文档库 最新最全的文档下载
当前位置:文档库 › (完整版)常见焊接缺陷产生原因及处理办法

(完整版)常见焊接缺陷产生原因及处理办法

(完整版)常见焊接缺陷产生原因及处理办法
(完整版)常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析

缺陷产生原因及防止措施

一、缺陷名称:气孔(Blow Hole)

焊接方式发生原因防止措施

手工电弧焊(1)焊条不良或潮湿。

(2)焊件有水分、油污或锈。

(3)焊接速度太快。

(4)电流太强。

(5)电弧长度不适合。

(6)焊件厚度大,金属冷却过速。

(1)选用适当的焊条并注意烘干。

(2)焊接前清洁被焊部份。

(3)降低焊接速度,使内部气体容易逸出。

(4)使用厂商建议适当电流。

(5)调整适当电弧长度。

(6)施行适当的预热工作。

CO2气体保

护焊(1)母材不洁。

(2)焊丝有锈或焊药潮湿。

(3)点焊不良,焊丝选择不当。

(4)干伸长度太长,CO2气体保护不周密。

(5)风速较大,无挡风装置。

(6)焊接速度太快,冷却快速。

(7)火花飞溅粘在喷嘴,造成气体乱流。

(8)气体纯度不良,含杂物多(特别含水分)。

(1)焊接前注意清洁被焊部位。

(2)选用适当的焊丝并注意保持干燥。

(3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊

丝尺寸要适当。

(4)减小干伸长度,调整适当气体流量。

(5)加装挡风设备。

(6)降低速度使内部气体逸出。

(7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以

延长喷嘴寿命。

(8)CO2纯度为99.98%以上,水分为0.005%以下。

埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。

(2)焊剂潮湿。

(3)焊剂受污染。

(4)焊接速度过快。

(5)焊剂高度不足。

(6)焊剂高度过大,使气体不易逸出(特别在焊剂

粒度细的情形)。

(7)焊丝生锈或沾有油污。

(8)极性不适当(特别在对接时受污染会产生气

孔)。

(1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。

(2)约需300℃干燥

(3)注意焊剂的储存及焊接部位附近地区的清洁,以免

杂物混入。

(4)降低焊接速度。

(5)焊剂出口橡皮管口要调整高些。

(6)焊剂出口橡皮管要调整低些,在自动焊接情形适当

高度30-40mm。

(7)换用清洁焊丝。

(8)将直流正接(DC-)改为直流反接(DC+).

设备不良(1)减压表冷却,气体无法流出。

(2)喷嘴被火花飞溅物堵塞。

(3)焊丝有油、锈。

(1)气体调节器无附电热器时,要加装电热器,同时检

查表之流量。

(2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。

(3)焊丝贮存或安装焊丝时不可触及油类。

(2)焊丝突出长度过短。(2)依各种焊丝说明使用。

3)钢板表面有锈蚀、油漆、水分。

(4)焊枪拖曳角倾斜太多。(5)移行速度太快,尤其横焊。(3)焊前清除干净。

(4)减少拖曳角至约0-20°。(5)调整适当。

二、缺陷名称咬边(Undercut)

焊接方式发生原因防止措施

手工电弧焊(1)电流太强。

(2)焊条不适合。

(3)电弧过长。

(4)操作方法不当。

(5)母材不洁。

(6)母材过热。

(1)使用较低电流。

(2)选用适当种类及大小之焊条。

(3)保持适当的弧长。

(4)采用正确的角度,较慢的速度,较短的电弧及较窄的

运行法。

(5)清除母材油渍或锈。

(6)使用直径较小之焊条。

CO2气

保护焊(1)电弧过长,焊接速度太快。

(2)角焊时,焊条对准部位不正确。

(3)立焊摆动或操作不良,使焊道二边填补不足产生

咬边。

(1)降低电弧长度及速度。

(2)在水平角焊时,焊丝位置应离交点1-2mm。

(3)改正操作方法。

三:缺陷名称:夹渣(Slag Inclusion)

焊接方式发生原因防止措施

手工电弧焊(1)前层焊渣未完全清除。

(2)焊接电流太低。

(3)焊接速度太慢。

(4)焊条摆动过宽。

(5)焊缝组合及设计不良。

(1)彻底清除前层焊渣。

(2)采用较高电流。

(3)提高焊接速度。

(4)减少焊条摆动宽度。

(5)改正适当坡口角度及间隙。

CO2气体电弧焊(1)母材倾斜(下坡)使焊渣超前。

(2)前一道焊接后,焊渣未清洁干净。

(3)电流过小,速度慢,焊着量多。

(1)尽可能将焊件放置水平位置。

(2)注意每道焊道之清洁。

(3)增加电流和焊速,使焊渣容易浮起。

(4)用前进法焊接,开槽内焊渣超前甚多。(4)提高焊接速度

埋弧

焊接

(1)焊接方向朝母材倾斜方向,因此焊渣流动超前。

(2)多层焊接时,开槽面受焊丝溶入,焊丝过于靠近开

槽的侧边。

(3)在焊接起点有导板处易产生夹渣。

(4)电流过小,第二层间有焊渣留存,在焊接薄板时容

易产生裂纹。

(5)焊接速度过低,使焊渣超前。

(6)最后完成层电弧电压过高,使得游离焊渣在焊道端

头产生搅卷。

(1)焊接改向相反方向焊接,或将母材尽可能改成水平

方向焊接。

(2)开槽侧面和焊丝之间距离,最少要大于焊丝直径以

上。

(3)导板厚度及开槽形状,需与母材相同。

(4)提高焊接电流,使残留焊渣容易熔化。

(5)增加焊接电流及焊接速度。

(6)减小电压或提高焊速,必要时盖面层由单道焊改为

多道焊接。

自保护

药芯焊丝

(1)电弧电压过低。

(2)焊丝摆弧不当。

(3)焊丝伸出过长。

(4)电流过低,焊接速度过慢。

(5)第一道焊渣,未充分清除。

(6)第一道结合不良。

(7)坡口太狭窄。

(8)焊缝向下倾斜。

(1)调整适当。

(2)加多练习。

(3)依各种焊丝使用说明。

(4)调整焊接参数。

(5)完全清除

(6)使用适当电压,注意摆弧。

(7)改正适当坡口角度及间隙。

(8)放平,或移行速度加快。

四、缺陷名称:未焊透(Incomplete Penetration)

焊接方式发生原因防止措施

手工

电弧焊

(1)焊条选用不当。

(2)电流太低。

(3)焊接速度太快温度上升不够,又进行速度太慢电弧冲力被焊渣所

阻挡,不能给予母材。

(4)焊缝设计及组合不正确。

(1)选用较具渗透力的焊条。

(2)使用适当电流。

(3)改用适当焊接速度。

(4)增加开槽度数,增加间隙,并减

少根深。

CO2气体

保护焊

(1)电弧过小,焊接速度过低。

(2)电弧过长。

(3)开槽设计不良。

(1)增加焊接电流和速度。

(2)降低电弧长度。

(3)增加开槽度数。增加间隙减少根

深。

自保护

药芯焊丝

(1)电流太低。

(2)焊接速度太慢。

(3)电压太高。

(4)摆弧不当。

(5)坡口角度不当。

(1)提高电流。

(2)提高焊接速度。

(3)降低电压。

(4)多加练习。

(5)采用开槽角度大一点。

五:缺陷名称:裂纹(Crack)

焊接方式发生原因防止措施

手工电弧焊(1)焊件含有过高的碳、锰等合金元素。

(2)焊条品质不良或潮湿。

(3)焊缝拘束应力过大。

(4)母条材质含硫过高不适于焊接。

(5)施工准备不足。

(6)母材厚度较大,冷却过速。

(7)电流太强。

(8)首道焊道不足抵抗收缩应力。

(1)使用低氢系焊条。

(2)使用适宜焊条,并注意干燥。

(3)改良结构设计,注意焊接顺序,焊接后进行热

处理。

(4)避免使用不良钢材。

(5)焊接时需考虑预热或后热。

(6)预热母材,焊后缓冷。

(7)使用适当电流。

(8)首道焊接之焊着金属须充分抵抗收缩应力。

CO2气体保护焊(1)开槽角度过小,在大电流焊接时,产生梨形和焊道

裂纹。

(2)母材含碳量和其它合金量过高(焊道及热影区)。

(3)多层焊接时,第一层焊道过小。

(4)焊接顺序不当,产生拘束力过强。

(5)焊丝潮湿,氢气侵入焊道。

(6)套板密接不良,形成高低不平,致应力集中。

(7)因第一层焊接量过多,冷却缓慢(不锈钢,铝合金

等)。

(1)注意适当开槽角度与电流的配合,必要时要加

大开槽角度。

(2)采用含碳量低的焊条。

(3)第一道焊着金属须充分能抵抗收缩应力。

(4)改良结构设计,注意焊接顺序,焊后进行热处

理。

(5)注意焊丝保存。

(6)注意焊件组合之精度。

(7)注意正确的电流及焊接速度。

埋弧焊接(1)对焊缝母材所用的焊丝和焊剂之配合不适当(母材

含碳量过大,焊丝金属含锰量太少)。

(2)焊道急速冷却,使热影响区发生硬化。

(3)焊丝含碳、硫量过大。

(4)在多层焊接之第一层所生焊道力,不足抵抗收缩应

力。

(5)在角焊时过深的渗透或偏析。

(6)焊接施工顺序不正确,母材拘束力大。

(7)焊道形状不适当,焊道宽度与焊道深度比例过大或

过小。

(1)使用含锰量较高的焊丝,在母材含碳量多时,

要有预热之措施。

(2)焊接电流及电压需增加,焊接速度降低,母材

需加热措施。

(3)更换焊丝。

(4)第一层焊道之焊着金属须充分抵抗收缩应力。

(5)将焊接电流及焊接速度减低,改变极性。

(6)注意规定的施工方法,并予焊接操作施工指导。

(7)焊道宽度与深度的比例约为1:1:25,电流

降低,电压加大。

六:缺陷名称:变形(Distortion)

焊接方式

发生原因

防止措施

手焊、CO2气体保护焊、自动埋弧焊接。

(1)焊接层数太多。 (2)焊接顺序不当。 (3)施工准备不足。

(4)母材冷却过速。 (5)母材过热。(薄板) (6)焊缝设计不当。 (7)焊着金属过多。

(8)拘束方式不确实。 (1)使用直径较大之焊条及较高电流。 (2)改正焊接顺序

(3)焊接前,使用夹具将焊件固定以免发生翘曲。

(4)避免冷却过速或预热母材。

(5)选用穿透力低之焊材。

(6)减少焊缝间隙,减少开槽度数。 (7)注意焊接尺寸,不使焊道过大。

(8)注意防止变形的固定措施。

七:其它焊接缺陷

焊接方式 发生原因

防止措施

搭叠(Overlap)

(1)电流太低。 (2)焊接速度太慢。 (1)使用适当的电流。 (2)使用适合的速度。

焊道外观形状不良(Bad

Appearance)

(1)焊条不良。 (2)操作方法不适。

(3)焊接电流过高,焊条直径过粗。 (4)焊件过热。 (5)焊道内,熔填方法不良。 (6)导电嘴磨耗。 (7)焊丝伸出长度不变。

(1)选用适当大小良好的干燥焊条。 (2)采用均匀适当之速度及焊接顺序。

(3)选用适当电流及适当直径的焊接。

(4)降低电流。

(5)多加练习。

(6)更换导电嘴。 (7)保持定长、熟练。

凹痕(Pit)

(1)使用焊条不当。 (2)焊条潮湿。

(1)使用适当焊条,如无法消除时用低氢型焊条。 (2)使用干燥过的焊条。

焊接的六大缺陷,产生原因、危害

焊接的六大缺陷,产生原因、危害、预防措施都在这了 一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽,它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。C、凹坑

凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。 防治措施:选用较小电流并配合合适的焊接速度,减小装配间隙,在焊缝背面加设垫板或药垫,使用脉冲焊,能有效地防止烧穿。 F、其他表面缺陷 (1)成形不良指焊缝的外观几何尺寸不符合要求。有焊缝超高,表面不光滑,以及焊缝过宽,焊缝向母材过渡不圆滑等。 (2)错边指两个工件在厚度方向上错开一定位置,它既可视作焊缝表面缺陷,又可视作装配成形缺陷。 (3)塌陷单面焊时由于输入热量过大,熔化金属过多而使液态金属向焊缝背面塌落, 成形后焊缝背面突起,正面下塌。 (4)表面气孔及弧坑缩孔。 (5)各种焊接变形如角变形、扭曲、波浪变形等都属于焊接缺陷O角变形也属于装配成形缺陷。 二、气孔和夹渣

焊接中常见的缺陷及解决方法

焊接中常见的缺陷及解决方法 1.漏焊---漏焊包括焊点漏焊、螺栓漏焊、螺母漏焊等。 原因---主要原因是因为没有自检、互检,对工艺不熟悉造成的。 解决方法---在焊接后对所有焊点(螺母、螺栓等)进行检查,确认焊点(螺母、螺栓等)数量,熟悉工艺要求,加强自检意识,补焊等。 2.脱焊---包括焊点、螺母、螺栓等脱焊。(除材料与零部件本身不合格) 以下3种可视为脱焊: ①.接头贴合面未形成熔核,呈塑料性连接; ②.贴合面上的熔核尺寸小于规定值; ③.熔核核移,使一侧板焊透率达不到要求。 产生脱焊原因: ①.焊接电流过,焊接区输入热量不足; ②.电极压力过大,接触面积增大,接触电阻降低,散热加强; ③.通电时间短,加热不均匀,输入热量不足; ④.表面清理不良,焊接区电阻增大,分流相应增大; ⑤.点距不当,装配不当,焊接顺序不当,分流增大。 解决方法:在调整焊接电流后,对焊点做半破坏检查(试片做全破坏检查),目视焊点形状;补焊,检查上次半破坏后的相关焊点。 3.补焊---多焊了工艺上不要求焊接的焊点。 原因---不熟悉工艺或焊接中误操作焊钳。 解决方法---熟悉工艺或加强操作技能。 注意:两个或多于两个的连续点焊不能有偏焊现象,边缘及拐角处也不能存在偏焊的现象。(如两个连点偏焊,至少要有一个焊点需要重新点焊。) 4.焊渣---由于电流过大或压力过小,造成钢板的一部分母材在高温熔合 时沿着两钢板贴合面被挤出而形成的冷却物. 原因---主要原因是电流和压力的变化,以及焊钳操作不当引起的。 解决方法---调整焊接参数与电极压力,加强操作技能及清除焊渣。 5.飞溅---飞溅分为内部飞溅和外部飞溅两种。 内部飞溅---高温液态金属在电极压力的作用下,沿着最薄弱的两钢板间贴合而挤出。 产生原因 ①.电流过大,电极压力不足; ②.板间有异物或贴合不紧密。 外部飞溅---电极与焊件之间融合金属溢出的现象. 产生原因 ①.电极修磨得太尖锐;

焊接缺陷及产生的原因

常见的气焊焊接缺陷及产生的原因 字体: 小中大| 打印发布: 2009-04-29 12:00 作者: webmaster 来源: 本站原创查看: 58次 常见的气焊焊接缺陷可分为外部缺陷和内部缺陷两大类。外部缺陷位于焊缝的外表面,一般用肉眼或低倍放大镜即可以发现。常见的外部缺陷包括焊缝尺寸不符合要求、表面气孔、裂纹、咬边、未焊满、凹坑、烧穿和焊瘤等;内部缺陷位于焊缝内部,需用破坏性试验或无损探伤等方法才能发现,如内部气孔、裂纹、夹渣、未焊透、未熔合等。 一、焊缝尺寸不符合要求 焊缝的尺寸与设计上规定的尺寸不符,或者焊缝成型不良,出现高低、宽窄不一、焊波粗劣等现象。焊缝尺寸不符合要求,不仅影响焊缝的美观,还会影响焊缝金属与母材的结合,造成应力集中,影响焊件的安全使用。 焊缝尺寸不符合要求产生的原因主要有:接头边缘加工不整齐、坡口角度或装配间隙不均匀;焊接工艺参数不正确,如火焰能率过大或过小、焊丝和焊嘴的倾角配合不当、气焊焊接速度不均匀等;操作技术不当,如焊嘴或焊丝横向摆动不一致等。 防止焊缝高低、宽窄不一、焊波粗劣的措施有:正确调整火焰能率:将焊件接头边缘调整齐;气焊过程中焊嘴、焊丝的横向摆动要一致;焊接速度要均匀且不要向熔池内填充过多的焊丝。 二、未焊透 焊接时接头根部未完全熔透的现象称为未焊透,详见图7—1。 未焊透不仅降低了焊接接头的机械性能,而且在未焊透的缺口及末端处形成应力集中,进一步引起裂纹的产生。在重要的焊缝中,若发现有未焊透缺陷,必须铲除,重新补焊。 产生未焊透的原因较多,通常有焊接接头在气焊前未经清理干净,如存在氧化物、油污等;坡口角度过小、接头间隙太小或钝边过厚;焊嘴号码过小,火焰能率不够或焊接速度过快;焊件的散热速度过快,使得熔池存在的时间短,以致填充金属与母材之间不能充分地熔合。 防止未焊透采取的措施,除了选择合理的坡口型式和装配间隙外,应在焊前进行清理,消除坡口两侧的氧化物和油污;根据板厚正确选用相应的焊嘴和焊丝直径;在焊接时选择合理的火焰能率和焊接速度;尤其是对导热快、散热面积大的焊件,要进行焊前预热和在焊接过程中加热焊件。 三、未熔合 熔焊时,焊道与母材之间或焊道与焊道之间,未完全熔化结合的部分称为未熔 合,详见图7—2。

常见的焊接缺陷及处理办法

常见的焊接缺陷及处理办法 一、外部缺陷 一)、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二)、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于 3 ㎜;局部出现负余高;余高差过大;角焊缝高度不够或 焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三)、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于 3 ㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

超声波焊接常见缺陷及处理办法

超声波焊接常见缺陷及处理办法 一、强度无法达到欲求标准。 当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢? ※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS 材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论: 1.相同熔点的塑料材质熔接强度愈强。

2.塑料材质熔点差距愈大,熔接强度愈小。 3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。 二、制品表面产生伤痕或裂痕。 在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。 解決方法:

铝焊常见缺陷及原因

铝焊常见缺陷原因及措施 (一)焊接缺陷种类 常见的缺陷主要有焊缝成形差、裂纹、气孔、烧穿,未焊透、未熔合、夹渣等。 1、焊缝成形差 产生原因:焊接规范选择不当;焊枪角度不正确;焊工操作不熟练;导电嘴孔径太大;焊接电弧没有严格对准坡口中心;焊丝、焊件及保护气体中含有水分。焊缝成形差主要表现在焊缝波纹不美观,且不光亮;焊缝弯曲不直,宽窄不一,接头太多;焊缝中心突起,两边平坦或凹陷;焊缝满溢等。 2、气孔 产生原因:氩气纯度低或氩气管路内有水分、漏气等;焊丝或母材坡口附近焊前未清理干净或清理后又被污物、水分等沾污;焊接电流和焊速过大或过小;熔池保护欠佳,电弧不稳,电弧过长,钨极伸出过长等。焊接时熔池中的气孔在凝固时未能逸出而留下来所形成的空穴称为气孔。在MIG焊接过程中,气孔是不可避免的,只能尽量减少它的存在。在培训的过程中,仰角焊、立向上焊气孔倾向尤为明显,根据DIN30042标准规定,单个气孔的直径最大不能超过0.25α(α为板厚),密集气孔的单个直径最大不超过0.25+0.01α(α为板厚)。氢是铝及铝合金熔化焊产生气孔的主要原因。氮不溶于液态铝,铝又不含碳,因此铝合金中不会产生氮气孔和一氧化碳气孔;氧和铝有很大的亲和力,总是以氧化铝的形式存在,所以也不会产生

氧气孔;氢在高温时大量的溶于液态铝,但几乎不溶于固态铝,所以在凝固点溶于液体中的氢几乎全部析出,形成气泡。但铝和铝合金的比重轻,气泡在熔池中的上升的速度较慢,加上铝的导热能力强凝固,不利于气泡的浮出,故铝和铝合金易产生气孔,氢气孔在焊缝内部一般呈白亮光洁状。氢的来源比较多,主要来自弧柱气氛中的水、焊丝以及母材所吸附水分对焊缝气孔的产生常常占有突出的地位。 厂房空气中的湿度也影响弧柱气氛。MIG焊接时,焊是以细小熔滴形式通过弧柱而落入熔池的,由于弧柱温度最高,熔滴比表面积很大,故有利于熔滴金属吸收氢,产生气孔的倾向也更大些。弧柱中的氢之所以能够形成气,与它在铝合金中的溶解度变化有。如前段所说,在凝固点时氢的溶解度从0.69突降到0.036ml/100g,相差约20倍(在钢中只相差不到2倍),这是氢容易使焊缝产生气孔的重要原因之一。 控制了弧柱气氛中的水分后,母材和焊丝所带的氧化膜所吸附的水分成为生成焊缝气孔的主要原因。在培训期间所使用的焊丝材料为R5087,焊接所用的板材为5083和6082,都是氧化膜不很致密、吸水性强的铝合金,并且母材表面通常会有少量油脂、灰尘等杂。通过经焊前母材清理和未经清理的焊缝对,清理过的焊缝气孔明显少于未经清理的焊缝气孔。因此如果焊前没有仔细清理母材表面,产生气孔的倾向将加大。 另外,保护气体流量不足或过量也会引起气孔的出现。保护气体流量不足不能排除弧柱气氛中的空气,空气中的水分将分解成氢进

常见的焊接缺陷及危害(DOC)

常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态

可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,两侧线状夹渣 钢板对接焊缝X射线照相底片 V型坡口,钨极氩弧焊打底+手工电弧焊,夹钨 (5)裂纹:焊缝裂纹是焊接过程中或焊接完成后在焊接区域中出现的金属局部破裂的表现。 焊缝金属从熔化状态到冷却凝固的过程经过热膨胀与冷收缩变化,有较大的冷收缩应力存在,而且显微组织也有从高温到低温的相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大的温差,从而产生热应力等等,这些应力的共同作用一旦超过了材料的屈服极限,材料将发生塑性

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

常见的焊接缺陷及缺陷图片

常见的焊接缺陷(1) 常见的焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)的钝边未完全熔合在一起而留下的局部未熔合。未焊透降低了焊接接头的机械强度,在未焊透的缺口和端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时的焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内的气体 或外界侵入的气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成的空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生的气体、液态金属吸收的气体,或者焊条的焊剂受潮而在高温下分解产生气体,甚至是焊接环境中的湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它的缺陷其应力集中趋势没有那么大,但是它破坏了焊缝金属的致密性,减少了焊缝金属的有效截面积,从而导致焊缝的强度降低。

某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时的冶金反应产物,例如非金属杂质(氧化物、硫化物等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状和条状,其外形通常是不规则的,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落的碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中的夹渣断口照片 钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,局部夹渣

手工电弧焊常见焊接缺陷产生的原因及预防措施

手工电弧焊常见焊接缺陷产生的原因及预防措施 缺陷名称:气孔() 1、原因 (1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 2、解决方法 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。(4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 二、缺陷名称咬边() 1、原因 (1)电流太强。 (2)焊条不适合。 (3)电弧过长。 (4)操作方法不当。

(5)母材不洁。 (6)母材过热。 2、解决方法 (1)使用较低电流。 (2)选用适当种类及大小之焊条。 (3)保持适当的弧长。 (4)采用正确的角度,较慢的速度,较短的电弧及较窄的运行法。 (5)清除母材油渍或锈。 (6)使用直径较小之焊条。 三:缺陷名称:夹渣( ) 1、原因 (1)前层焊渣未完全清除。 (2)焊接电流太低。 (3)焊接速度太慢。 (4)焊条摆动过宽。 (5)焊缝组合及设计不良。 2、解决方法 (1)彻底清除前层焊渣。 (2)采用较高电流。 (3)提高焊接速度。 (4)减少焊条摆动宽度。

(5)改正适当坡口角度及间隙。 四、缺陷名称:未焊透( ) 1、原因 (1)焊条选用不当。 (2)电流太低。 (3)焊接速度太快温度上升不够,又进行速度太慢电弧冲力被焊渣所阻挡,不能给予母材。 (4)焊缝设计及组合不正确。 2、解决方法 (1)选用较具渗透力的焊条。 (2)使用适当电流。 (3)改用适当焊接速度。 (4)增加开槽度数,增加间隙,并减少根深。 五:缺陷名称:裂纹() 1、原因 (1)焊件含有过高的碳、锰等合金元素。 (2)焊条品质不良或潮湿。 (3)焊缝拘束应力过大。 (4)母条材质含硫过高不适于焊接。 (5)施工准备不足。 (6)母材厚度较大,冷却过速。 (7)电流太强。

常见焊接缺陷产生原因及防止措施

常见焊接缺陷产生原因及防止措施 [摘要]本文对常见的焊缝缺陷进行了分类,对其产生原因做了详细分析,并针对这些缺陷的防止措施,提出了自己的见解,以供交流。 【关键词】焊接;缺陷;原因;防止 焊接中接头金属不连续、不致密或连接不良等现象,称之为焊接缺陷,焊接缺陷的种类很多,常见的焊接缺陷有气孔、咬边、未焊透、夹渣、裂纹等。每种焊接缺陷的成因机理不同,特征不同,需要根据不同的缺陷采取相应的防范措施。 1、气孔 气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。 1.1 手工焊 产生原因:焊条不良或潮湿;焊件有水分、油污或锈;焊接速度太快;电流太强;电弧长度不适合;焊件厚度大,金属冷却过速。 防止措施:选用适当的焊条并注意烘干;焊接前清洁被焊部份;降低焊接速度,使内部气体容易逸出;使用厂商建议适当电流;调整适当电弧长度;施行适当的预热工作。 1.2 CO2气体保护焊 产生原因:母材不洁;焊丝有锈或焊药潮湿;点焊不良,焊丝选择不当;干伸长度太长,CO2气体保护不周密;风速较大,无挡风装置;焊接速度太快,冷却快速;火花飞溅粘在喷嘴,造成气体乱流;气体纯度不良,含杂物多(特别含水分)。 防止措施:焊接前注意清洁被焊部位;选用适当的焊丝并注意保持干燥;点焊焊道不得有缺陷,同时要清洁干净,且使用焊丝尺寸要适当;减小干伸长度,调整适当气体流量;加装挡风设备;降低速度使内部气体逸出;注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以延长喷嘴寿命;CO2纯度为99.98%以上,水分为0.005%以下。 1.3 埋弧焊接 产生原因:焊缝有锈、氧化膜、油脂等有机物的杂质;焊剂潮湿;焊剂受污染;焊接速度过快;焊剂高度不足;焊剂高度过大,使气体不易逸出(特别在焊剂粒度细的情形);焊丝生锈或沾有油污;极性不适当(特别在对接时受污染会产生气孔)。

常见焊接缺陷及排除

四、常见焊接缺陷及排除 影响焊接质量的因素是很多的,下表列出的是一些常见缺陷及排除方法,以供参考. 缺陷产生原因 焊点不全 1、助焊剂喷涂量不足 2、预热不好 3、传送速度过快 4、波峰不平 5、元件氧化 6、焊盘氧化 7、焊锡有较多浮渣 解决方法 1、加大助焊剂喷涂量 2、提高预热温度、延长预热时间 3、降低传送速度 4、稳定波峰 5、除去元件氧化层或更换元件 6、更换PCB 7、除去浮渣 桥接 1、焊接温度过高 2、焊接时间过长 3、轨道倾角太小 解决方法 1、降低焊接温度 2、减少焊接时间 3、提高轨道倾角 焊锡冲上印制板 1、印制板压锡深度太深 2、波峰高度太高 3、印制板葬翘曲 解决方法 1、降低压锡深度 2、降低波峰高度 3、整平或采用框架固 波峰焊锡作业中问题点与改善方法 1.沾锡不良POOR WETTING: 这种情况是不可接受的缺点,在焊点上只有部分沾锡.分析其原因及改善方式如下:

1-1.外界的污染物如油,脂,腊等,此类污染物通常可用溶剂清洗,此类油污有时是在印刷防焊剂时沾上的. 1-2.SILICON OIL 通常用于脱模及润滑之用,通常会在基板及零件脚上发现,而SILICON OIL 不易清理,因之使用它要非常小心尤其是当它做抗氧化油常会发生问题,因它会蒸发沾在基板上而造成沾锡不良. 1-3.常因贮存状况不良或基板制程上的问题发生氧化,而助焊剂无法去除时会造成沾锡不良,过二次锡或可解决此问题. 1-4.沾助焊剂方式不正确,造成原因为发泡气压不稳定或不足,致使泡沫高度不稳或不均匀而使基板部分没有沾到助焊剂. 1-5.吃锡时间不足或锡温不足会造成沾锡不良,因为熔锡需要足够的温度及时间WETTING,通常焊锡温度应高于熔点温度50℃至80℃之间,沾锡总时间约3秒. 2.局部沾锡不良DE WETTING: 此一情形与沾锡不良相似,不同的是局部沾锡不良不会露出铜箔面,只有薄薄的一层锡无法形成饱满的焊点. 3.冷焊或焊点不亮COLD SOLDER OR DISTURRED SOLDER JOINTS: 焊点看似碎裂,不平,大部分原因是零件在焊锡正要冷却形成焊点时振动而造成,注意锡炉输送是否有异常振动. 4.焊点破裂CRACKS IN SOLDER FILLET: 此一情形通常是焊锡,基板,导通孔,及零件脚之间膨胀系数,未配合而造成,应在基板材质,零件材料及设计上去改善. 5.焊点锡量太大EXCES SOLDER: 通常在评定一个焊点,希望能又大又圆又胖的焊点,但事实上过大的焊点对导电性及抗拉强度未必有所帮助. 5-1.锡炉输送角度不正确会造成焊点过大,倾斜角度由1到7度依基板设计方式?#123;整,一般角度约3.5度角,角度越大沾锡越薄角度越小沾锡越厚. 5-2.提高锡槽温度,加长焊锡时间,使多余的锡再回流到锡槽. 5-3.提高预热温度,可减少基板沾锡所需热量,曾加助焊效果. 5-4.改变助焊剂比重,略为降低助焊剂比重,通常比重越高吃锡越厚也越易短路,比重越低吃锡越薄但越易造成锡桥,锡尖. 6.锡尖(冰柱) ICICLING: 此一问题通常发生在DIP或WIVE的焊接制程上,在零件脚顶端或焊点上发现有冰尖般的锡. 6-1.基板的可焊性差,此一问题通常伴随着沾锡不良,此问题应由基板可焊性去探讨,可试由提升助焊剂比重来改善. 6-2.基板上金道(PAD)面积过大,可用绿(防焊)漆线将金道分隔来改善,原则上用绿(防焊)漆线在大金道面分隔成5mm乘10mm区块. 6-3.锡槽温度不足沾锡时间太短,可用提高锡槽温度加长焊锡时间,使多余的锡再回流到锡槽来改善. 6-4.出波峰后之冷却风流角度不对,不可朝锡槽方向吹,会造成锡点急速,多余焊锡无法受重力与内聚力拉回锡槽.

常见的焊接缺陷及产生原因

常见的焊接缺陷及产生原因,非常重要的经验!金属加工 焊接是大型安装工程建设中的一项关键工作,其质量的好坏、效率的高低直接影响工程的安全运行和制造工期。由于技术工人的水准不同,焊接工艺良莠不齐,容易存在很多的缺陷。现整理缺陷的种类及成因,以减少或防止焊接缺陷的产生, 提高工程完成的质量。 一、焊缝尺寸不合要求 焊波粗、外形高低不平、焊缝加强高度过低或过高、焊波宽度不一及 角焊缝单边或下陷量过大等均为焊缝尺寸不合要求,其原因是: 1. 焊件坡口角度不当或装配间隙不均匀。 2. 焊接电流过大或过小,焊接规范选用不当。 3. 运条速度不均匀,焊条(或焊把)角度不当。 二、裂纹 裂纹端部形状尖锐,应力集中严重,对承受交变和冲击载荷、静拉力影响较大,是焊缝中最危险的缺陷。按产生的原因可分为冷裂纹、热裂纹和再热裂纹等。(冷裂纹)指在200℃以下产生的裂纹,它与氢有密切的关系,其产生的主要原因是: 1. 对大厚工件选用预热温度和焊后缓冷措施不合适。 2. 焊材选用不合适。 3. 焊接接头刚性大,工艺不合理。 4. 焊缝及其附近产生脆硬组织。 5. 焊接规范选择不当。 (热裂纹)指在300℃以上产生的裂纹(主要是凝固裂纹),其产生的主要原因是: 1. 成分的影响。焊接纯奥氏体钢、某些高镍合金钢和有色金属时易出现。 2. 焊缝中含有较多的硫等有害杂质元素。 3. 焊接条件及接头形式选择不当。 (再热裂纹)即消除应力退火裂纹。指在高强度的焊接区,由于焊后热处理或高温下使用,在热影响区产生的晶间裂纹,其产生的主要原因是: 1. 消除应力退火的热处理条件不当。 2. 合金成分的影响。如铬钼钒硼等元素具有增大再热裂纹的倾向。

氩弧焊接常见缺陷产生原因及处理(内容清晰)

焊接常见缺陷产生原因及措施 1、焊缝截面不饱满或加强高过高。(焊缝余高) 原因:a、焊接层数选择不当;b、焊接速度选择不当;c、焊接规范选择不当;d、枪头摆动幅度选择不当。 措施:a、选择合适的焊接层数;b、选择合适的焊接速度;c、选择合适的焊接规范;d、选择合适的枪头摆动幅度。 2、焊缝宽窄不均匀。(焊缝边缘直线度) 原因:a、焊接规范不稳定;b、操作不稳定;c、焊接速度不均匀。 措施:a控制电弧长均匀。(看好熔合线) 3、咬边(焊缝边缘母材上被电弧烧熔的凹槽称咬边) 原因:a、焊接速度过快;b、焊接电压过高;c、焊接电流过大;d、停顿时间不足;e、焊枪角度选择不当。 措施:a、适当放慢速度;b、降低电压;c、减小电流;d、增加坡口两边停留时间;e、调整焊枪角度以利克服咬边。 4、气孔(焊缝凝固过程中气体来不及溢出而存在焊缝中形成气孔) 原因:a、氩气保护的覆盖率不够;b、氩气纯度不够;c、焊丝被污染了;d 坡口被污染了;e、电压太高,电弧太长;f 、焊丝外伸太长,飞溅大。 措施:a、增大氩气流量,但不能太大否则产生紊流对保护不利,检查防风措施;b、使用合格的氩气,不同的母材使用不同纯度的氩气;c、使用清洁干净的焊丝;d、用物理、化学、机械清理的办法清理坡口及两侧焊接区域的油、水、锈、污物等;e、降低电压,压低电弧。调整焊丝外伸量。 5、夹渣(钨)电流过大或过小。 6、裂纹(表面裂纹、内部裂纹)

原因:a、接缝结构设计不合理;b、热输入太大;c、坡口太窄(尤其是根部);d、焊缝根部弧坑处的冷却过快;e、坡口内杂质过多,形成低熔共晶物。 措施:a、选择便于焊接的凹槽结构;b、降低电流、电压、适当提高焊速;c、降低焊速,增大焊接截面;d、通过回焊技术,将弧坑填满,消除弧坑;e、清除坡口内杂质。 7、未熔合与未焊透(焊缝与母材未通过电弧融合在一起和不完全焊透) 原因:a、焊缝区有油膜或过量的氧化物;b、坡口热输入不足;c、坡口太宽;d、坡口角度太小e、焊接速度太快。 措施:a、焊接之前,用物理、化学、机械方法除油和氧化物;b、增加电流和电压及降低焊接速度;c、焊枪要均匀摆动,在坡口边做即刻停留,是焊枪直接指向坡口两侧,坡口角度要足够大以便根部焊接;d、降低焊接速度;e、对口间隙要合适。 8、焊瘤(正常焊缝外多余的金属瘤) 原因:焊接速度太慢及电流选择不合适。 措施:提高焊速、选择适当电流。 9、弧坑(收弧处产生的下陷) 原因:收弧时未停留。 措施:收弧时做适当的停留使金属填满弧坑在收弧。 10、电弧擦伤(焊枪与焊件接触,发生短路形成的电弧擦伤,电弧擦伤易形成淬火脆化) 原因:操作不当(引弧不当) 措施:机械打磨处理。 11、过烧 原因:a、焊接线能量太大;b焊接层温太高。 措施:a、降低电流电压、提高焊速;b、降低层温。(横)

焊接中常见的缺陷及防治措施

焊接中常见的缺陷及防治措施 A、外部缺陷 一、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于3㎜;局部出现负余高;余高差过大;角焊缝高度不够或焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动

幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于3㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。 3、防治措施 ⑴加强焊工焊接责任心,提高焊接时的注意力; ⑵采取正确的焊条(枪)角度; ⑶熟悉现场焊接位置,提前制定必要焊接施工措施。 4、治理措施 ⑴加强练习,提高焊工的操作技术水平,提高克服困难位置焊接的能力; ⑵提高焊工质量意识,重视焊缝外观质量; ⑶焊缝盖面完毕,及时进行检查,对不合格的焊缝进行修磨,必要时进行补焊。

焊接缺陷产生原因

焊接缺陷产生原因及防止措施 一、焊接缺陷定义 焊接接头的不完整性称为焊接缺陷,主要有焊接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷等。这些缺陷减少焊缝截面积,降低承载能力,产生应力集中,引起裂纹;降低疲劳强度,易引起焊件破裂导致脆断。其中危害最大的是焊接裂纹和气孔。

焊接缺陷示意图如图2 所示 : (b)焊瘤(c )焊穿 焊接缺陷的分类 焊接生产中产生焊接缺陷的种类是多种多样的,按其在焊接接头中所处的位置和表现形式的不同,可以把焊接缺陷大致分为两类:一类是外部缺陷;另一类是内部缺陷。焊接缺陷的详细分类如图1所示。 外部缺陷— 一悍缝尺寸不符合要求屮 —咬边+■■ ——碱口 ——焊穿心 — ——域辭 —豆面裂纹屮 ——表面岂孔屮 —电孤擦伤爭 ——产重飞灌屮 —接头变砸* 內部气孔屮 內部裂纹 未寤合口 夹曲 夹镐, 帰析+J 白点孑 接头组织粕性能不符台宴求屮 (a)裂纹 图1焊接缺陷分类图 (d)弧坑(e)气孔(f)夹渣

图2焊接缺陷示意图(g )咬边 (h )未融合 (i )未焊透

三、影响焊接缺陷的因素 1. 材料因素 所谓材料因素是指被焊的母材和所使用的焊接材料,如焊丝、焊条、焊剂及保护气体等。这些材料在焊接时都直接参与熔池或熔合区的物理化学反应,其中,母材本身的材质对热影响区的性能起着决定性的作用,当然,所采用的焊接材料对焊缝金属的成分和性能也是关键因素。如果焊材与母材匹配不当,不仅可能引起焊接区内的裂纹、气孔等各种缺陷,也可能引起脆化、软化等性能变化。所以, 为了保证得到良好的焊接接头,必须对材料因素予以重视。 2. 工艺因素 同一种母材,在采用不同的焊接方法和工艺措施的条件下,其焊接质量会表现出很大的差别。 焊接方法对焊接质量的影响主要在两个方面:首先是焊接热源的特点,其可以直接改变焊接热循环的各项参数,如线能量、高温停留时间、冷却速度等;其次是对熔池和接头附近区域的保护方式,如渣保护、气保护等。焊接热过程和冶金过程必然对接头的质量和性能会有决定性的影响。 3. 结构因素 焊接接头的结构设计影响其受力状态,其既可能影响焊接时是否发生缺陷,又可能影响焊后接头的力学性能。设计焊接结构时,应尽量使接头处于拘束度较小、能自由伸缩的状态,这样有利于防止焊接裂纹的产生。 4. 使用条件 焊接结构必须符合使用条件的要求,如载荷的性质、工作温度的高低、工作介质有无腐蚀性等,其必然会影响到接头的使用性能。 例如,焊接接头在高温下承载,必须考虑到合金元素的扩散整个结构发生蠕变的问题;承受冲击载荷或在低温下使用时,要考虑到脆性断裂的可能性;接头如需在腐蚀介质中工作时,又要考虑应力腐蚀的问题……。

常见焊接缺陷及X射线无损检测.

前言 船舶制造业自20世纪初开始研究焊接应用技术,并于1920年以英国船厂首次采用焊接技术建造远洋船为标志,焊接技术逐渐在船厂得到推广应用,并迅速取代铆接技术。由于焊接过程中各种参数的影响,焊缝中有时候不可避免地会出现裂纹、气孔、央渣、未熔合和未焊透等缺陷。为了保证焊接构件的产品质量,必须对其中的焊缝进行有效的检测和评价,尤其是在船舶压力管道、分段大接缝、外板及水密与强力接点等部位进行质量检测是十分必要的。 众所周知,船舶结构件发生焊接裂纹对结构强度和航行安全危害极大,特别是一些隐性裂纹不易发现,一旦船舶出厂,这些隐性裂纹后患无穷。因此,船舶在建造焊接过程中产生的裂纹一经发现,就必须立即查明原因并采取果断的措施彻底根除。焊接质量的检验方法,一般分无损检验和破坏检验两大类,采用何种方法,主要根据产品的技术要求和有关规范的规定。 无损探伤分渗透检验、磁粉探伤、超声波探伤和射线照相探伤。破坏检验方法是用机械方法在焊接接头(或焊缝)上截取一部分金属,加工成规定的形状和尺寸,然后在专门的设备和仪器上进行破坏试验。依据试验结果,可以了解焊接接头性能及内部缺陷情况,判断焊接工艺正确与否。经检验,船体结构焊缝超过质量允许限值时,应首先查明产生缺陷的原因,确定缺陷在工件上的部位。在确认允许修补时,再按规定对焊缝进行修补。

一、船舶焊接缺陷及无损探伤技术简介 1、船舶焊接中的常见缺陷分析 船舶焊接是保证船舶密性和强度的关键,是保证船舶质量的关键,是保证船舶安全航行和作业的重要条件。如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起船舶沉没。因此,在船舶建造中焊接质量是重点验收工作之一,规范也明确规定,焊缝必须进行外观检查,外板对接焊缝必须进行内部检查。船体焊缝内部检查,可采用射线探伤与超声探伤等办法。射线探伤能直接判断船体焊缝中存在的缺陷的种类、大小、部位及分布情况,直观可靠,重复性好,容易保存,当前船厂普遍采用X射线探伤来进行船体焊缝的内部质量检查。船舶焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。常见缺陷有气孔、央渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等. 2、焊接缺陷分类 (1)气孔 气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。产生气孔的。 主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。 预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。严格按规定保管、清理和焙烘焊接材料。 (2)夹渣 夹渣就是残留在焊缝中的熔渣。夹渣也会降低焊缝的强度和致密性。 产生夹渣的原因主要是:焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。 防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。 (3)咬边 焊缝边缘留下的凹陷,称为咬边。

常见的焊接缺陷及缺陷图片

常见得焊接缺陷(1) 常见得焊接缺陷 (1)未焊透:母体金属接头处中间(X坡口)或根部(V、U坡口)得钝边未完全熔合在一起而留下得局部未熔合。未焊透降低了焊接接头得机械强度,在未焊透得缺口与端部会形成应力集中点,在焊接件承受载荷时容易导致开裂。 (2)未熔合:固体金属与填充金属之间(焊道与母材之间),或者填充金属之间(多道焊时得焊道之间或焊层之间)局部未完全熔化结合,或者在点焊(电阻焊)时母材与母材之间未完全熔合在一起,有时也常伴有夹渣存在。 (3)气孔:在熔化焊接过程中,焊缝金属内得气体 或外界侵入得气体在熔池金属冷却凝固前未来得及逸出而残留在焊缝金属内部或表面形成得空穴或孔隙,视其形态可分为单个气孔、链状气孔、密集气孔(包括蜂窝状气孔)等,特别就是在电弧焊中,由于冶金过程进行时间很短,熔池金属很快凝固,冶金过程中产生得气体、液态金属吸收得气体,或者焊条得焊剂受潮而在高温下分解产生气体,甚至就是焊接环境中得湿度太大也会在高温下分解出气体等等,这些气体来不及析出时就会形成气孔缺陷。尽管气孔较之其它得缺陷其应力集中趋势没有那么大,但就是它破坏了焊缝金属得致密性,减少了焊缝金属得有效截面积,从而导致焊缝得强度降低。 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,未焊透 某钢板对接焊缝X射线照相底片 V型坡口,手工电弧焊,密集气孔 (4)夹渣与夹杂物:熔化焊接时得冶金反应产物,例如非金属杂质(氧化物、硫化物

等)以及熔渣,由于焊接时未能逸出,或者多道焊接时清渣不干净,以至残留在焊缝金属内,称为夹渣或夹杂物。视其形态可分为点状与条状,其外形通常就是不规则得,其位置可能在焊缝与母材交界处,也可能存在于焊缝内。另外,在采用钨极氩弧焊打底+手工电弧焊或者钨极氩弧焊时,钨极崩落得碎屑留在焊缝内则成为高密度夹杂物(俗称夹钨)。 W18Cr4V(高速工具钢)-45钢棒 对接电阻焊缝中得夹渣断口照片 钢板对接焊缝X射线照相底片 型坡口,手工电弧焊,局部夹渣 V. 钢板对接焊缝X射线照相底片 型坡口,手工电弧焊,两侧线状夹渣V 钢板对接焊缝X射线照相底片 手工电弧焊,夹钨型坡口,钨极氩弧焊打底+V(5)裂纹:焊缝裂纹就是焊接过程中或焊接完成后在焊接区域中出现得金属局部破裂得表现。 焊缝金属从熔化状态到冷却凝固得过程经过热膨胀与冷收缩变化,有较大得冷收缩应力存在,而且显微组织也有从高温到低温得相变过程而产生组织应力,更加上母材非焊接部位处于冷固态状况,与焊接部位存在很大得温差,从而产生热应力等等,这些应力得共同作用一旦超过了材料得屈服极限,材料将发生塑性变形,超过材料得强度极限则导致开裂。裂纹得存在大大降低了焊接接头得强度,并且焊缝裂纹得尖端也成为承载后得应力集中点,成为结构断裂得起源。 裂纹可能发生在焊缝金属内部或外部,或者在焊缝附近得母材热影响区内,或者位于母材与焊缝交界处等等。根据焊接裂纹产生得时间与温度得不同,可以把裂纹分为以下几类:

相关文档
相关文档 最新文档