文档库 最新最全的文档下载
当前位置:文档库 › 浅述陀螺仪与惯性技术的发展现状

浅述陀螺仪与惯性技术的发展现状

浅述陀螺仪与惯性技术的发展现状
浅述陀螺仪与惯性技术的发展现状

浅述陀螺仪与惯性技术的发展现状

激光陀螺仪

[激光陀螺仪的定义]

激光于1960年在世界上首次出现。1962年,美、英、法、前苏联几乎同时开始酝酿研制用激光来作为方位测向器,称之为激光陀螺仪。

激光陀螺仪的原理是利用光程差来测量旋转角速度(Sagnac效应)。在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。激光陀螺仪的基本元件是环形激光器,环形激光器由三角形或正方形的石英制成的闭合光路组成,内有一个或几个装有混合气体(氦氖气体)的管子,两个不透明的反射镜和一个半透明镜。用高频电源或直流电源激发混合气体,产生单色激光。为维持回路谐振,回路的周长应为光波波长的整数倍。用半透明镜将激光导出回路,经反射镜使两束相反传输的激光干涉,通过光电探测器和电路输入与输出角度成比例的数字信号。

[技术难点]

激光陀螺仪需要突破的主要技术为漂移、噪声和闭锁阈值。

1. 激光陀螺仪的飘移

激光陀螺仪的飘移表现为零点偏置的不稳定度,主要误差来源有:谐振光路的折射系数具有各向异性,氦氖等离子在激光管中的流动、介质扩散的各向异性等。

2. 激光陀螺仪的噪声

激光陀螺仪的噪声表现在角速度测量上。噪声主要来自两个方面:一是激光介质的自发发射,这是激光陀螺仪噪声的量子极限。二是机械抖动为目前多数激光陀螺仪采用的偏频技术,在抖动运动变换方向时,抖动角速率较低,在短时间内,低于闭锁阈值,将造成输入信号的漏失,并导致输出信号相位角的随机变化。

3. 激光陀螺仪的闭锁阈值

闭锁阈值将影响到激光陀螺仪标度因数的线性度和稳定度。闭锁阈值取决于谐振光路中的损耗,主要是反射镜的损耗。

[国外概况]

美国斯佩里公司于1963年首先次做出了激光陀螺仪的实验装置。1966年美国霍尼威尔公司开始使用石英作腔体,并研究出交变机械抖动偏频法,使这项技术有了使用的可能。1972年,霍尼威尔公司研制出GG-1300型激光陀螺仪。1974年美国国防部下令海军和空军联合制定研究计划,1975年在战术飞机上试飞成功,1976年在战术导弹上试验成功。

进入80年代以来,美国空军表示要坚定地把激光陀螺应用到空军系统中去,并与麦克唐纳?道格拉斯公司签定了两项合同,以实施一项名为"综合惯性基准组件"的研制计划,其内容是研制一种采用激光陀螺的双盒组件式传感器系统。海军也计划在80年代内将激光陀螺惯导系统用到舰载飞机中,这种系统称为CA1NS1。陆军准备将激光陀螺用于陆军飞机的定位/导航、监视/侦察、火控以及飞行控制系统。

1985年美国提出了战略防御计划(SDI)后,激光技术在军事系统和空间武器上的应用倍受重视。根据SDI预算,1985财年在这方面投资10.4亿美元,大部分用于开展激光实验,其中包括激光陀螺的研制。

90年代,根据先进巡航导弹和战术飞机导航的要求,美国进行了激光陀螺捷联性能的研究(SPS)。麦克唐纳?道格拉斯公司被选为SPS的主承包商,其次还有霍尼威尔、利顿、洛克威尔、辛格?基尔福特等公司参加。

国外激光陀螺仪的研制单位很多,其中,美国和法国研制的水平较高,此外还有俄罗斯、德国等国家。.

1. 美国

美国研制激光陀螺仪的厂家有霍尼威尔、利顿、斯佩里等公司。

(1)霍尼威尔公司

理想的战术惯性器件必须同时具有低成本、体积小、重量轻、坚固等几个特点,霍尼威尔公司的GG1308和GG1320就是为此研制的最新产品。

该公司采用的关键技术如下:

1)在提高精度方面

输出信号的细分技术,在小型化的RLG中,保持所需的分辨率。提高抖动偏频的频率,以提高RLG的采样频率。小型化RLG的惯性小,谐振频率高,在抖动偏频装置的设计上,可以提高频率。由此,可以提高RLG的采样频率和捷联惯性导航系统SINS的计算频率,有利于保证捷联惯性导航系统SINS的精度。

2)在降低成本方面

利用玻璃熔结工艺来实现反射镜和电极等的密封。采用BK-7光学玻璃取代Zerodur等零膨胀系数材料,为此需要建立光波在谐振器中谐振的条件,并对温度误差采取补偿。采用GG1308组成的一种惯导系统型号为HGl500一IMU。采用GG1320组成的惯导系统型号为H-764C。

(2)基尔福特公司

在单轴RLG的基础上,为满足小型卫星和航天器的需要,该公司研制了微型三轴激光陀螺仪MRLG。该公司采用力反馈式加速度计和MRLG组成惯性测量组合IMU。这种惯性导航系统也可用于战术武器,包括鱼雷。

2.法国

法国的激光陀螺仪和系统技术具有很强的实力。法国SWXTANT公司和SAGEM公司均从70年代开始研究激光陀螺技术,到目前已经形成不同尺寸和精度的激光陀螺仪。

(1)SEXTANT公司

SEXTANT公司1972年开始研究激光陀螺仪,1979年SEXTANT型激光陀螺仪首先用于"美洲虎"直升机飞行。1981年33cm型激光陀螺仪在ANS超音速导弹项目中标,1987年首次把激光陀螺仪用在"阿里安"4火箭的飞行,1990年SEXTANT公司在法国未来战略导弹项目上中标。

(2)SAGEM公司

SAGEM公司从1977年开始研究环行激光陀螺仪。1987年组装了第一个样机GLS32型。在工艺成熟后,主要生产用于航空及潜水艇的捷联惯导系统。1987年组装了GLC16型样机,主要用于直升机和小型运载火箭的捷联惯导系统。

[影响]

作为飞行器惯导系统核心的惯性器件,在国防科学技术和国民经济的许多领域中占有十分重要的地位。激光陀螺仪花费了很长时间和大量投资解决了闭锁问题,直到80年代初才研制出飞机导航级仪表,此后就迅速应用于飞机和直升机,取代了动力调谐陀螺和积分机械陀螺仪。目前已广泛用于导航、雷达和制导等领域。

光纤陀螺仪

[光纤陀螺仪的定义]

光纤陀螺仪是以光导纤维线圈为基础的敏感元件,由激光二极管发射出的光线朝两个方向沿光导纤维传播。光传播路径的变化,决定了敏感元件的角位移。

光纤陀螺仪与传统的机械陀螺仪相比,优点是全固态,没有旋转部件和摩擦部件,寿命长,动态范围大,瞬时启动,结构简单,尺寸小,重量轻。与激光陀螺仪相比,光纤陀螺仪没有闭锁问题,也不用在石英块精密加工出光路,成本低。.

[技术难点]

光纤陀螺仪需要突破的主要技术为灵敏度消失、噪声和光纤双折射引起的漂移和偏振状态改变引起的比例因子不稳定。

1. 灵敏度消失

在旋转速率接近零时,灵敏度会消失。这是由于检测器中的光密度正比于Sagnac相移的余弦量所引起。

2. 噪声问题

光纤陀螺仪的噪声是由于瑞利背向散射引起的。为了达到低噪声,应采用小相干长度的光源。3. 光纤双折射引起的漂移

如果两束相反传播的光波在不同的光路上,就会产生飘移。造成光路长度差的原因是单模光纤有两正交偏振态,此两种偏振态光波一般以不同速度传播。由于环境影响,使两正交偏振态随机变化。

4. 偏振状态改变引起的比例因子不稳定。

[国外概况]

光纤陀螺仪自1976年美国犹他州立大学首先研制出试验装置,随后,世界各发达国家的科研机构和著名大学都投入了很大的人力、物力和精力研究这一有发展前途的新型光纤旋转速率传感器。随着光纤通信技术和光纤传感技术的发展,光纤陀螺仪已经实现了惯性器件的突破性进展。在国外,l°/h至0.01°/h的工程样机已用于飞行器惯性测量组合装置。美国利顿公司已将0.1°/h

的光纤陀螺仪用于战术导弹惯导系统。新型导航系统FNA2012采用了l°/h的光纤陀螺仪和卫

星导航GPS.美国国防部决定光纤陀螺仪的精度1996年达到0.01°/h ;2001年达到0.001°/h;2006年达到0.0001°/h ,有取代传统的机械陀螺仪的趋势。

一、光纤陀螺仪的类型

光纤陀螺仪按原理上分类,可以分为:干涉仪式、谐振腔式和光纤型环型激光陀螺仪。

干涉仪式光纤陀螺仪按照光路的组成又可以分为:消偏型、全光纤型和集成光学型。

谐振腔式光纤陀螺仪按照光路的组成又可以分为:全光纤型和集成光学型。

光纤型环形激光陀螺仪是一种利用光纤环形腔中的受激布里渊散射的方向性增益效应来实现利

用Sagnet效应检测谐振速率,其原理与激光陀螺仪完全相似。由于无需复杂的调制解调检测技术,国际上倍受重视。

二、各国研制情况

1.美国

美国的光纤陀螺研制单位有:利顿公司、霍尼威尔公司、德雷泊实验室公司、斯坦福大学以及光纤传感技术公司等。

(1)利顿公司研制的光纤陀螺

利顿公司的光纤陀螺技术在低、中精度应用领域已经成熟,并且已经产品化。1988年研制出SCIT 实验惯性装置,惯件器件是光纤陀螺和硅加速度计。1989年公司研制的CIGIF论证系统飞行试验装置。1991/1992年研制出用于导弹和姿态与航向参考系统的惯性测量系统。1992年研制出GPS/INS组合导航系统。

(2)霍尼韦尔公司的集成光学光纤陀螺

霍尼韦尔公司研制的第一代高性能的干涉仪式光纤陀螺采用的是Ti内扩散集成光学相位调制器。采用的其他器件还有0.83um宽带光源、光电探测器/前置放大器模块、保偏光纤偏振器、两个

保偏光纤熔融型耦合器以及由1km保偏光纤构成的传感环圈。

为了满足惯性级光纤陀螺的要求,霍尼韦尔公司研制的第二代高性能干涉仪式光纤陀螺采用了集成光学多功能芯片技术以及全数字闭环电路。

)美国德雷珀实验室3(.

空间应用研制高精度光纤陀螺,曾研制过谐振腔式光年起为JPL美国德雷珀实验室从1978 9

年,由于背向散射误差限制了精度,后来改为采用干涉仪式方案。纤陀螺,研制了在研制干涉仪式光纤陀螺的过程中,采用了三大技术措施:a.把光源、探测器和前置放大器做成一个模块;

b.光纤传感环圈结构影响精度很大,采用了无骨架绕制光纤环圈的技术途径;

c.多功能集成光学器件模块,包括了所有其余的光纤陀螺的光纤器件。的干涉仪式光纤陀螺成本较高,需要研制自德雷珀实验室的研究人员认为:目前0.01°/h

动生产线,降低成本,保证质量。对于今后的发展问题,德雷珀实验室的研究人员认为:

a.惯性级的干涉仪式光纤陀螺仪,可以取代动力调谐陀螺仪,并逐渐取代激光陀螺仪;

b.惯性级干涉仪式光纤陀螺仪的难点是必须采用1km长度的保偏光纤,如果改用谐振腔式光纤陀螺仪方案,则长度可减为10m左右的光纤。为此谐振腔式光纤陀螺仍在作为研制方向,使光纤陀螺仪小型化的谐振腔式光纤陀螺的难点在于:控制电路比干涉仪式光纤陀螺复杂。随着ASIC 技术的发展,将来有可能得到满意的解决,使谐振腔式光纤陀螺成为产品。采用干涉仪式和谐振腔式混合方案的光纤陀螺仪具有良好的发展前景。

2.日本

日本研制光纤陀螺的单位有东京大学尖端技术室、日立公司、住友电工公司、三菱公司、日本航空电子工业公司。

日本的干涉式光纤陀螺仪已经完成了基础研究,正进入实用化阶段。偏值漂移已经达到XX。东京大学进行研究的谐振腔光纤陀螺仪取得了很大进展。

日立公司研制用于汽车导航系统的光纤陀螺,1991年用于日产汽车。

在日本,光纤陀螺作为汽车的旋转速率传感器已进入市场。利用光纤陀螺仪进行导航时,用车轮转速计传感器测移动距离,用光纤陀螺测量车体的回转,同时采用图象匹配、GPS系统等配合计算汽车的位置和方位,显示在信息处理器上。

2. 俄罗斯

俄罗斯的光纤陀螺有全光纤型和集成光学型。全光纤型采用的是光纤技术,即所有的光纤器件都做在同一根光纤上。

Fizoptika公司研制的光纤陀螺已经商品化,产品型号有:VG949、VG941B等。

[影响]

光纤陀螺仪作为继激光陀螺仪之后出现的新一代陀螺,各国的研制工作已经取得了重大的进展。光纤陀螺仪的研制对惯性导航和控制领域十分重要,随着计算机、微电子和光纤技术的发展和应用,它将取代传统的机械陀螺和平台惯导系统。

1. 引言

国际国内的中远程导弹和运载火箭,无不采用惯性制导。惯性制导的核心部分是惯性仪表,即陀螺仪、加速度计以及由它们组成的平台测量系统和速率捷联测量系统。随着火箭技术的发展,惯性仪表在最近的40年里,精度大幅度提高。对精度起决定性作用的是仪表支承轴上的干扰力矩,它比初期减小了4个量级,即几万倍之多。

21世纪的惯性仪表,在那些需要特别高精度的应用场合,如传统的机械转子式陀螺仪和加速度计,仍然是首选对象,至少在初期是这样。当然这种技术的难度和代价是相当高的,一,活动1μm般地说,为实现现代高精度陀螺仪的技术要求,其高速旋转部分的间隙需小于

部件的质心不稳定量需在1nm以下,金属材料的稳定性在1个微应变以下,机械加工精度为0. 1μm,温控精度0.01℃,局部环境的洁净度优于10级,测试设备的测角精度0.1″,长度测量精度10-7。

研制人员在开发各种新原理、新思路,并已取得了许多成功,得到实际应用。近期看,在众多的新型陀螺中,光学陀螺、包括激光陀螺或光纤陀螺,具有良好的应用前景。从长远看微机械惯性仪表具有很多潜在的优势,在未来的军、民各个领域中,必将获得广泛的应用。

惯性器件的可靠性设计将越来越受到重视,除着力于提高其本身的固有可靠性之外,其它如冗余设计及故障检测、诊断、隔离和重构等措施,定会进一步得到广泛使用。

作为惯性系统的两种测量方式,速率捷联技术会随着科学技术的不断进步而逐步替代惯性平

台技术。不过,在今后的一段时期内,惯性平台的高精度和抗严酷环境条件的能力,速率、捷联方式仍难以满足而不能完全替代它。

2. 40年的进展

迄今为止,国内外的导弹和运载火箭普遍采用惯性制导方式,这是由于惯性制导具有自主性,完全不依赖外部基准,不受外部干扰的突出优点。惯性仪表是惯性制导的核心设备,惯性仪表的漂移误差是构成制导工具误差的主要来源。到目前为止,还没有其他一种技术能代替惯性仪表的这种自主性。

所以,导弹火箭技术在发展过程中,对高精度、小型化、机动性、快速反应、突防能力和环境条件等方面提出了越来越高的要求,同样也是对惯性仪表的要求。与此同时,为适应面临的这种挑战,它也不断推动着惯性技术的提高。在过去的40年中,国内的惯性仪表,包括陀螺仪和加速度计以及由这些敏感器组成的惯性测量系统,即平台测量系统和速率捷联测量系统,在技术上取得了长足的进步。

机械转子式陀螺仪和加速度计是发展的主流。根据不同的精度和技术要求,研制了滚珠轴承的、液浮的、气浮的、磁浮的、静电的以及挠性等多种支承方式的仪表。仪表体积和重量不断减小,在陀螺角动量和加速度计摆性减小两个量级的同时,仪表精度又提高了两个量级,这表明支承轴上的干扰力矩减小了4个量级,即减小到初期的几万分之一,这是衡量技术水平的一项重要标志。

测量方式由初期的位置捷联发展为复杂的惯性平台和速率捷联系统。研制工作涉及的相关专业也由比较单纯的精密机械扩展为控制技术和电子技术等多个学科。特别是反馈控制技术和计算机的应用,促使惯性技术突飞猛进的发展。它们不仅使惯性仪表的功能扩展,改善仪表的工作环境,提高仪表的实际应用精度。而且,由于计算机速度的提高,使得依赖大量数学计算来定向的速率捷联测量方式得到实际应用。

新型元器件和惯性仪表用的特种原材料也得到了同步发展。诸如气体动压马达,微型螺旋泵,微型导电滑环,短路扎传感器,高精度力矩器等一批元器件相继研制成功。高性能的专用磁性材料,惯性级铍材以及高比重浮油等都代表相应材料领域的最高水平。各方面的制造和加工工艺也同时得到了提高。

随着仪表精度的不断提高,如何把相当于千分之一、万分之一地球自转速率和百万分之一的相对误差测试、标定和分离出来的问题日益突出,因而在测试方法研究和测试设备研制方面投入了相当可观的力量,拥有一批高性能、高精度的计算机控制的自动化测试设备及相关的基础设施。围绕惯性技术所取得的各项成果,满足了不同时期众多武器和运载型号的技术要求,充分说明了我国的惯性技术跻身于世界先进行列的这个事实。

3. 简要回顾

19世纪末以前,人们一直停留在力学范围内来研究陀螺的现象和特性,利用这种特性作成转子支承轴可是由于在当时转子转速的提高受到限制,可以用来观察地球的自转。的仪表,

上的磨擦力矩无法降低,这个愿望直至电机和滚珠轴承发明以后才成为现实,从而陀螺仪被做成陀螺罗经和地平仪,用来在运动物体上指示地理真北和地垂线。陀螺在火箭上的应用,开始于二战期间德国的V2火箭。从此,陀螺仪和加速度计成为一门惯性技术而快速发展起来,冷战时期精度上快速提高,功能上有很大扩展。不仅在海、陆、空、天的军事领域普遍应用,而且在大地

测量、空中摄影、隧道开凿和石油钻井等等许多民用部门也用它起到定向和稳定作用。

在军事应用的牵引下,惯性仪表精度大幅提高的同时,相关的制造工艺越来越复杂,生产周期长,成本很高,价格昂贵,令民用部门望而却步。即使在军用方面,由于陀螺仪转子的高速旋转和惯性测量系统的复杂性,在可靠性、安全性、兼容性、寿命以及体积重量等方面也暴露出某些固有的弱点。凡此种种,促使科技人员去思考和探索新的测量工具和测量方式,以替代传统的机械转子式的陀螺仪。因而,各种各样的新型陀螺仪和加速度计相继研制出来

并成功地获得应用。

4. 未来发展趋势

机械转子式陀螺仪的精度,目前机械加工和材料水平几乎达到极限,仍有潜力可挖。国外报道陀螺仪的漂移速率做到了地球自转速率的千万分之一,即10-6(°/h)。因此,在跨入21世纪后的一段时间内,在那些需要特别高精度的应用场合,这种传统的转子陀螺仪仍然是首选对象,虽然技术难度和代价是显然的。一般而言,要实现现代高精度陀螺仪的技术要求,其高速旋转部分的活动间隙要做到1μm左右,仪表活动部件质心的不稳定量在1nm以下,材料不稳定性为一个微应变,机械加工精度0.1μm,温控精度0.01℃,局部环境洁净度优于10级。测试设备的测角精度0.1″,长度测量精度10-7。

转子式陀螺仪的支承方式,将保留现有的电、液、气、磁和机械等几种方式。提高这类仪表精度的措施不是靠开发新的支承原理,更主要的要靠继续精心设计,改善材料性能和提高工艺重复性,积累单项成功以取得总体的进步。对历史回顾便可看出,无论哪种原理之所以取得今天这样的成功,无不饱含锲而不舍、积少成多的经历。

对惯性平台和陀螺加速度计的需求正在减少,但这并不意味着这种技术已经过时。在有些特殊场合,其它的测量方式还难以取代它们的突出优势。它不仅在高精度和抗严酷环境条件方面有潜力,而且在误差自标定、自补偿、自对准、自检测、数字化控制、适应机动快速发射以及提高可靠性、维修性、兼容性、寿命等方面还有改进的需要和条件。因此,平台和陀螺加速度计的发展方向,也不在于创造新的仪表支承方式,而是致力于发挥其本身固有的优势。除此之外,陀螺平台的稳定功能对那些空中摄影、天线、望远镜等需要姿态稳定的对象,比捷联系统更为直接而有效。在众多陀螺仪中,光学陀螺仪,包括激光陀螺和光纤陀螺,在当前的航天领域中,形成了与传统机械陀螺争夺市场的局面。这种陀螺仪基于光速不变的原理工作,已不同于原来力学意义上的惯性仪表。它既没有高速旋转的部件,也没有液浮陀螺那样的液体,是属于固态陀螺或称干式陀螺的一种。目前,光学陀螺仪的精度还在中等水平,影响其精度提高的一个因素是低速率输入时,激光陀螺有一个死区,即闭锁现象。为克服这种现象,研制人员想出了给这种陀螺加机械抖动的办法,或者用转台使之旋转,以产生速率偏置的办法来提高其精度。这些办法是有效的,同时也是有限的。因为它们又增加了机械活动部分,使结构复杂,往复式的抖动又会引起输出噪声的增加。

光纤陀螺是稍后于激光陀螺而发展起来的另一种光学陀螺,目前它还赶不上激光陀螺的性能,但由于光纤技术在现代通讯技术方面的特殊作用,与其相关的技术如保偏光纤、超辐射激光二极管光源、耦合器、偏振器和集成光学等在低成本、小型化、适合批生产方面取得了快速的发展,因而这种陀螺的发展有超过激光陀螺的势头。在航天领域特别是战术导弹制导上会有良好的应用前景。.

由于光学陀螺需要复杂的电子线路、高压电源以及良好的信号处理能力,在实际应用中会遇到如可靠性、抗电磁干扰和较大的输出噪声等方面的课题,需要花力气去解决。与传统的机械陀螺相比,小体积、低成本才是它们的主要优势,加之速率捷联测量方式的崛起和广泛应用,使得这种测量角速率并以数字量输出的新型惯性仪表,有条件在航空、战术导弹制导等应用中占领相当大的市场份额。

除光学陀螺外的其它各式各样的固态陀螺,就测量角速度和测量加速度的原理而言,仍是以哥氏

惯性力和比力为其力学基础。通过内部激励使物体产生往复的线运动,当外部存在角运动时,物体敏感角速率而产生幅度和相位与之对应的哥氏加速度,然后通过电子线路把哥氏惯性力检测出来,从而测到了角速率。同样,加速度计也是通过敏感质量和力平衡原理测量比力。这类惯性仪表中,最有吸引力、最受广泛重视和最具发展潜力的要数硅微机械陀螺和微机械加速度计。它们在单晶硅芯片上使用集成电路制造中的光刻、腐蚀、离子注入以及键合等微机械加工技术制造而成,非常适合大规模生产,成本很低,而且体积极小(仅小指甲盖那么大),重量轻,功耗小,启动快,有利于发展冗余技术,易于实现数字化和智能化。国外已有少量应用,精度还较低,国内还在试验室阶段。这种由惯性原理、微细加工和电子技术相结合的新技术,预示着惯性仪表乃至惯性系统的某种飞跃。它的高速发展将在军民品各个领域获得的应用。

惯性仪表和惯性系统的可靠性设计会越来越受到重视,作为一门工程技术,以往在功能设计和精度设计方面作出了巨大的努力。相应地,可靠性设计还需要更上一层楼。从国内外的报道可见,由于惯性制导系统的故障而导致导弹和运载火箭坠毁、飞行失败的事故时有发生。据统计,电子、电器系统的故障要多于机械部分。因此,一方面要提高惯性系统本身的固有可靠性,另一方面要采用冗余技术,采用故障检测、故障诊断、故障隔离和系统重构等可靠性措施,最大限度地提高其使用可靠性。

惯性仪表的误差随时间积累的特性,使得制导工具误差也随飞行时间的延长而增大。作为纯惯性制导,当然主要靠提高惯性系统的精度来降低制导误差。90年代初,出现了全球定位系统(GPS),带动了惯性系统/GPS组合制导的发展,这确实是一种优势互补的制导方式。惯性系统具有自主性,不受干扰且输出稳定,缺点是误差随时间积累。相反,GPS的精度高而误差不积累,但是,它的输出信号易受地理环境和电磁环境的干扰,甚至短时间失去信号。两者组合,特别是捷联惯性系统/GPS组合制导,可说是珠联璧合。在战术武器应用方面前景看好。战略武器方面,惯性系统与其它方式的组合制导,也是一个重要的发展空间。

5. 结论

机械转子式陀螺仪作为有实用价值的测量仪表,诞生于20世纪初期。经过100年的改进,尤其是后50年航天军事应用的牵引,由于其自主性和高精度,使这种仪表达到了应用的鼎盛时期。展望21世纪,惯性仪表将向以微机械惯性仪表为代表的全固态型发展,惯性系统向以捷联惯性系统为基础的组合系统发展。惯性技术将进一步从主要为军事应用向军民两用的方向发展。航天惯性技术在实施精确打击中的特殊地位,导弹武器精确制导对惯性技术的要求,激光陀螺仪、光纤陀螺仪和微机电惯性仪表目前在国内外研制现状。

惯性技术在实施精确打击中的特殊地位惯性技术是为武器系统定向导航的关键技术。以陀螺仪、加速度计等惯性器件、惯性测量、惯性导航和惯性制导为主要研究内容的惯性技术,是用来实现载体姿态和轨迹控制的完全自主式的工程技术。在航天技术中,惯性技术对实施精确打击有着特殊的地位。精确制导武器依靠机载惯性系统的精确定位、弹载惯性制导的精确导引和末制导的精确瞄准。导航系统中,惯性导航/制导系统是可信赖、完全自主式的导航/制导系统。完全自主的惯性系统具有抗干扰能力,无论是精确导航和定位、武器制导和瞄准,惯性技术对武器系甚至是关键作用,惯性系统都发挥了保障作用,还是在防区外精确打击,

统实施精确打击有着不可替代的地位。

信息化战争的特点,重点是发展精确制导武器,实现中远程精确打击和非接触作战;大力提高防空、反导、突防、电子和信息作战体系,加强局部作战区域的制空、制海和制电磁权的作战能力。惯性技术是加强武器系统和提高作战能力的关键技术。

军事需求和电子技术的发展,促进了惯性技术的发展,惯性技术的发展又取决于惯性器件的发展。从目前国外惯性导航与制导系统发展和应用来看,惯性器件的发展大致分为机电陀螺仪、激光陀螺仪、光纤陀螺仪和微机电惯性仪表四个阶段。国外液浮、气浮、静电和动力调谐陀螺仪的技术非常成熟,应用非常广泛。目前美国静电陀螺仪随机漂移优于0.001(°)/h,液浮陀螺仪随机

光电子技术的应用和发展前景

光电子技术的应用和发展前景 姓名:曾倬 学号:14021050128 专业:电子信息科学与技术 指导老师:黄晓莉

摘要:光电子技术确切称为信息光电子技术,本文论述了一些新型光电子器件及其发展方向 20世纪60年代激光问世以来,最初应用于激光测距等少数应用,光电子技术是继微电子技术之后近30年来迅猛发展的综合性高新技术。1962年半导体激光器的诞生是近代科学技术史上一个重大事件。经历十多年的初期探索,到70年代,由于有了室温下连续工作的半导体激光器和传输 损耗很低的光纤,光电子技术才迅速发展起来。现在全世界敷设的通信光纤总长超过1000万公里,主要用于建设宽带综合业务数字通信网。以光盘为代表的信息存储和激光打印机、复印机和发光二极管大屏幕现实为代表的信息显示技术称为市场最大的电子 产品。人们对光电神经网络计算机技术抱有很大希望,希望获得功耗的、响应带宽很大,噪音低的光电子技术。

目录 (一)光电子与光电子产业概况 (二)光电子的地位与作用 (三)二十一世纪信息光电子产业将成为支柱产业 (四)国际光电子领域的发展趋势 (五)光电子的应用

(一),光电子及光电子产业概况 光电子技术是一个比较庞大的体系,它包括信息传输,如光纤通信、空间和海底光通信等;信息处理,如计算机光互连、光计算、光交换等;信息获取,如光学传感和遥感、光纤传感等;信息存储,如光盘、全息存储技术等;信息显示,如大屏幕平板显示、激光打印和印刷等。其中信息光电子技术是光电子学领域中最为活跃的分支。在信息技术发展过程中,电子作为信息的载体作出了巨大的贡献。但它也在速率、容量和空间相容性等方面受到严峻的挑战。 采用光子作为信息的载体,其响应速度可达到飞秒量级、比电子快三个数量级以上,加之光子的高度并行处理能力,不存在电磁串扰和路径延迟等缺点,使其具有超出电子的信息容量与处理速度的潜力。充分地综合利用电子和光子两大微观信息载体各自的优点,必将大大改善电子通信设备、电子计算机和电子仪器的性能。 今天,光电子已不再局限传统意义上的用于光发射、光调制、光传输、光传感等的电子学的一

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

光纤陀螺仪的发展现状_周海波

2005年第24卷第6期 传感器技术(J o u r n a l o f T r a n s d u c e r T e c h n o l o g y) 综述与评论 光纤陀螺仪的发展现状 周海波,刘建业,赖际舟,李荣冰 (南京航空航天大学导航研究中心,江苏南京210016) 摘 要:根据光纤陀螺仪的工作原理和特点,光纤陀螺仪具有不同的分类。介绍了国外光纤陀螺仪的现状,预测了近期和长远的发展趋势,旨在对我国的光纤陀螺技术的发展能有所帮助。 关键词:光纤陀螺仪;萨格纳效应;干涉型;谐振式;布里渊式 中图分类号:T N2,T P2 文献标识码:A 文章编号:1000-9787(2005)06-0001-03 D e v e l o p m e n t s t a t u s o f f i b e r-o p t i c g y r o s c o p e s Z H O UH a i-b o,L I UJ i a n-y e,L A I J i-z h o u,L I R o n g-b i n g (N a v i g a t i o nR e s C e n t e r,N a n j i n gU n i v e r s i t yo f A e r o n a u t i c s a n dA s t r o n a u t i c s,N a n j i n g210016,C h i n a) A b s t r a c t:T h ef i b e r-o p t i cg y r o s c o p e(F O G)i sc l a s s i f i e d i n t od i f f e r e n tt y p e sa c c o r d i n gt oi t sp r i n c i p l ea n d c h a r a c t e r i s t i c.T h e i n t e r n a t i o n a l s t a t u so f F O G i si n t r o d u c e da n dt h es h o r t-t e r m a n dl o n g-t e r m t r e n do f F O G i s f o r e c a s t.I t w i l l b eb e n e f i t t o t h e c o u r s e o f o u r F O G. K e yw o r d s:F O G(f i b e r-o p t i c g y r o s c o p e);S a g n a c e f f e c t;i n t e r f e r o m e t r i c;r e s o n a n t;B r i l l o u i n 0 引 言 光纤陀螺仪属于第四代陀螺仪———光学陀螺仪的一种,其基本工作原理基于萨格纳效应,即在同一闭合光路中从同一光源发出两束特征相同的光,沿相反的方向进行传播,汇合到同一探测点,产生干涉。若存在绕垂直于闭合光路所在平面的轴线相对惯性空间转动的角速度,则沿正、反方向传播的光束产生光程差,该差值与角速度成正比。通过光程差与相应的相位差的关系,可通过检测相位差,计算角速度。它一般由光纤传感线圈、集成光学芯片、宽带光源和光电探测器组成。与传统的机械陀螺仪相比,具有无运动部件、耐冲击、结构简单、启动时间短、灵敏度高、动态范围宽、寿命长等优点。与另一种光学陀螺仪———环形激光陀螺仪相比,光纤陀螺仪不需要光学镜的高精度加工、光腔的严格密封和机械偏置技术,能够有效地克服了激光陀螺的闭锁现象,易于制造。 本文从光纤陀螺仪的原理和优点出发,着重对光纤陀螺仪的分类、国外研究现状及其发展趋势做了详细的介绍,希望对我国的光纤陀螺的研制和发展有所裨益。 1 光纤陀螺仪的分类 光纤陀螺仪按照不同的分类标准,有不同的分类结果。按结构可分为单轴和多轴光纤陀螺,光纤陀螺的多轴化正是其发展方向之一。按其回路类型可分为开环光纤陀螺和闭环光纤陀螺两类,开环光纤陀螺不带反馈,直接检测光输出,省去许多复杂的光学和电路结构,具有结构简单、价格 收稿日期:2004-11-20便宜、可靠性高、消耗功率低等优点,缺点是靠增加单模光纤的长度来提高陀螺的灵敏度,输入-输出线性度差、动态范围小,主要用作角度传感器[1]。闭环光纤陀螺包含闭环环节,大大降低光源漂移的影响,扩大了光纤陀螺的动态范围,对光源强度变化和元件增益变化不敏感,陀螺漂移非常小,输出线性度和稳定性只与相位变换器有关[2],主要应用于中等精度的惯导系统,对光纤陀螺的小型化和稳定性有重要作用,是高精度光纤陀螺研究的主要趋势。 按照光学系统的构成可分为全光纤型和集成光学器件型。全光纤陀螺成本较低,但实现高精度的技术难度较大,大多用于精度要求不高和低成本的场合。集成光学器件光纤陀螺在信号处理中可以采用数字闭环技术,易于实现高精度和高稳定性,是目前最常用的光纤陀螺构成模式。 按照性能和应用的角度可分为速率级、战术级和惯性级等3个级别[3]。速率级光纤陀螺已经产业化,主要应用于机器人、地下建造隧道、管道路径勘测装置和汽车导航等对精度要求不高的场合。日本、法国等国家研制、生产的这种精度的陀螺仪,已大批量应用到民用领域。战术级光纤陀螺具有寿命长、可靠性高和成本低等优点,主要用于战术导弹、近程/中程导弹和商用飞机的姿态对准参考系统中。惯性级光纤陀螺主要是用于空间定位和潜艇导航,其开发和研制正逐步走向成熟,美国有关公司和研究机构是研制、生产该级别光纤陀螺的佼佼者,如H o n e y w e l l,N o r t h r o p等公司。 1

国防焊接技术研究应用现状与发展

焊 接是应用最广泛、最重要的材料永久连接方法。它涉及能源、冶金、 材料、电子、力学等学科,应用范 围覆盖钢铁材料及铝、镁、铜、钛等有色金属和金属基复合材料,焊接工艺方法从传统的电弧焊发展到先进的激光束流焊及搅拌摩擦焊等精密和清洁焊接方法,生产方式由手工操作发展到机器人自动化焊接生产,工艺管理模式由落后的工艺卡方式上升到工艺数据库和专家系统管理,是现代武器装备制造工程中不可或缺的关键技术。 1 “十五”以来,我国国防焊接技术取得长足进步 围绕武器装备发展和载人航天等重大科技专项的需求,针对大型厚壁/薄壁构件、薄壁复杂构件焊接制造的瓶颈问题,在国防基础科研、总装预研等计划的支持下,先进焊接工艺、质量检测与控制、自动化系统集成等多项关键技术获得突破,形成了一系列应用于型号研制和生产的工艺与装备成果。主要体现在以下几个方面: 1.1 搅拌摩擦焊工艺与装备技术研究与应用发展迅速 搅拌摩擦焊技术是近年来国际上发展较快的技术之一,是一种低温连接方法,具备对被焊材料损伤小、焊接变形低、焊缝强度高和绿色制造特点,被誉为“当代最具革命性的焊接技术”。国外开始将该技术应用于航空航天的产品制造中,最具代表性的是欧盟的阿里亚娜火箭、美国的德尔塔和宇宙神火箭等。国内以 国防焊接技术 研究应用现状与发展 国防科技工业焊接自动化技术研究应用中心 陈彦宾 北京航空制造工程研究所为主,重点开展系列 铝合金焊接工艺、组织控制、断裂机制等基础工艺研究工作,为加快工艺成熟和推广奠定了扎实的基础,装备国产化的步伐迅速,研制出 数十套用于研究和生产的装备。 航天科技集团一院首都航天机械公司首次在用于运载火箭燃料贮箱纵缝中采用了搅拌摩擦焊技术,标志着搅拌摩擦焊技术在我国的运载火箭燃料贮箱制造上进入了工程应用阶段,大大地提升了我国运载火箭关键结构的制造技 术水平和能力。搅拌摩擦焊技术在航天、电子及船舶行业有了新进展,已经研制成功厚壁铝合金和船舶铝合金壁板的专用焊接设备,初步形成了面向华东地区,服务于航天、电子、船舶等行业的研究推广平台。 1.2 激光焊接技术军工应用实现突破 激光焊接具有可焊各种金属材料、焊接速度快(是传统弧焊的几倍,甚至是几十倍)、焊缝深宽比大(最大达12:1)、焊接变形小、 陈彦宾 1962年生,哈尔滨工业大学教授,国防科技工业焊接自动化技术研究应用中心主任,主要从事激光材料加工基础与工程、焊接自动化系统集成技术等方向的基础与应用研究,发表论文一百余篇、专著一部,省部级奖励两项。现任中国焊接学会常务理事,热切割专业委员会主任;高能束流焊接专业委员会委员;中国光学学会激光加工专业委员会委员;国防基础科研工艺与装备技术领域专家,航天科工集团第二研究院工艺专家。

电气工程的发展现状与发展趋势

电气工程的发展现状与发展趋势 一.电气工程的发展现状: 概论:我国电力工业正以“大机组,大电网,高电压,高参数,高度自动化”等“三大三高”的现代电力系统的模式超长规模的建设与发展,因此对工程技术设计人员的素质和能力提出了更新和更高的要求。未来的几十年,我国电力系统和电气工程会依然保持较快发展趋势,光伏发电和其他可再生资源将得到快速发展,新的电力电子技术,电工材料,计算机及网络技术,控制与管理手段具有巨大影响潜力。 1.电机的驱动及控制: 逆变器的出现推动了交流电机速度和转矩控制的发展,这使得电机在仅仅30年就应用到了不可思议的领域。功率半导体元件和数字控制技术的进步使得电机驱动能够实现高精度的位置和速度控制。交流驱动技术的应用也带来了能源节约和系统效率的提高。 电机本体及其控制技术在近几年取得相当大的进步。这要归功于半导体技术的空前发展带来的电力电子学领域的显着进步。电机驱动产业发展的利处已经触及各种各样的设备,从大型工业设备像钢铁制造厂、造纸厂的轧钢机等,到机床和半导体制造机中使用的机电一体化设备。交流电机控制器包括异步电机控制器和永磁电机控制器,这两者在电机驱动业的全过程中起着关键性作用。:目前,异步电动机矢量控制技术、直接转矩控制技术乃至无传感器的直接转矩控制技术已实用化。 2.电力电子技术的应用: 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发

展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。 电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。 传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。 20世纪以来,电力电子作为自动化、节材、节能、机电一体化、智能化的基础,正朝着应用技术高频化、产品性能绿色化、硬件结构模块化的现代化方向发展。3.电力系统及其自动化控制: 电力系统自动化即对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),

国内外光纤传感器的发展现状

国内外光纤传感器的发展现状 2011-6-29 8:25:44 讯石光通讯咨询网作者:iccsz 摘要:本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。 本文将分析光纤传感器国内外发展的现状。主要介绍了两方面的情况:光纤传感器原理性研究的发展现状和光纤传感器产品的应用与开发的现状。前者报道了光纤光栅、分布式光纤传感技术以及光纤传感网的发展,这些是目前的研究热点;后者介绍了光层析成像技术、智能材料、光纤陀螺及惯性导航系统、工业工程类传感器(其中包括电力工业用高电压、大电流传感器,利用光纤的弹光效应和FBG器件的应力传感器等)。最后介绍了新型光纤材料与器件、氟化物玻璃光纤,碳涂覆光纤、以及正在研究中的蜂窝型波导光纤、液晶光纤等。 一、引言 随着密集波分复用DWDM技术、掺铒光纤放大器EDFA技术和光时分复用OTDR技术的发展和成熟,光纤通信技术正向着超高速、大容量通信系统的方向发展,并且逐步向全光网络演进。在光通信迅猛发展的带动下,光纤传感器作为传感器家族中年轻的一员,以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,已迅速成长为年成交额超过10亿美金,并预计将于2010年拥有超过50亿美金市场的产业。每年由美国光学工程师学会(OSA)主办的光纤传感国际会议(OFS)及时报道着光纤传感领域的最新进展,并对光纤传感及其相应技术进行有益的研讨。 当前,世界上光纤传感领域的发展可分为两大方向:原理性研究与应用开发。随着光纤技术的日趋成熟,对光纤传感器实用化的开发成为整个领域发展的热点和关键。由于光纤传感技术并未如光纤通信技术那样迅速地获得产业化,许多关键技术仍然停留在实验室样机阶段,距商业化有一定的距离,因此光纤传感技术的原理性研究仍处于相当重要的位置。由于很多光纤传感器的开发是以取代当前已相当成熟,可靠性和成本已得到公认,并已经被广泛采用的传统机电传感系统为目的,所以尽管这些光纤传感器具有如电磁绝缘、高灵敏度、易复用等诸多优势,其市场渗透所面临的困难和挑战是可想而知的。而那些具有前所未有全新功能的光纤传感器则在竞争中占有明显优势,FBG和其它的光栅类传感器就是一个最好的例证。当前的原理性研究热点集中于光纤光栅(FBG和LPG)型传感器和分布式光纤传感系统两大板块。 FBG型光纤传感器自发明之日起,已走过了原理性研究和实验论证的百家争鸣阶段。目前成熟的FBG制作工艺已可形成小批量生产能力,而研究的焦点也转向解决高精度应用,完善解调和复用技术,以及降低成本等几个方向上。另一方面,由于光纤传感器具有将传输与传感媒质合而为一的特性,使得沿布设路径上的光纤可全部成为敏感元件,因此,分布式传感成为光纤传感器与生俱来的优点。 对于光纤传感技术的应用研究主要有以下四大类:光(纤)层析成像技术(OCT,OPT)、智能材料(SMART MATERIALS)、光纤陀螺与惯导系统(IFOG,IMIU )和常规工业工程传感器。另外,由于光纤通信市场需求的带动以及传感技术的特殊要求,新型器件和特种光纤的研究成果也层出不穷。 目前,我国的光纤传感器研究大多数集中于大专院校和科研单位,仍然未完成由实验室向产品化的过渡。其中,比较成熟的技术包括:清华大学光纤传感中心与总后合作研制开发的光纤油罐液位与温度测量系统,已经安装运行数年;北京航空航天大学与总装合作研制的光纤陀螺系统,目前指标为0.2°/hr ;中国计量学院研制的分布式光纤传感系统,已有产品报道;华中理工大学与广东某公司联合研制的强电压、大电流传感系统。此外,在广东、深圳等地,还建立了许多光纤无源器件生产厂

飞轮储能技术的现状和发展前景

飞轮储能技术的现状和发展前景 飞轮储能系统(FESS)又称飞轮电池或机械电池,由于它与化学电池相比所具有 的巨大优势和未来市场的巨大潜力,引起了人们的密切关注。它结合了当今最新的磁悬浮技术、高速电机技术、电力电子技术和新材料技术,使得飞轮储存的能量有了质的飞跃,再加上真空技术的应用,使得各种损耗也非常小。 飞轮电池的发展开始于20 世纪70 年代,当时正处于石油禁运和天然气危机时期。此时,美国能量研究发展署(ERDA) 及其后的美国能源部(DoE) 资助飞轮系统的应用开发,包括电动汽车的超级飞轮的研究。 Lewis 研究中心(LeRC) 在ERDA 的 协助和美国航空航天局(NASA) 的资助下专门研究用于真空下的机械轴承和用于复合车辆的飞轮系统的传动系统。NASA 同时也资助Goddard 空间飞行中心(GSFC) 研究适用于飞行器动量飞轮的电磁轴承。80 年代,DoE 削减了飞轮储能研究的资助,但NASA 继续资助GSFC 研究卫星飞轮系统的电磁轴承,同时还资助了Langley 研 究中心(LaRC) 及Marshall 空间飞行中心(MSFC) 关于组合能量储存和姿态控制的动量飞轮构形的研究。 近10 年来,一大批新型复合材料和新技术的诞生和发展,如高强度的碳素纤维 复合材料(抗拉强度高达8. 27 GPa) 、磁悬浮技术和高温超导技术、高速电机/ 发电机技术以及电力电子技术等,使得飞轮能够储存大量的能量,给飞轮的应用带来了新的活力。它可应用于国防工业(如卫星、电磁炮和电热化学枪、作战侦察车辆等) 、汽车工业(电动汽车) 、电力行业(如电力质量和电力负载调节等) 、医疗和电信业(作UPS 用) 等1NASA 的应用有航天器(宇宙飞船) 、发射装置、飞行器动力系统、不间断电源(UPS) 和宇宙漫步者。

铆接技术原理与工艺特点

关于铆接技术 一、 铆接技术原理与工艺特点 常见的铆接技术分为冷铆接和热铆接,冷铆接是用铆杆对铆钉局部加压,并绕中心连续摆动或者铆钉受力膨胀,直到铆钉成形的铆接方法。冷铆常见的有摆碾铆接法及径向铆接法。摆碾铆接法较易理解,该铆头仅沿着圆周方向摆动碾压。 而径向铆接原理较为复杂,它的铆头运动轨迹是梅花状或者说是以圆为中心向外扩展的,铆头每次都通过铆钉中心点。冷铆接最常见的铆接工具有铆接机,压铆机,铆钉枪和铆螺母枪,铆钉枪和铆螺母枪是最常见单面冷铆接所用的工具。这是冷铆接工艺中最具代表性的冷铆接方法,因为使用方便,也只需在工件的一侧进行铆接,相对双面铆接的铆钉锤来说更方便。 就两种铆接法比较而言,径向铆接面所铆零件的质量较好,效率略高,并且铆接更为稳定,铆件无须夹持,即使铆钉中心相对主轴中心略有偏移也能顺利完成铆接工作。而摆碾铆接机必须将工件准确定位,最好夹持铆件。然而径向铆接机因结构复杂,造价高,维修不方便,非特殊场合一般不采用。相反地,摆碾铆接机结构简单,成本低,维修方便,可靠性好,能够满足90%以上零件的铆接要求,因而受到从多人士的亲睐。此外,利用摆碾铆接的原理,还可以制造适宜于多点铆接的多头铆接机,在现代工业生产中有其独特的优势。 热铆接是将铆钉加热到一定温度后进行的铆接。由于加热后铆钉的塑性提高、硬度降低,钉头成型容易,所以热铆时所需的外力比冷铆要小的多;另外,在铆钉冷却过程中,钉杆长度方向的收缩会增加板料间的正压力,当板料受力后可产生更大的摩擦阻力,提高了铆接强度。热铆常用在铆钉材质塑性较差、铆钉直径较大或铆力不足的情况下。

冷铆接法是以连续的局部变形便铆钉成形,其所施压力离铆钉中心越远越大,这恰恰符合材料变形的自然规律。因此,采用冷铆接技术所需设备小,节省费用。能提高铆钉的承载能力,强度高于传统铆接的80%。铆钉材料具有特别好的形变性能,铆杆不会出现质量问题,寿命较高,同时,只要改变铆头(不同的接杆和不同的铆接配件铆螺母铆钉等)的形状,就可以铆接多种形状。 二、 按工作方式分,铆接可分为手工铆接和自动钻铆。手工铆接由于受工人熟练程度和体力等因素的限制,难以保证稳定的高质量连接。而自动钻铆是航空航天制造领域应自动化装配需要而发展起来的一项先进制造技术。自动钻铆技术即利用其代替手工,自动完成钻孔、送钉及铆接等工序,是集电气、液压、气动、自动控制为一体的,在装配过程中不仅可以实现组件溅部件)的自动定位,同时还可以一次完成夹紧、钻孔、送钉、铆接/安装等一系列工作。它可以代替传统的手工铆接技术,提高生产速率、保证质量稳定、大大减少人为因素造成的缺陷。随着我国航空航天产业在性能、水平等方面的不断提高,在铆接装配中发展、应用自动钻铆技术,己经势在必行。具体原因如下: (1)自动钻铆技术减少操作时间。 ①减少成孔次数,一次钻孔完成; ②自动夹紧,消除了结构件之间的毛刺,节约了分解、去毛刺和重新安装工序; ③制孔后在孔边缘的毛刺可以得到控制: ④送钉、定位、铆接。 (2)自动钻铆机提高制孔质量。 ①制孔孔径公差控制在士0.015mm之内; ②内孔表面粗糙度最低为Ra3.2urn; ③制孔垂直度在士0.50以内; ④制孔时结构件之间无毛刺,背部毛刺控制在0.12ram之内; ⑤孔壁无裂纹。 (3)与手工铆接相比,在成本上有大幅度降低,通过比较人工与自动钻铆机安装相同数量的紧固件,所耗费的工时上,可以看出,对于大量同种类的紧固件的安装,自动钻铆机可以节约的工时成倍数增长。

微电子技术的发展历史与前景展望

微电子技术的发展历史与前景展望 姓名:张海洋班级:12电本一学号:1250720044 摘要:微电子是影响一个国家发展的重要因素,在国家的经济发展中占有举 足轻重的地位,本文简要介绍微电子的发展史,并且从光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术等技术对微电子技术做前景展望。 关键词:微电子晶体管集成电路半导体。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子产业是基础性产业,是信息产业的核心技术,它之所以发展得如此之快,除了技术本身对国民经济的巨大贡献之外,还与它极强的渗透性有关。 微电子学兴起在现代,在1883年,爱迪生把一根钢丝电极封入灯泡,靠近灯丝,发现碳丝加热后,铜丝上有微弱的电流通过,这就是所谓的“爱迪生效应”。电子的发现,证实“爱迪生效应”是热电子发射效应。 英国另一位科学家弗莱明首先看到了它的实用价值,1904年,他进一步发现,有热电极和冷电极两个电极的真空管,对于从空气中传来的交变无线电波具有“检波器”的作用,他把这种管子称为“热离子管”,并在英国取得了专利。这就是“二极真空电子管”。自此,晶体管就有了一个雏形。 在1947年,临近圣诞节的时候,在贝尔实验室内,一个半导体材料与一个弯支架被堆放在了一起,世界上第一个晶体管就诞生了,由于晶体管有着比电子管更好的性能,所以在此后的10年内,晶体管飞速发展。 1958年,德州仪器的工程师Jack Kilby将三种电子元件结合到一片小小的硅片上,制出了世界上第一个集成电路(IC)。到1959年,就有人尝试着使用硅来制造集成电路,这个时期,实用硅平面IC制造飞速发展.。 第二年,也是在贝尔实验室,D. Kahng和Martin Atalla发明了MOSFET,因为MOSFET制造成本低廉与使用面积较小、高整合度的特点,集成电路可以变得很小。至此,微电子学已经发展到了一定的高度。 然后就是在1965年,摩尔对集成电路做出了一个大胆的预测:集成电路的芯片集成度将以四年翻两番,而成本却成比例的递减。在当时,这种预测看起来是不可思议,但是现在事实证明,摩尔的预测诗完全正确的。 接下来,就是Intel制造出了一系列的CPU芯片,将我们完全的带入了信息时代。 由上面我们可以看出,微电子技术是当代发展最快的技术之一,是电子信息产业的基础和心脏。时至今日,微电子技术变得更加重要,无论是在航天航空技术、遥测传感技术、通讯技术、计算机技术、网络技术或家用电器产业,都离不开微电子技术的发展。甚至是在现代战争中,微电子技术也是随处可见。在我国,已经把电子信息产业列为国民经济的支拄性产业,微电子信息技术在我国也正受到越来越多的关注,其重要性也不言而喻,如今,微电子技术已成为衡量一个国家科学技术进步和综合国力的重要标志,微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。

国内外自动钻铆技术的发展现状及应用

国内外自动钻铆技术的发展现状及应用 西飞国际设备维修中心 楼阿莉 当代飞机制造技术的发展,对疲劳寿命、密封、防腐的要求越来越高,为了满足飞机对各种性能的要求,航空制造领域发展了各种先进技术,其中机械连接技术的干涉配合无头铆钉自动钻铆技术就是其中之一。国外铆接装配技术几十年的应用证明,采用自动钻铆机后装配效率至少比手工铆接装配提高10倍,并能节约安装成本,改善劳动条件,更主要的是能够确保安装质量,大大减少人为因素造成的缺陷。现在采用自动钻铆机已成为改善飞机性能的主要工艺措施之一。 美国是最早发展自动钻铆技术的国家,早在 50 年代初就已在飞机铆接装配生产线上应用了自动钻铆机,经过 50 多年的发展,现在世界各航空工业发达国家都已广泛采用这项技术。自动钻铆技术主要包含以下内 容: (1) 设备的研制、开发。以不同 飞机的结构为对象,发展多种型号的 数控自动钻铆系统,不仅能铆接壁 板,而且还可铆接各种组件,如肋、 框、梁、翼面、前缘等,从而使自动 钻铆系统的工作覆盖面大幅度增加, 使整个飞机的铆接工作有较大的改 观。 (2) 对各种干涉配合新型紧固件 进行自动安装。通过增加附件,可以 对两件型紧固件进行自动安装,如环 槽钉、高锁螺栓、锥形螺栓等,也可 对无头铆钉进行干涉配合铆接,从而 提高铆接结构疲劳寿命5~6倍,对提 高飞机整体油箱的密封铆接质量有重 大意义。 (3) 自动钻铆工艺。结构铆接的 整个过程通过预先编程全部由CNC 程序控制,自动钻铆工艺是在一台设 备上一次性地连续完成夹紧、钻孔、 锪窝、注胶、放铆、铣平等工序。由 于机床带有高速、高精度的转削主轴 头,一次进给即能钻出0.005mm以 内高精度的孔,同时埋头窝的深度也 可精确控制在±0.01mm以内,再加 上机床由数控系统控制各轴运动,并 采用精密自动化工装夹具,使得铆钉 镦头高度保持一致,不受人为因素的 影响。所有这些因素均使钉杆在孔中 充填质量大为改善,从而有利于提高 细节疲劳强度许用值。此外,由于钻 孔时铆接件处在高的夹紧力下,层间 不会产生毛刺和进入切削,可以减小 疲劳载荷下发生磨蚀损伤的程度,这 些均有利于提高接头的疲劳强度。 (4) 数字化铆接的实现。现代飞 自动钻铆技术不只是工艺机械化、自动化的要求,更主要的还是飞机本 身性能的要求。目前世界各航空工业发达国家都已广泛采用自动钻铆技 术。随着我国航空工业研制的新机种的性能、水平不断提高,在铆接装 配中发展自动钻铆技术已经势在必行 50航空制造技术2005年第6期 FORUM

浅议现代汽车电子技术的应用现状及发展趋势

浅议现代汽车电子技术的应用现状及发展趋势 随着科技的发展,现代电子技术在汽车上的应用也越来越广泛,增加了汽车功能,使得汽车更加人性化、智能化。汽车作为一种交通工具,它属于高技术产品,对于这种行业来说,电子化程度的高低是衡量汽车先进水平的一个重要标志,为此,加大现代汽车电子技术的研究与应用有着重大意义。 标签:现代汽车;电子技术;应用现状;发展趋势 一、现代汽车电子技术应用现状 现阶段,汽车电子技术发展快速,技术水平成熟。汽车产业的迅速发展,先进技术在汽车产业的应用更加常态化。卫星定位系统已经应用到电子信息技术中,特别是在一些高品牌汽车,人们享受着汽车电子服务带来的便捷并逐渐融入到人们生活中。人们在开车时可以观看视频、听CD播放、卫星定位、发送邮件等,为人们提供了便利生活。 1.1电子产品市场发展空间较大 汽车安全装置中,ABS系统与ASR系统是其重要结构。汽车在行驶时,ABS 系统能够避免汽车制动过程中车轮被抱死,该系统的应用有效解决了车轮运营被抱死,故障发生。ABS系统设计过程中通过路面和轮胎之间的摩擦力,提升了车辆制动可操作性与方向控制,防止出现追尾、侧滑问题,拉近了制动距离。经过汽车制动系统与控制发动机转矩途操控驱动力,成为ASR系统的结构原理。汽车发动过程中,缩减由于加速引发汽车驱动力,避免路面和轮胎驱动力摩擦发生车轮空转打滑状态,确保汽车的方向可操作性使汽车运营处于最佳驱动力状态。 1.2电子导航成为汽车电子技术发展标志 电子导航是电子地图与GPS接收机重要结构,利用导航系统定位发挥GPS 接收卫生信号功能。经过计算汽车经纬度位置和计算机电子地图辨别对应后,自主匹配;计算机系统内显示汽车运营方向与运行轨道,便于人们掌握汽车驾驶状态。另一方面,电子导航系统还具有交通监理监控与车辆定位、导航服务。 1.3防盗系统应用前景广阔 现如今,汽车盗窃已经屡见不鲜,而防盗已经成为人们普遍关注的问题。由此,汽车防盗技术成为汽车电子技术发展的重要标准;防盗系统的使用有助于提升汽车安全性,将防盗系统安装与电动车、货车上能够提升车辆安全性,避免被盗。由于其具有一定防盗性能推动了防盗产品的发展,电子防盗产品包含机械式电子防盗产品、电子式、GPS式防盗系统,在今后发展中将逐年增长,在汽车防盗市场发挥了重要作用。

中国光纤陀螺仪市场调研报告

中国光纤陀螺仪行业 市场调研投资分析预测报告

正文目录 第一章光纤陀螺仪行业概述 (19) 第一节光纤陀螺仪简述 (19) 一、定义及分类 (19) 二、产品特性 (20) 三、主要应用领域 (21) 第二节光纤陀螺仪的型号及用途 (21) 第三节光纤陀螺仪行业发展现状 (22) 第四节产业链结构分析 (25) 第五节光纤陀螺仪生产技术和工艺分析 (28) 第六节光纤陀螺仪在生产中遇到的问题及其解决方法 (31) 第七节光纤陀螺仪行业的地位分析 (31) 一、行业在第二产业中的地位 (31) 二、行业在GDP中的作用 (31) 第八节2015-2020年光纤陀螺仪行业相关政策发展的影响展望 (32) 一、国家“十三五”产业政策发展的影响展望 (32) 二、相关行业政策的影响展望 (32) 第二章中国光纤陀螺仪行业政策技术环境分析 (34) 第一节光纤陀螺仪行业政策法规环境分析 (34) 一、国家“十三五”规划解读 (34)

二、行业“十三五”规划解读 (34) 三、行业税收政策分析 (35) 四、行业标准概述 (36) 五、行业环保政策分析 (36) 六、行业政策走势及其影响 (36) 第二节政策法规对光纤陀螺仪产品的影响 (37) 一、2014-2015年中国光纤陀螺仪环保政策执行影响分析 (37) 二、节能环保新政策对光纤陀螺仪市场的影响 (37) 三、新政策对光纤陀螺仪市场的影响 (37) 第三节光纤陀螺仪行业技术环境分析 (38) 一、国内技术水平现状 (38) 二、国际技术发展趋势 (38) 三、科技创新主攻方向 (39) 第三章光纤陀螺仪生产技术分析 (41) 第一节光纤陀螺仪主要生产工艺技术 (41) 一、光纤陀螺仪生产工艺原理 (41) 二、光纤陀螺仪生产工艺流程 (42) 第二节光纤陀螺仪其他生产方法 (43) 第三节光纤陀螺仪生产工艺优劣势比较 (46) 第四节光纤陀螺仪工艺技术的改进与发展趋势 (46) 第五节光纤陀螺仪工艺技术路线的选择 (46) 第六节光纤陀螺仪质量指标 (47)

新能源储能系统发展现状及未来发展趋势

新能源储能系统发展现状及未来发展趋势 目录 第一章新能源储能系统相关论述 (1) 新能源相关论述 (1) 新能源定义 (1) 新能源分类 (1) 储能技术相关论述 (1) 储能技术的定义 (1) 储能技术的分类 (1) 第二章国内外新能源储能系统的发展动态分析 (2) 日本新能源储能系统的发展动态分析 (2) 新能源储能电池的发展现状及未来发展趋势 (2) 新能源储能系统的未来发展趋势 (3) 新能源储能系统在实际中的应用 (3) 美国在新能源储能系统的应用中漫漫求索 (4) 政策与投资力度 (4) 储能技术的经济性瓶颈 (5) 我国新能源储能系统的现状 (5) 储能是构建智能电网的关键环节 (6) 商业模式不成熟制约储能发展 (6) 第三章国内外在相关新能源储能技术上的发展现状 (8) 新能源储能系统的实际应用 (8) 创能、节能与储能的完美搭配 (9) 国内新能源储能技术瓶颈解析 (10) 新能源科技发展的核心—储能技术 (10) 新能源无"仓库储能"的尴尬 (10) 储能技术的突破效应 (11) "不能等肚子饿了才去种麦子" (12) 第四章新能源储能系统的发展趋势 (13) 日本新能源储能系统的发展趋势 (13) 储能电池的发展趋势 (13) 我国新能源储能系统的发展趋势 (13) 我国智能电网带动储能产业发展态势研究分析 (13) 新能源并网储能市场发展前景预测分析 (14)

第一章新能源储能系统相关论述 新能源相关论述 新能源定义 新能源的定义为:以新技术和新材料为基础,使传统的可再生能源得到现代化的开发和利用,用取之不尽、周而复始的可再生能源取代资源有限、对环境有污染的化石能源,重点开发太阳能、风能、生物质能、海洋能、地热能和氢能。 新能源分类 新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、水能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能、等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特质的新能源越来越得到各国的重视。 储能技术相关论述 储能技术的定义 储能技术是将电力转化成其他形式的能量储存起来,并在需要的时候以电的形式释放。 储能技术的分类 目前全球储能技术主要有物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如钠硫电池、液流电池、铅酸电池、镍镉电池、超级电容器等)和电磁储能(如超导电磁储能等)三大类。目前技术进步最快的是化学储能,其中钠硫、液流及锂离子电池技术在安全性、能量转换效率和经济性等方面取得重大突破,产业化应用的条件日趋成熟。

国内外模具技术的现状及发展趋势

摘要:本文叙述了模具技术在国民经济中的重要性,介绍了各行业模具的现状及发展方向;文中强调指出了两个关键问题——模具材料和模具标准——是持续发展 模具技术的重大策略。中国模具技术,则是依据着国际模具市场的发展趋势, 转变着模具品牌产品的发展规模,不断的提高着模具设计水平,迎合着模具企 业的经济发展需求,也会进一步的推动着模具技术发展。 关键词:发展趋势、现状、模具技术、塑料模具、模具CAD/CAM Abstract:This paper was narrated the importance of the mould technology in the national economy.It was introduced the present situation and development direction of all trade and professions on the mould and die.It was indicated emphatically two questions of the crux一一mould materials and mould standard——developing continuous ly the great tactics on the progress of the mould technology. China mold technology, according to the international mold is the development trend of the market, the brand product change mould the development scale, and constantly improve the level of the die design, catering to the needs of the mould enterprise economic development, will further promote the development of the mould technology. 一、引言 模具是工业生产的基础工艺装备,国民经济的五大支拄产业机械、电子、汽车、石化、建筑都要求模具工业发展与之相适应。目前,模具行业的生产性服务业发展迅速,模具标准件、软件、材料供应等服务模式更为人性化,为企业一揽子解决问题的服务模式开始出现,这无疑对模具行业的发展有着很大的推动作用,另外,我国的模具品种仍然不丰富,模具行业的平衡发展亟需重视。模具是制造业的重要基础工艺装备。模具在制造业产品生产、研发和创新中所具有的重要地位,使得模具制造能力和技术水平的高低已成为衡量国家制造业水平和创新能力的重要标志。近10年来,我国模具工业均以每年15%以上的增长速度快速发展。“十一五”期间,我国模具行业保持产销两旺、持续高速发展,模具产量、质量进一步得到提高。中国的模具市场十分广阔,特别是在汽车制造业和IT制造业发展的带动下,对模具的需求量和档次也越来越高,同时精良的模具制造装备为模具技术水平的提升提供了保障。2007年模具销售额870亿人民币,比上一年增长21%,模具出口亿美元,比上一年增长35.7%,模具进口仍保持在20亿美元。数据显示着我国模具整体实力进一步加强。

陀螺仪传感器

陀螺仪传感器 对于不熟悉这类产品 的人来说,陀螺仪传感器 是一个简单易用的基于自 由空间移动和手势的定位 和控制系统。在假象的平 面上挥动鼠标,屏幕上的 光标就会跟着移动,并可 以绕着链接画圈和点击按 键。当你正在演讲或离开 桌子时,这些操作都能够 很方便地实现。陀螺仪传 感器原本是运用到直升机模型上的,现在已经被广泛运用于手机这类移动便携设备上(IPHONE的三轴陀螺仪技术)。 基本类型 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有:三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度) 从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动。更确切地说,一个绕对称铀高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪, 陀螺仪的基本部件有: (1)陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值); (2)内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构); (3)附件(是指力矩马达、信号传感器等)。

原理 陀螺仪的原理就是,一个旋转物体 的旋转轴所指的方向在不受外力影响时, 是不会改变的。人们根据这个道理,用它 来保持方向。然后用多种方法读取轴所指 示的方向,并自动将数据信号传给控制系 统。现代陀螺仪是一种能够精确地确定运 动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用 的一种惯性导航仪器。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械 式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面 的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个 全新的阶段。70年代提出了现代光纤陀螺仪的基本设想,到八十年代以后, 光纤陀螺仪就得到了非常迅速的发展, 与此同时激光谐振陀螺仪也有了很大 的发展。由于光纤陀螺仪具有结构紧 凑,灵敏度高,工作可靠等等优点, 所以目前光纤陀螺仪在很多的领域已 经完全取代了机械式的传统的陀螺仪, 成为现代导航仪器中的关键部件。和 光纤陀螺仪同时发展的除了环式激光

相关文档