一个射手进行一次射击,命中环数大于8与命中环数小于6 B. 统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于分 C. 播种菜籽100粒,发芽90粒与发芽80粒 D. 检查某种产品,合格率高于70%与合格率为70% 4. 某住宅小区有居民2万户,从中随机抽取200户, 查是否安装电话,调查的结果如表所示, 安装电话的户数估计有 A. 6500户 B. 300户 5. 有一个样本容量为50的样本数据分布如下,估计小于30的数据大约占有 ( )

[)12.5,15.5 3;[)15.5,18.5 8;[)18.5,21.5 9;[)21.5,24.5 11;[)24.5,27.5 10; [)27.5,30.5 6;[)30.5,33.5 3. A. 94% B. 6% C. 88% D. 12% 6. 样本1210,, ,a a a 的平均数为a ,样本110, ,b b 的平均数为b ,则样本 11221010,,,, ,,a b a b a b 的平均数为 ( ) A. a b + B. ()12a b + C. 2()a b + D. 1 10 ()a b + 7. 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其 他10个小长方形的面积的和的1 4 ,且样本容量为160,则中间一组有频数为 ( ) A. 32 B. C. 40 D. 8. 袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为 ( ) A. 25 B. 415 C. 3 5 D. 非以上答案 9. 在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6张卡片,今从每个袋中各取一 张卡片,则两数之和等于9的概率为 ( ) A. 13 B. 16 C. 19 D. 112 10.以{}2,4,6,7,8,11,12,13A =中的任意两个元素分别为分子与分母构成分数,则这种分数 是可约分数的概率是 ( ) A. 513 B. 528 C. 314 D. 514 二、填空题 11.口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球, 摸出白球的概率为,则摸出黑球的概率为____________.

1.下列给出的赋值语句中正确的是( ) A .4M = B .M M =- C .3B A == D .0x y += 2.射击场上的箭靶半径为90厘米,靶心半径为20厘米,则射中靶心的慨率为 ( ) A 、2/9; B 、 2/7; C 、4/49; D 、4/81 3. 把“五进制”数)5(1234 转化为“八进制”数为( ) (A )1234(8) (B )156(8) (C )203(8) (D )302(8) 4.①学校为了了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90~100分,12人低于90分.现在从中抽取12人了解有关情况;③运动会服务人员为参加400m 决赛的6名同学安排跑道.就这三件事,合适的抽样方法为( ) A.分层抽样,分层抽样,简单随机抽样 B.系统抽样,系统抽样,简单随机抽样 C.分层抽样,简单随机抽样,简单随机抽样 D.系统抽样,分层抽样,简单随机抽样 5.已知有上面程序,如果程序执行后输出的结果是11880,那么在程序UNTIL 后面的“条件”应 为 ( ) (A) i > 9 (B) i >= 9 (C) i <= 8 (D) i < 8 6.先后抛掷两枚质地均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x 、y ,则y=2x 的概率为( ) A .16 B .536 C .112 D .12 7.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则 所 选 5 名 学 生 的 学 号 可 能 是 ( ) A. 1,2,3,4,5 B. 5,16,27,38,49 C. 2,4,6,8,10 D. 4,13,22,31,40

高中数学学习材料 (灿若寒星 精心整理制作) 必修三综合测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.如果输入n =3,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5 D .程序出错,输不出任何结果 2.一个容量为1 000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( ). A .400 B .40 C .4 D .600 3.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A . 6 1 B . 4 1 C .3 1 D . 2 1 4.用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,估计就越精确 C .样本的标准差可以近似地反映总体的平均状态 D .数据的方差越大,说明数据越稳定 5.把11化为二进制数为( ). A .1 011(2) B .11 011(2) C .10 110(2) D .0 110(2) 6.已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[- 2 1 t ,t ]的概率是( ). 第一步,输入n . 第二步,n =n +1. 第三步,n =n +1. 第四步,输出n .

A . 6 1 B .103 C .3 1 D . 2 1 7.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( ). A .4 B .2 C .±2或者-4 D .2或者-4

必修3综合模块测试5(人教A 版必修3) 一、选择题(每小题各5分, 共60分) 1.设x 是10021,,,x x x 的平均数,a 是4021,,,x x x 的平均数,b 是 1004241,,,x x x 的平均数,则下列各式中正确的是 ( ) A. 4060100a b x += B. 6040100 a b x += C. x a b =+ D. 2a b x += 2.在样本的频率分布直方图中,共有5个长方形,若正中间一个小长方形的面积 等于其它4个小长方形的面积和的 1 4 ,且样本容量为100,则正中间的一组的 频数为 ( ) A .80 B .0.8 C .20 D .0.2 3.某大学自主招生面试环节中,七位评委为考生A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为85, 复核员在复核时,发现有一个数字(茎叶图中的x )无法 看清,若统计员计算无误,则数字x 应该是 ( ) A .5 B .6 C .7 D .9 4. 下列各数中与)4(1010相等的数是 ( ) A .)9(76 B .)8(103 C .)3(2111 D .)2(1000100 5. 某算法的程序框如图所示,若输出结果为12 ,则输入的实数 x 的值是 ( ) A .32 - B .2 C .52 D .4 6. 在长为10的线段AB 上任取一点P ,并以线段AP 为一条边作 正方形,这个正方形的面积属于区间]81,36[的概率为( ) A. 20 9 B.15 C.310 D. 25 7. 从高一(9)班54名学生中选出5名学生参加学生代表大会,若采用下面的方法选取: 先用简单随机抽样从54人中剔除4人,剩下的50人再按系统抽样的方法抽取5人, 则这54人中,每人入选的概率( ) A .都相等,且等于 101 B .都相等,且等于54 5 C .均不相等 D .不全相等 8. 把标号为1,2,3,4的四个小球随机地分发给甲、乙、丙、丁四个人,每人分得一 个。事件“甲分得1号球”与事件“乙分得1号球”是( ) A.互斥但非对立事件 B. 对立事件 C. 相互独立事件 D. 以上都不对 9. 袋中有大小相同的黄、红、白球各一个,每次从中任取一个,有放回地取3次,则下 列事件:⑴颜色全同;⑵颜色不全同;⑶颜色全不同; ⑷无红球。其中发生的概率 等于 8 9 的事件共有( ) A .0个 B .1个 C .2个 D .3个 10. 某公共汽车站,每隔15分钟有一辆车出发,并且出发前在车站停靠2分钟,乘客到 达汽车站的时刻是任意的。则乘客到车站候车时间小于10分钟的概率为( )

数学必修三综合测试题 一、选择题 1.算法的三种基本结构是() A.顺序结构、模块结构、条件分支结构B.顺序结构、条件结构、循环结构 C.模块结构、条件分支结构、循环结构D.顺序结构、模块结构、循环结构 2.一个年级有 12 个班,每个班有学生 50 名, 并从 1 至 50 排学号,为了交流学习经验,要 求每班学号为14 的同学留下进行交流,这里运用的是() A. 分层抽样 B.抽签抽样 C.随机抽样 D.系统抽样 3.某单位有职工 160人,其中业务员有104 人,管理人员32 人,后勤服务人员24 人,现 用分层抽样法从中抽取一容量为20 的样本,则抽取管理人员() A.3 人 B.4人 C.7人 D.12人 4. 一个容量为 20的样本数据,分组后组距与频数如下表. 组距[10, 20)[ 20,30)[ 30,40 )[ 40, 50)[ 50, 60)[ 60, 70)频数234542则样本在区间(-∞,50)上的频率为 ( ) A.0.5 B.0.25 C.0.6 D.0.7 5、把二进制数111(2)化为十进制数为 () A、 2 B、 4 C、7 D、 8 6.抽查 10 件产品,设事件A:至少有两件次品,则 A 的对立事件为( ) A. 至多两件次品 B.至多一件次品 C. 至多两件正品 D.至少两件正品 7.取一根长度为 3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 1 m 的概率是 .() A. 1 B.1 C.1 D.不确定234 8. 甲、乙 2人下棋,下成和棋的概率是1 ,乙获胜的概率是 1 ,则甲不胜的概率是() 23 1 B.5 C. 12 A. 6D. 3 26 9.某银行储蓄卡上的密码是一种 4 位数号码 , 每位上的数字可在0 到 9 中选取 , 某人只记得密码的首位数字 ,如果随意按下一个密码, 正好按对密码的概率为 () 1 B.1 C. 1 D. 1 A. 10310210 104 10.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为 3.2 ,全年比赛 进球个数的标准差为3;乙队平均每场进球数为 1.8 ,全年比赛进球个数的标准差为0.3. 下列说法正确的个数为() ①甲队的技术比乙队好②乙队发挥比甲队稳定 ③乙队几乎每场都进球④甲队的表现时好时坏 A.1 B.2 C.3 D.4 11.已知变量 a ,b 已被赋值,要交换 a, b 的值,应采用下面()的算法。 A. a=b, b=a B a=c, b=a, c=b C a=c, b=a, c=a D c=a, a=b, b=c

最新高中必修三数学上期末模拟试卷(带答案) 一、选择题 1.已知回归方程$21y x =+,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是( ) A .0.01 B .0.02 C .0.03 D .0.04 2.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( ) A . 1 16 B . 18 C .38 D .316 3.日本数学家角谷静夫发现的“31x + 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以2,如果它是奇数我们就把它乘3再加上1,在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为1,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的6N =,则输出i 值为( )

A.6B.7C.8D.9 4.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是(). ①1月至8月空气合格天数超过20天的月份有5个 ②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A.①②③B.①②④C.①③④D.②③④ 5.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为()

华鑫中学2011~2012学年第三次月考 高一数学试卷(总分150) 一、选择题:(以下每小题有且仅有一个正确答案,共40分) 1、在100个产品中,一等品20个,二等品30个,三等品50个,用分层抽样的方法抽取一个容量20的样本,则二等品中A 被抽取到的概率( ) A .等于15 B .等于310 C .等于2 3 D .不确定 2、已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( ) A.2 B. 1 sin 2 sin C.2sin1 D.sin2 4、函数y =2sin(3x -π 4 )图象的两条相邻对称轴之间的距离是 A. π 3 B. 2π 3 C.π D. 4π3 5、函数y =sin (π 4 -2x)的单调增区间是 ( ) A.[kπ-3π8 ,kπ+π8 ](k∈Z) B.[kπ+π8 ,kπ+5π 8 ](k∈Z) C.[kπ-π8 ,kπ+3π8 ](k∈Z) D.[kπ+3π8 ,kπ+7π 8 ](k∈Z) 6、若 ,2 4 π απ < <则( ) A .αααtan cos sin >> B .αααsin tan cos >> C .αααcos tan sin >> D .αααcos sin tan >>

7、已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值 为 ( ) A .5 B .-5 C .6 D .-6 8、已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a → 、 b →、 c → ,则向量OD 等于( ) A .a b c ++r r r B .a b c -+r r r C .a b c +r r r - D .a b c r r r -- 二、填空题(每小题5分,共7题合计35分) 9、下列各数)9(85、)6(210、)4(1000、)2(111111中最小的数是____________。 10、点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B , 则劣弧AB 的长度小于1的概率为 。 11、与0 2002-终边相同的最大负角是_______________。 12、已知函数y =2cos x ,x ∈[0,2π]和y =2,则它们的图象所围成的一个 封闭的平面图形的面积是_____________ 13、若sin (125°-α)= 12 13 ,则sin (α+55°)= . 14、设OA 、OB 不共线,点P 在AB 上,若OB OA OP μλ+=,那么 =+μλ . 15、关于函数f (x )=4sin(2x +π 3 )(x ∈R )有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改为y =4cos(2x -π 6 ); ③y =f (x )的图象关于点(-π 6 ,0)对称;

s=0 i=2 Do s=s+i i= i+2 Loop until Print s End 第5题 必修3综合模块测试10(人教A 版必修3) 一、选择:(共12小题,每题5分,共60分) 1. 算法嘚三种基本结构是 ( ) A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构 C. 顺序结构、条件结构、循环结构 D. 模块结构、条件结构、循环结构 2下列说法正确嘚是 ( ) A. 任何事件嘚概率总是在(0,1)之间 B. 频率是客观存在嘚,与试验次数无关 C. 随着试验次数嘚增加,频率一般会越来越接近概率 D. 概率是随机嘚,在试验前不能确定 3.用二分法求方程022 =-x 嘚近似根嘚算法中要用哪种算法结构 ( ) A .顺序结构 B .条件结构 C .循环结构 D .以上都用 4.若)(B A P =1)()(=+B P A P ,则事件A 与B 嘚关系是 ( ) A 互斥不对立 B 对立不互斥 C 互斥且对立 D 以上都不对 5.有下面嘚程序,运行该程序,要使输出嘚结果是30, 在处 应添加嘚条件是 ( ) A. i>12 B. i>10 C. i=14 D. i=10 6.用“辗转相除法”求得459和357嘚最大公约数是: ( ) A .3 B .9 C .17 D .51 7.线性回归方程bx a y +=?所表示嘚直线必经过点 ( ) A .(0,0) B .(0,x ) C .(y ,0) D .(y x ,) 8.下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平嘚游戏是 ( ) 游戏1 游戏2 游戏3

3个黑球和一个白球 一个黑球和一个白球 2个黑球和2个白球 取1个球,再取1个球 取1个球 取1个球,再取1个球 取出嘚两个球同色→甲胜 取出嘚球是黑球→甲胜 取出嘚两个球同色→甲胜 取出嘚两个球不同色→乙胜 取出嘚球是白球→乙胜 取出嘚两个球不同色→乙胜 A . 游戏1和游戏3 B .游戏1 C .游戏2 D .游戏3 9.为了了解2405名学生对学校某项教改试验嘚意见,打算从中抽取一个容量为60嘚样本,若用系统抽样,则下列说法正确嘚是 ( ) A.直接进行分段,分段间隔为40,然后把剩余5人放到其中嘚一段 B.直接分段间隔为40,把剩余嘚5人单独放到一段 C.先随机去掉5人再进行分段,分段间隔为40 D.以上三种方法都能保证每个人被抽到嘚概率相同 10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中嘚概率是 ( ) A. 101 B. 53 C. 103 D. 109 11.在用样本频率估计总体分布嘚过程中,下列说法正确嘚是 ( ) A.总体容量越大,估计越精确 B.总体容量越小,估计越精确 C.样本容量越大,估计越精确 D.样本容量越小,估计越精确 12、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, ……,270;使用系统抽样时,将学生统一随机编号1,2, ……,270,并将整个编号依次分为10段 如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250;

必修三第三章测试卷 一、选择题: 1.从甲、乙、丙三人中任选两名代表,甲被选中的概率( ) A.12 B.13 C.23 D .1 2.将骰子向桌面上先后抛掷2次,其中向上的数之积为12的结果有( ) A .2种 B .4种 C .6种 D .8种 3.在面积为S 的△ABC 的内部任取一点P ,则△PBC 的面积小于S 2 的概率为( ) A.14 B.12 C.34 D.23 4.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A .A 与C 互斥 B .B 与C 互斥 C .任何两个均互斥 D .任何两个均不互斥 5. 如图,是由一个圆、一个三角形和一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ) A.34 B.38 C.14 D.18 6.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( ) A.16 B.13 C.12 D.23 7.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( ) A.π4 B .1-π4C.4π D.4π -1 8.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是 A.25 B.710 C.45 D.910 9.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒内间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A.14 B.12 C.34 D.78 10.一个数学兴趣小组有女同学2名,男同学3名,现从这个数学兴趣小组中任选2名同学参加数学竞赛,则参加数学竞赛的2名同学中,女同学人数不少于男同学人数的概率为( ) A.310 B.25 C.35 D.710

必修三、必修四综合测试题 山东省实验中学 马炳新 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本记作①;某校高一年级有12名女排球运动员,要从中选出3人调查学习负担情况,记作②;那么,完成上述2项调查应采用的抽样方法是( ) A.①用随机抽样法,②用系统抽样法 B.①用分层抽样法,②用随机抽样法 C.①用系统抽样法,②用分层抽样法 D.①用分层抽样法,②用系统抽样法 2.已知),1,5(),2,3(---N M 若,21 = 则P 点的坐标为( ) A.)1,8(- B.)1,8(- C.)23,1(-- D.)2 3 ,1( 3.若f(x)=cos2x ,且f(x+b)是奇函数,则b 可能是( ) A. 12π B.6π C.4π D.3 π 4.x 是三角形的一个内角,且sinx+cosx=1 5 -,则tanx 的值是( ) A.43- B.43 C.3 4 - D.34 5.已知,3,2,==⊥b a b a 且b a 23+与b a -λ垂直,则实数λ的值为( ) A.;23- B.;23 C.;2 3 ± D.;1 6.甲乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲乙下成和棋的概率为( ) A .60% B .30% C .10% D .50% 7.已知点)2,1(),1,0(),1,2(),0,1(--D C B A ,则与的夹角大小为( ) A. 180 B. 120 C. 90 D. 60 8.右面的程序输出的结果是( ) A.3 B.5 C.9 D.13 9.有下列四种变换方式: ①向左平移4 π ,再将横坐标变为原来的21; ②横坐标变为原来的21,再向左平移8π ; ③横坐标变为原来的21,再向左平移4 π ;

高一数学必修三统计测试题 1.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名 进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人 再按系统抽样的方法进行,则每人入选的机会() A. 不全相等 B. 均不相等 C. 都相等 D. 无法确定 2.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( ) A.5,10,15,20 B.2,6,10,14 C.2,4,6,8 D.5,8,11,14 3.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是() A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样 C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法 4. 某单位有技工18人、技术员12人、工程师6人,需要从这些人中抽取一个容量为n的样本.如果采用系统 抽样和分层抽样方法抽取,都不用剔除个体;如果容量增加一个,则在采用系统抽样时,需要在总体中剔除1个个体,则样本容量n为() A.4 B.5 C.6 D.无法确定 5 某校1000名学生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人, 为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O型血、A型血、B型血、AB型血的人要分别抽的人数为() A.16、10、10、4 B.14、10、10、6 C.13、12、12、3 D.15、8、8、9 6.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘。10天后,又从池塘内捞出50条鱼,其中有标记的有2条。根据以上数据可以估计该池塘内共有条鱼。 7.一个容量为n的样本分成若干组,已知某组的频数和频率分别为30和0.25,则n=_ 8.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8 人,其累计频率为0.4,则这样的样本容量是( ) A. 20人 B. 40人 C. 70人 D. 80人 9. 一个容量为20的样本数据,分组后组距与频数如下:[10,20]2个,[20,30]3个,[30,40]94个, [40,50]5个,[50,60]4个,[60,70]2个,则样本在区间(-∞,50)上的频率为() A.5% B.25% C.50% D.70% 10.频率分布直方图中,小长方形的面积等于( ) A.相应各组的频数 B.相应各组的频率 C.组数 D.组距 11.从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为 8人,其累计频率为0.4,则这样的样本容量是( ) A. 20人 B. 40人 C. 70人 D. 80人 12.(本题13分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表: (1)画出频率分布表,并画出频率分布直方图; (2)估计纤度落在[1.381.50) ,中的概率及纤度小于1.40的概率是多少? (3)从频率分布直方图估计出纤度的众数、中位数和平均数.13已知x与y之间的一组数据为 x0 1 2 3 y 1 3 5-a 7+a 则 y与x的回归直线方程a bx y+ = ) 必过定点____ 14(2009山东卷理B)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的 产品净重(单位:克)数据绘制的频率分布直方图,其中产品 净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于 100克的个数是36,则样本中净重大于或等于98克并且 小于104克的产品的个数是( ). A.90 B.75 C. 60 D.45 15(2009湖北卷B)下图是样本容量为200的频率分布直方图。 根据样本的频率分布直方图估计,样本数据落在【6,10】内的频数为,数据落在(2,10) 内的概率约为。 (16题) 16.为了了解小学生的体能情况,抽取了某小学同年级部分学 生进行跳绳测试,将所得数据整理后,画出频率分布直方图 如图所示,已知图中从左到右前三个小组的频率分别是0.1, 0.3,0.4,第一小组的频数为5. (1)求第四小组的频率; (2)参加这次测试的学生人数是多少? (3)在这次测试中,学生跳绳次数的中位数落在第几小组内? 分组 频 数 [1.301.34) ,4 [1.341.38) ,25 [1.381.42) ,30 [1.421.46) ,29 [1.461.50) ,10 [1.501.54) ,2 合计100 96 98 100 102 104 106 0.150 0.125 0.100 0.075 0.050 克 频率/组距

高中数学必修三模块测试卷 考试时间:120分钟满分:150分 一、选择题(共10小题,每小题5分,共50分1.下列给出的赋值语句正确的是 (A.3A= B.M M=- C.B A 2== D.0x y+= 2.线性回归方程a bx y +=?表示的直线必经过的一个定点是(A.(x y,B.(0x,C.(0y,D.(00, 3.在如图所示的“茎叶图”表示的数据中,众数和中位数分别(A.23与26 B.31与26 C.24与30 D.26与30 4.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②明天下雨;③某人买彩票中奖;④从集合{1,2,3}中任取两个元素,它们的和大于2;⑤在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数有( A.1 B.2 C.3 D.4 5.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70的汽车大约有(A.60辆B.80辆C.70辆D.140辆

6.为了在运行下面的程序之后输出的y值为16,则输入x的值应该是(IF x<0 THEN y=(x+1(x+1 ELSE y=(x-1(x-1 END IF PRINT y END A.3或-3 B.-5 C.-5或5 D.5或-3 7.同时掷3枚硬币,至少有1枚正面向上的概率是( 1 2 4 2 0 3 5 6 3 0 1 1 4 1 2 时速(km 0.01 0.02 0.03 0.04频率

组距40 50 60 70 80 A. 87 B.85 C.83 D.8 1 8.用“辗转相除法”求得459和357的最大公约数是( A.3 B.9 C.17 D.51 9.右图给出的是计算 20 1 614121++++的值的一个流程图,其中判断框内应填入的条件是(

静二中数学必修三第一章单元检测试题一、选择题 1.如果输入3 n=,那么执行右图中算法的结果是(). A.输出3B.输出4 C.输出5 D.程序出错,输不出任何结果 2.算法:此算法的功能是(). A.输出a,b,c中的最大值 B.输出a,b,c中的最小值 C.将a,b,c由小到大排序 D.将a,b,c由大到小排序 3.右图执行的程序的功能是(). A.求两个正整数的最大公约数 B.求两个正整数的最大值 C.求两个正整数的最小值 D.求圆周率的不足近似值 4.下列程序: INPUT“A=”;1 A=A*2 A=A*3 A=A*4 A=A*5 PRINT A END 输出的结果A是(). A.5 B.6 C.15 D.120 5.下面程序输出结果是(). A.1,1 B.2,1 C.1,2 D.2,2 第一步,m = a. 第二步,b<m,则m = b. 第三步,若c<m,则m = c. 第四步,输出m. 第一步,输入n. 第二步,n=n+1. 第三步,n=n+1. 第四步,输出n. (第1题) (第3题) (第5题) 开始 a =2,i=1 i≥2 1 1 a a =- i=i+1 结束 输出a 是 否 (第7 (第2题)

6.把88化为五进制数是( ). A .324(5) B .323(5) C .233(5) D .332(5) 7.已知某程序框图如图所示,执行该程序后输出的结果是( ). A .1- B .1 C .2 D . 12 9.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( ). A .-4 B .2 C .2±或者-4 D .2或者-4 10.按照程序框图(如右图)执行,第3个输出的数是( ). A .3 B .4 C .5 D .6 二、填空题 11.960与1 632的最大公约数为 . 12.如图是某个函数求值的程序框图,则满足该程序的函数解析式为 _________. (第13题) 13.执行下图所示的程序,输出的结果为48,则判断框中应填入的条件为 . (第9题) (第12题) 开始输入实数x x <0f (x )=2x -3输出f (x ) 结束 是f (x )=5-4x 否

一、选择题 1.算法的三种基本结构是( ) A .顺序结构、模块结构、条件分支结构 B .顺序结构、条件结构、循环结构 C .模块结构、条件分支结构、循环结构 D .顺序结构、模块结构、循环结构 2. 一个年级有12个班,每个班有学生50名,并从1至50排学号,为了交流学习经验,要 求每班学号为14的同学留下进行交流,这里运用的是( ) A.分层抽样 B.抽签抽样 C.随机抽样 D.系统抽样 3. 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现 用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) 人 人 人 人 4. 则样本在区间(-∞,50)上的频率为( ) A.0.5 B.0.25 C. 、把二进制数)2(111化为十进制数为 ( ) A 、2 B 、4 C 、7 D 、8 6. 抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为 ( ) A.至多两件次品 B.至多一件次品 C.至多两件正品 D.至少两件正品 7. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的 概率是.( ) A.21 B.31 C.4 1 D.不确定 8.甲、乙2人下棋,下成和棋的概率是21,乙获胜的概率是3 1,则甲不胜的概率是( ) A. 21 B.65 C.61 D.3 2 9.某银行储蓄卡上的密码是一种4位数号码,每位上的数字可在0到9中选取,某人只记得 密码的首位数字,如果随意按下一个密码,正好按对密码的概率为( ) A . 4101 B. 3101 C.210 1 D.101 10. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为,全年比赛进球 个数的标准差为3;乙队平均每场进球数为,全年比赛进球个数的标准差为.下列说法正确 的个数为( ) ①甲队的技术比乙队好 ②乙队发挥比甲队稳定 ③乙队几乎每场都进球 ④甲队的表现时好时坏 .2 C 11.已知变量a ,b 已被赋值,要交换a, b 的值,应采用下面( )的算法。 A. a=b, b=a B a=c, b=a, c=b C a=c, b=a, c=a D c=a, a=b, b=c 12.从10个篮球中任取一个,检验其质量,则应采用的抽样方法为( ) A 简单随机抽样 B 系统抽样 C 分层抽样 D 放回抽样

相关文档
相关文档 最新文档