文档库 最新最全的文档下载
当前位置:文档库 › 信号检测与估计原理及其应用

信号检测与估计原理及其应用

信号检测与估计原理及其应用
信号检测与估计原理及其应用

信号检测与估计考试题库

考试内容:

1.随机信号分析

平稳随机信号与非平稳随机信号,随机信号的数字特征,平稳随机过程,复随机过程,随机信号通过线性系统。

2.信号检测

信号检测的基本概念,确知信号的检测(包括匹配滤波原理、高斯白噪声中已知信号检测、简单二元检测)

3.信号估计

信号参数(包括贝叶斯估计、最大似然估计、线性均方估计和最小二乘估计),信号波形估计(主要指卡尔曼滤波)。

一、填空(1x15=15)

1.可以逐一列举的随机变量称为(离散型随机变量)随机变量;可能的取值占满一个连续区间的随机变量称为(连续型随机变量)随机变量。(P3)

2.服从正态分布的调幅噪声经过包络检波之后服从(瑞丽分布)分布。(P5)

3.(方差)就是描述随机变量的在其均值周围发散程度的度量。(P6)

4.全体观测结果构成的函数族称为(随机过程)。(P9)

5.一维分布函数只能反映随机过程在某一时刻的统计规律,随机过程在不同时刻的相互联系需要用(多位分布函数)来描述。

6.有一类随机过程的统计特征(不随时间变化),称为平稳随机过程。(P12)

7.线性时不变(LTI)系统的特性在时域用冲击响应(h(t))来描述,在频域用频率响应函数(H(W))来描述。(P15)

8.高斯分布的随机过程通过LTI系统后是(高斯过程)过程。(P16)

9.高斯过程是随机过程的概率密度函数为__________,白噪声是指具有均匀(功率谱密度恒为常数)的随机信号。(P17)

10.在信号传输和处理过程中,经常会受到各种干扰,使信号产生失真或受到污染,这些干扰信号通常称为(噪声)。(P18)

11.白噪声的均值为(零)。(P18)

12.功率谱密度恒为常数的随机信号称为(白噪声)。(P18)

13.限带白噪声的相关函数比理想白噪声的相关函数宽,(既噪声的相关时间加长)。(P20)

14.在雷达系统中要根据观测(回波信号)来判断目标是否存在。(P49)

15.为了寻找未知先验概率情况下的最佳判决准则,首先研究(风险)与先验概率之间的关系。(P58)

16.高斯白噪声是指功率谱密度为(功率谱密度为常数),服从正态分布的噪声。(P74)

17.非白噪声背景匹配滤波器的关键是(白化滤波器)的设计。(P90)

18.所谓均匀代价函数是指当误差超过某一门限值时,代价是(相同),而当误差小于该门限时,代价(为零)。(P106)

19.估计量的性质有(无偏性)、(有效性)_和(一致性)(P109)

20.加权最小二乘法利用了观测噪声的统计特性,并且主要是针对(非平稳噪声)。(P132)

二、选择(2x15=30)

1.标准正态分布的期望和方差分别为(A)(P4)

A.0,1

B.1,0

C.1,1

D.0,0

2.对于方差的性质,下列表达不正确的是(D )(P7) A.常数的方差为零

B.若C 为常数,则()2()D C C D ξξ=

C.设12,ξξ为任意两个随机变量,有

D.对于任意的12,ξξ,则有()()()1212D D D ξξξξ+=+

3.若两个随机变量的协方差为0,则可知它们彼此(B )(P7) A.独立 B.不相关 C.完全没有关系 D.期望相等

4.(1)两个随机变量不相关,则可知它们彼此(C )(P10) A.独立 B.不独立 C.未必独立 D.以上说法都不正确

(2)下列关于两个随机变量之间不相关与独立的说法正确的是(C )(P10) A.两个随机变量不相关表明完全没有关系 B.不独立的随机变量(或过程)一定是相关的 C.相关的随机变量(或过程)一定不是统计独立的 D.不相关的随机变量(或过程)一定是统计独立的

5.平稳过程的二维概率密度与两个时刻1t 和2t 的绝对值无关,只与(A )有关。(P12) A.时间间隔21t t τ=- B.时间比值21/t t τ= C.时间乘积21t t τ= D.时间和值

21t t τ=+

6.根据功率谱密度的定义(或帕色伐尔定理)可知白噪声的功率为(A )(P19) A.无穷大 B 无穷小 C.0 D.某个特定的非零常数

7.余弦信号的希尔伯特变化为(B )(P22)

A.恒值信号

B.正弦信号

C.正切信号

D.无法判断 *8.蒙特卡洛方法的理论基础是(D )(P36)

A.大数定理

B.实际推断原理

C.中心极限定理

D.维纳—辛钦定理

9. 重要采样技术是雷达系统中估计虚警概率以及通信系统中估计错误概率等事件的计算机仿真实验中常用的一种(B )修正方法。(P44)

A.期望

B.方差

C.协方差

D.一致性

10. 下列使得在信号传输过程中接收到的波形具有随机干扰成分的因素有(D )(P49) A.外来干扰 B.信号的衰减 C.接收机内部噪声 D.以上均是

11.似然比是一个重要的概念,关于似然比的性质,下列说法中不正确的是(B )(P53) A.无论x 的值是正还是负,()x Λ的值永远是正的 B.()x Λ是x 的函数,其维数根据x 的维数不同而不同 C.()x Λ也是随机变量

D.()x Λ与观测值有关,且不应包括任何未知参量 12.在先验概率已知的情况下,显然最大似然函数准则的性能比后验概率准则的性能(A )(P63)

A.好

B.差

C.没有明显的差别

D.无法判断

13.2PSK 调制方式输出的是两个相位相差(A )度的正(余)弦信号(P78) A.180 B.135 C.90 D.60

()()()()()

12121

1

2

22D D D E ξξξξξξξ

ξ??

+=++--??

14.最佳二元通信系统接收机和实际接收机相比,可知(C )(P79) A.前者是模拟形式,后者是离散形式 B.前者是离散形式,后者是模拟形式 C.两者都是模拟形式 D.两者都是离散形式

15.由于自相关接收机没有利用信号的相位和频率信息,因此只能用来检测(C )信号。(P85)

A.2PSK

B.2FSK

C.2ASK D 上述都不适用

16.按照滤波输出波形()g t 和()s t 的关系,下列不属于波形估计的分类为(D )(P133) A.滤波 B.平滑 C.预测 D.稳压

17.因果维纳预测器和因果维纳滤波器的冲激响应只相差一个幅度项(A )(P147) A. e

λα

- B. 2e

λα

- C. 2e

λα

- D. e

λα

-

18.Tretter 方法只使用于频率很低或信噪比(A )的情况。(P221) A.很高 B.很低 C.恒定 D.任何情况都可以

19.直接利用瞬时相位估计信号频率和初相的主要问题是当相位变化超过(B )时需要进行相位展开。(P222)

A.π

B.2π

C.3π

D. π/2

20.Kay 的WPA 方法与Tretter 方法在(A )(P226) A.无噪声、无模糊条件下等效 B.在无噪声、无模糊条件下不等效 C.在噪声背静中性能相同 D.在噪声、模糊条件下等效 三、简答(6x5=30)

1.寻找在某种意义上的最佳判决准则是信号检测理论要解决的问题,试画出检测问题的一般模型。(P49)

信源 信号转移机构 观测空间 判决结果 (看书上面) 2.贝叶斯意义下的最佳判决系统包括哪几部分?(P52)

答:首先计算似然比,然后将其与门限进行比较,根据比较结果做出判决。

3.(1)连续波形的似然比判决可以用相关接收机实现。试画出简化的二元通信系统最佳接收机。(P75)

(2)试画出2PSK 信号的最佳接收机原理框图(P79)

4.比较相干接收机和最佳接收机的输出与判决的抽样时间的区别(P79)

答:相干接收机的低通滤波器输出的基本是直流信号,判决的抽样时间没有严格的要求,只要是在码元之内就可以了,而最佳接收机积分器的输出随时间近似线性增长,在码元结束时幅度达到最大,因此对判决的抽样时间要求比较严格,在码元结束前抽样判决性能最好

*5.指出匹配滤波器具有的性质。(P89) 答:(1)匹配滤波器输出最大信噪比与信号波形无关

(2)对于持续时间有限信号,匹配滤波器输出信噪比最大的时刻t 在信号结束之后 (3)若信号持续时间无限,理论上t 在无穷远点,或者价格t 选在一个有限时间值内,但对应的匹配滤波器是非因果。因此,在实际当中通常忽略信号幅度很小的部分,截取s(t –t)有小的范围作为h(t)以保证系统是物理可实现的

(4)匹配滤波器对信号的幅度和延时具有适应性 *6.什么是线性观测模型?其含义是什么?(P126)

答:线性观测模型通常指观测方程具有下面的形式x=H

含义:1 观测矢量是参数矢量的线性函数;2 观测噪声是加性的 7.试指出参数估计和波形估计的区别。(P133)

8.最小二乘法的思想是什么?(P130)

9.离散卡尔曼滤波器具有哪些特点?(P168) 10.信号检测系统的基本组成有哪些?

11.卡尔曼滤波方程与实际观测值和滤波误差有无关系?在滤波过程中如果状态方程发生变化,会有什么结果?

答:与实际观测和滤波器误差无关。若状态方程发生变化,则实际系统和所用模型不符,滤波性能将变差。

四、计算(10+15=25) 1. P41 例1.9.1 2. P60 例2.2.5 3. P113 例4.4.1

4. 给定2

s

x n =

+,n 是零均值、方差为1的随即变量 (1) 求s 的最大似然估计?ml s

。 (2) 对下列()p s 求最大后验概率估计?map s

1

044

exp()()s s p s s ?-≥?=??

解:

(1) 根据题意,~(/2,1)x N s

,所以2

(/2)(|))2x s p x s -=

-

2

(/2)ln((|))2x s p x s -=-

ln((|))1()22

p x s s

x s ?=-?

1()022ml s x -= 2ml s x =

(2) 根据题意, 1

exp 044

s s p s s ?-≥?=??

(),1ln(())ln

44

s

p s =-,0s ≥ 因此

ln((|))ln(())11

()224

p x s p s s x s s ??+=--??

ln((|))ln(())[]0mp p x s p s s s s s

??+==??

21,1/2

0,1/2

mp

x x s x -≥?=?

设观测信号在两个假设下的概率密度函数10()()p x H p x H 和分别如下图所

1) 若似然比检验门限为η,求贝叶斯判决表达式。 2) 如果10111η()()P H H P H H =,计算概率和。

解 :

1)假设H 0下观测信号的概率密度函数为

01,11

()0,x x p x H ?--≤≤=??

其他

假设H 1下观测信号的概率密度函数为

11

,12

()30,

x p x H ?-≤≤?=???其他

于是,似然比检验为

1

1

101013,1011()3,01()1,12H H H H H H x x p x H x x p x H x x ηληη??>

-≤

<+??

?>

?==≤≤?<

-??

?>?∞-<≤?

()

化简得判决表示式

1

010

113(),10331(),01312H H H H l x x x l x x x H x ηηηη?

<-?=-≤???>-?=≤≤?

<≤?????

成立

2)若似然比检验门限η=1,则判决表示式为

1

010

12(),1032(),01312H H H H l x x x l x x x H x ?

???>?=≤≤?

<≤?????

成立

, 所以,判决概率10()p H H 为

21

321013

111()(1)(1)18189

p H H l dl l dl -

-=++-=

+=??

判决概率11()p H H 为

2232111311145()33

999p H H dl dl -

-=+=+=?

?

信号检测与估计理论简答

信号检测与估计理论简答题 1.维纳滤波器与卡尔曼滤波器的区别 维纳滤波器: 1)只用于平稳随机过程。 2)该系统常称为最佳线性滤波器。它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z)的形式给出的。 3)信号和噪声是用相关函数表示的。 卡尔曼滤波器: 1)平稳随机过程和不平稳随机过程均适用。 2)该系统常称为线性最优滤波器。它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的。 3)信号和噪声是用状态方程和测量方程表示的。 2.解释白噪声情况下正交函数集的任意性 设)0)(()()(T t t n t s t x ≤≤+=中,噪声n(t)是零均值、功率谱密度为2/)(0N w P n =的白噪声,其自相关函数)(2)(0 u t N u t r n -= -δ。于是,任意取正交函数集)()},({t x t f k 的展 开系数 j x 和 k x (k=1,2,…)的协方差为 )])([(k k j j s x s x E --] )()()()([00??=T k j T du u f u n dt t f t n E ????????=T T k j dt du u f u n t n E t f 00)()]()([)(? ???????-=T T k j dt du u f u t t f N 0 00)()()(2 δjk k T j N dt t f t f N δ2 )()(2 = =? 当k j ≠时,协方差0 )])([(=--k k j j s x s x E ,这说明,在n(t)是白噪声的条件下,取任 意正交函数集)}({t f k 对平稳随机过程k x (k=1,2,…)之间都是互不相关的。这就是白噪声条件下正交函数集的任意性。 3.请说明非随机参量的任意无偏估计量的克拉美-罗不等式去等号成立的条件和用途 克拉美-罗不等式] )),(ln [(1 ])?[(2 2θ θθ θ??≥-x p E E 或 )] ),(ln [(1 ])?[(22 2θθθ θ??-≥-x p E E 当且仅当对 所有的x 和θ 都满足 k x p )?(),(ln θ θθθ-=??时,不等式去等号成立。其中k 是任意非零常 数。 用途:当不等式去等号的条件成立时,均方误差取克拉美-罗界,估计量θ? 是无偏有效的。以此,随机参量下的克拉美-罗不等式和取等号的条件可用来检验随机参量θ的任意无偏估计量θ? 是否有效。若估计量无偏有效,则其均方误差可由计算克拉美-罗界求得。 4.简述最小的均方误差估计与线性最小均方误差估计的关系。 在贝叶斯估计中讨论的随机矢量θ的最小均方误差估计,估计矢量mse θ可以是观测矢

《信号检测与估计》总复习

《信号检测与估计》总复习 2005.4 第一章 绪 论 本章提要 本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。 第二章 随机信号及其统计描述 本章提要 本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。 本章小结 (1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。一维概率分布函数具有如下性质 1),(0≤≤t x F X []0)(),(=-∞<=-∞t X P t F X ; []1)(),(=+∞<=+∞t X P t F X ; ),(),())((1221t x F t x F x t X x P X X -=<≤; 若 21x x <,则),(),(12t x F t x F X X ≥ 概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。一维概率密度具有如下性质: 0),(≥t x f X ; 1 ),(=? +∞ ∞ -dx t x f X ; x d t x f t x F x X X ' '=? ∞ -),(),(; []?=-=<≤2 1 ),(),(),()(1221x x X X X dx t x f t x F t x F x t X x P (2)随机过程的数字特征主要包括数学期望、方差、自相关函数、协方差函数和功率谱密度。分别描述了随机过程样本函数围绕的中心,偏离中心的程度、样本波形两个不同时刻的相关程度、样本波形起伏量在两个不同时刻的相关程度和平均功率在不同频率上的分布情况。定义公式分别为: []dx t x xf t X E t m X X ?+∞ ∞ -==),()()( []{} []dx t x f t m x t m t X E t X X X X ? +∞ ∞ --=-=),()()()()(2 22 σ []2 12121212121),,,()()(),(dx dx t t x x f x x t X t X E t t R X X ? ? +∞∞-+∞ ∞ -== [][]{} [][]2 121212211 221121),,,()()()()()()(),(dx dx t t x x f t m x t m x t m t X t m t X E t t C X X X X X X ? ?∞+∞-∞+∞ ---=--=

信号检测与估计模拟试卷

XXX 大学(学院)试卷 《信号检测与估计》试卷 第 1 页 共 2 页 《信号检测与估计》模拟试卷 一、(10分)名词解释(每小题2分) 1.匹配滤波器 2.多重信号 3.序列检测 4.非参量检测 5.最佳线性滤波 二、(10分)简述二元确知信号检测应用贝叶斯、最大后验概率、极大极小、纽曼-皮尔逊及最大似然准则的条件及确定门限的方法。 三、(10分)简述信号参量估计的贝叶斯估计、最大后验估计、最大似然估计、线性最小均方误差估计及最小二乘估计的最佳准则及应用条件。 四、(10分)概述高斯白噪声情况下的信号检测和高斯色噪声情况下信号检测所采用方法的特点。 五、(10分)设线性滤波器的输入为)()()(t n t s t x +=,其中)(t n 是功率谱密度为2/0N 的白噪声,信号为 ???><≤≤=0 0,000)(ττt t t t t s 对输入)(t x 的观测时间为),0(T ,且0τ>T 。(1)试求匹配滤波器的冲激响应及对应于)(t s 的输出信号。(2)求匹配滤波器输出的信噪比。 六、(10分)一个三元通信系统的接收机观测到的样本为n s x i +=,3,2,1=i 。其中,i s 是发射信号,n 是均值为0、方差为的2σ高斯白噪声。i s 取值分别为5、6和7,分别对应假设1H 、2H 和3H ,并且所有假设的先验概率相等。根据一次观测样本进行检测判决,(1)确定检测判决式和判决区域;(2)求最小平均错误概率。 七、(10分)在T t ≤≤0时间范围内,二元通信系统发送的二元信号为0)(0=t s ,)()(1t As t s =,其中,)(t s 是能量归一化确知信号;A 是正的确知常量,并假定发送两种信号的先验概率相等。信号在信道传输中叠加了均值为0、功率谱密度为2/0N 的高斯白噪声)(t n 。(1)试确定信号最佳检测的判决式。(2)画出最佳检测系统的结构。 八、(15分)设观测方程为k k n b a x +=,M k ,,2,1 =,其中a 和b 是非随机参量,k n 是均值为0、方差为1的高斯随机变量,且观测样本M x x x ,,,21 之间互不相关。(1)试求参量a 和b 的最大似然估计ML ?a 和ML ?b ;(2)分析最大似然估计ML ?a 和ML ?b 的有效性。 九、(15分)设目标以匀速度v 从原点开始做直线运动,速度v 受到时变噪声k w 扰动。现以等时间间隙T 对目标的距离r 进行直接测量,并且距离r 测量受到测距的观测噪声k n 的影响。假设在0=t 时刻开始,目标位于原点,观测时间间隔s 2=T 。目标在原点时,距离0r 的均值km 0][0=r E ,方差为220)km (2=r σ;速度0v 的均值km/s 3.0][0=v E ,方差为 220)km/s (2.0=v σ。速度扰动噪声k w 是均值为0、方差为22)km/s (2.0=w σ的白噪声随机序列。观测噪声k n 是均值为0、方差为22)km (8.0=n σ的白噪声随机序列,且与速度扰动噪声k w 不相 关。速度扰动噪声k w 、观测噪声k n 与目标初始状态),(00v r 彼此互不相关。如果运动目标距离的

信号检测与估计理论第一章习题讲解

1-9 已知随机变量X 的分布函数为 2 0, 0(),01 1,1 X x F x kx x x ? 求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。 解: 第①问 利用()X F x 右连续的性质 k =1 第②问 {} {}{}()()0.30.70.30 .70.70 .3 0.7P X P X F P X F =<< =<≤-=- 第③问 201()()0 X X x x d F x f x else dx ≤

1-10已知随机变量X 的概率密度为()()x X f x ke x -=-∞<<+∞(拉 普拉斯分布),求: ①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()1 1 2 f x d x k ∞ -∞==? 第②问 { }()( )()2 1 1 221x x P x X x F x F x f x d x <≤ =-=? 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。 {}{}()() 1 0101011 12 P X P X f x dx e -<<=<≤==-? 第③问 ()102 10 2 x x e x f x e x -?≤??=? ?>?? ()00()1100 2 2 111010 2 22 x x x x x x x x F x f x dx e dx x e x e dx e dx x e x -∞ -∞---∞=??≤≤??? ?==????+>->????? ???

电子科技大学信号检测与估计2016期末考试

信号检测与估计试题答案 三、(15分)现有两个假设 00,11,:,1,2,,:,1,2,,j j j j j j H y u z j K H y u z j K =+==+= 其中观测样本j y 为复信号,0,1,,j j u u 是复信号样本,j z 是均值为零、方差为 2*z j j E z z σ??=??的复高斯白噪声,代价因子为001101100,1c c c c ====,先验概率 010.5ππ== (1)试写出两假设下的似然函数()0p y 和()1p y ,其中12[,,,]T K y y y y = ;(4分) (2)采用贝叶斯准则进行检测,给出信号检测的判决规则表达式;(6分) (3)在上题基础上,计算虚警概率。(5分) 解: (1)观测样本j y 在假设0H 下的概率密度函数为 ()2 0,022 1exp 1,2,,j j j z z y u p y j K πσσ?? -??=-=? ???? ? ……..(2分) 由于样本间互相独立,则K 个观测样本的联合概率密度函数为 ()()()()() 20010200,2211 1exp K K j j K j z z p y p y p y p y y u σπσ=??== --?? ??∑ …….(1分) 同理可得,在假设1H 下的似然函数为 ()()()()() 21111211,2211 1exp K K j j K j z z p y p y p y p y y u σπσ=??== --?? ??∑ …….(1分) (2)首先计算似然比:

()()(){}{}1** 011,0,22221 102222exp Re Re K K j j j j j j z z z z p y L y y u y u p y εεσσσσ==??==--+????∑∑ 其中∑==K j j u 12 ,00||21ε,∑==K j j u 1 2,11||21ε。 ……..(2分) 然后,计算贝叶斯准则似然比门限为 () ()010******** B C C C C πτπ-= =- ………(2分) 因此,根据 {}{}1 **011,0,222 21 10 2222exp Re Re 1K K j j j j j j z z z z D y u y u D εεσσσσ==≥??--+??

信号检测与估计课后习题

三、(15分)在二元信号的检测中,若两个假设下的观测信号分别为: 012 2 112 ::H x r H x r r ==+ 其中,1r 和2r 是独立同分布的高斯随机变量,均值为零,方差为1。若似然比检测门限为η,求贝叶斯判决表示式。 解 假设0H 下,观测信号x 的概率密度函数为 1/2 201(|)exp 22x p x H π???? =- ? ????? 假设1H 下,22 12x r r =+, 而12 (0,1),(0,1)r N r N ,且相互统计独立。大家知道, 若(0,1)k r N ,且(1,2, ,)k r k N =之间相互统计独立,则 2 1N k k x x ==∑ 是具有N 个自由度的2 χ分布。现在2N =,所以假设1H 下,观测信号x 的概率密度函数 为 22/21 12/22 1(|)exp() 2(2/2)2 1exp(),022 x p x H x x x -=-Γ=-≥ 当0x <时,1(|)0p x H =。 于是,似然比函数为 1/2210exp ,0 (|)()222(|)0, 0x x x p x H x p x H x πλ??? ??-≥? ? ?==?????? ???-≥? ? ? ??-?? ?

四、(15分)已知被估计参量θ的后验概率密度函数为 2(|)()exp[()],0p x x x θλθλθθ=+-+≥ (1)求θ的最小均方误差估计量^ mse θ 。 (2)求θ 的最大后验估计量^ map θ 。 解 (1)参量θ的最小均方误差估计量^ mse θ是θ的条件均值,即 ^ 0220 221 (|)()[()]1()()2 ,mse p x d x exp x d x x x x θθθθ λθλθθ λλλλ ∞ ∞ +==+-+=++= ≥-+?? ^ 0,mse x θλ=<- (2)由最大后验方程 ^ln (|) |0map p x θθθθ =?=? 得 ^2[ln()ln ()]1 ()|0 map x x x θθλθλθθ λθ =? ++-+?=-+= 解得 ^ ^ 1 ,0, map map x x x θλλθλ = ≥-+=<- 七、(15分)若对未知参量θ进行了六次测量,测量方程和结果如下: 182222202384404384n θ???????????????? =+????????????????????

信号检测与估计试题——答案(不完整版)

一、概念: 1. 匹配滤波器。 概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。 应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。 2. 卡尔曼滤波工作原理及其基本公式(百度百科) 首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述: X(k)=A X(k-1)+B U(k)+W(k) 再加上系统的测量值: Z(k)=H X(k)+V(k) 上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。 对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。 首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态: X(k|k-1)=A X(k-1|k-1)+B U(k) (1) 式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。 到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance: P(k|k-1)=A P(k-1|k-1) A’+Q (2) 式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。 现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k): X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3) 其中Kg为卡尔曼增益(Kalman Gain): Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)

《信号检测》09期末试题

《信号检测与估计理论》期末试题 注:试题必须和答题纸一起交。一、二、三、六题必答。是学位课的同学第四题必答, 五、七题中任选1题作答;非学位课的同学四、五、七题中任选1题作答。 姓名 学号 是否学位课 得分 一、 名词解释(每题3分,任选8题作答,共24分) 1、Bayes 估计 2、似然比 3、后验概率 4、检测概率 5、信号统计检测 6、平稳过程 7、充分统计量 8、有效估计 9、接收机工作特性 10、线性最小均方误差估计 二、填空题(每空2分,共16分) 1、在信号检测理论模型中,概率转移机构是将信源输出的假设按一定的概率关系映射到 。 2、信号统计检测的贝叶斯准则就是在假设的 已知,各种代价因子赋定的情况下,使 最小的准则。 3、对于一种假设检验,它的性能主要与 有关。 4、两个联合平稳随机过程()X t 、()Y t 如果相互正交,则它们的互相关函数12(,)XY C t t 为 。 5、序列检测的基本思想是 ,最大优点是 。 6、如果随机量θ的估计值θ∧满足[][]E E θθ∧=,则称θ∧ 是θ的 估计。 三、简答题(任选4题作答,每题5分, 共20分) 1、 设()X n 是实平稳随机序列,其均值为m x ,均方值为2[()]E X n ,方差为2x σ,() X n 的自相关序列为()x R m 。试证明: (0)x R =2 [()]E X n 2、写出课本中相关器与匹配滤波器的输入输出关系表达式,说明两者输出的关系。 3、说明对接收信号x(t)=s(t)+n(t)进行波形检测的基本思路。 4、简述含随机参量的信号的统计检测方法。 5、说明参量的线性最小均方误差估计量的特性。 6、说明参量的最小二乘估计方法的基本思路。 四(10分)、在二元数字通信系统中,假设H 1时,信源输出为常值电压A ,假设H 0时,信源输出为0;信号在通信信道传输过程中叠加了高斯噪声n (t );在接收端对接收信号x (t )进行N 次独立采样,样本为x k ,k=1,2,…,N ;如果噪声样本n k 是均 值为0、方差为σn 2的高斯随机变量。试确定似然比检验的判决规则;建立信号检测系 统的模型。 五(15分)、考虑发送周期为T=2π/ω0秒的移频键控(FSK )通信系统。在假设H 1和假设H 0下发送的信号分别为: S 0(t )=Asin ω0 t 0≤t ≤T S 1(t )=Asin2ω0 t 0≤t ≤T

信号检测与估计知识点总结(2)

第三章 估计理论 1. 估计的分类 矩估计:直接对观测样本的统计特征作出估计。 参数估计:对观测样本中的信号的未知参数作出估计。待定参数可以是未知的确 定量,也可以是随机量。 点估计:对待定参量只给出单个估计值。 区间估计:给出待定参数的可能取值范围及置信度。 (置信度、置信区间) 波形估计:根据观测样本对被噪声污染的信号波形进行估计。预测、滤波、平滑 三种基本方式。 ? 已知分布的估计 ? 分布未知或不需要分布的估计。 ? 估计方法取决于采用的估计准则。 2. 估计器的性能评价 ? 无偏性:估计的统计均值等于真值。 ? 渐进无偏性:随着样本量的增大估计值收敛于真值。 ? 有效性:最小方差与实际估计方差的比值。 ? 有效估计:最小方差无偏估计。达到方差下限。 ? 渐进有效估计:样本量趋近于无穷大时方差趋近于最小方差的无偏估计。 ? 一致性:随着样本量的增大依概率收敛于真值。 ? Cramer-Rao 界: 其中 为Fisher 信息量。 3. 最小均方误差准则 模型:假定: 是观测样本,它包含了有用信号 及干扰信号 ,其中 是待估计的信号随机参数。根据观测样本对待测参数作出估计。 最小均方误差准则:估计的误差平方在统计平均的意义上是最小的。即使 达到最小值。此时 从而得到的最小均方误差估计为: 即最小均方误差准则应是观测样本Y 一定前提下的条件均值。需借助于条 ) ()(1αα-≥F V ??????????????????=????????-=2212122);,(ln );,(ln )(αααααm m y y y p E y y y p E F )(),()(t n t s t y +=θ)(t n T N ),,,(21θθθθ =),(θt s {}{})?()?()?,(2θθθθθθ--=T E e E {} 0)?,(?2=??????=MSE e E d d θθθθθθθθθd Y f Y MSE )|()(??=

信号检测与估值

1.信号检测与估计理论是现代信息理论的一个分支,研究的对象是信息传输系统中信号的 接收部分。 2.系统信息传输可靠性降低的主要原因:(1)信号经过传输以后,由于通信系统不理想,信 号可能出现畸变或幅值的衰减.通过正确地设计通信系统,可以尽可能地减少信号的畸变,获得满意的接收效果.(2)经过信道传输后,信号不可避免地受到信道噪声的污染,使得接收到的是信号与噪声的混合波形. 3.通信系统的性能要求 系统的有效性:要求系统能高效率地传输信息; 系统的可靠性(抗干扰性):要求系统能可靠地传输信息 4.本课程要学习的主要内容 接收机的任务是要加工处理所接收到的混合波形,尽量减少判决错误.由于信道噪声是个随机过程,同时信号本身也可能带有不确定的参量,因此只能采用数理统计的方法,根据信号和噪声提供的的统计特性,依据某些判决的准则,对信号进行检测,判断,估计它的某些参量,或者复原信号的波形等等.这就是. 5.信号检测与估计的基本任务 研究如何在干扰和噪声的影响下最有效地辨认出有用信号的存在与否,以及估计出未知的信号参量或信号波形本身。它实质上是有意识地利用信号与噪声的统计特性的不同,来尽可能地抑制噪声,从而最有效地提取有用信号的信息。 6.信号的统计处理方法 对随机信号,应用统计学的理论和方法进行处理,称为统计信号处理,这主要体现在如下三个方面: 信号统计特性的统计描述:如信号的概率密度函数(PDF),各阶矩,自相关函数,协方差函数,功率谱密度(PSD)等。 统计意义上的最佳处理:如最佳准则,最佳判决,最佳估计,最佳滤波等,均是在统计意义上的最佳处理。 性能评价用相应的统计平均量:如判决概率,平均代价,平均错误概率,均值,均方误差等。 7.检测:指在接收端检测信号是否存在 估值: 指在接收端估计信号的某些参量: 如幅度的大小,频率的偏移等.(又称为信号的参量估计) 统称为信号的检测和估值 8.信号检测与估值中的三大任务 信号的检测::根据有限观测,最佳区分一个物理系统不同状态; 信号参量的估计:根据有限观测,最佳区分一个物理系统不同参数; 波形估计 9.信号检测与估计研究步骤

信号检测与估计—原理及其应用

信号检测与估计考试题库 考试内容: 1.随机信号分析 平稳随机信号与非平稳随机信号,随机信号的数字特征,平稳随机过程,复随机过程,随机信号通过线性系统。 2.信号检测 信号检测的基本概念,确知信号的检测(包括匹配滤波原理、高斯白噪声中已知信号检测、简单二元检测) 3.信号估计 信号参数(包括贝叶斯估计、最大似然估计、线性均方估计和最小二乘估计),信号波形估计(主要指卡尔曼滤波)。 一、填空(1x15=15) 1.可以逐一列举的随机变量称为(离散型随机变量)随机变量;可能的取值占满一个连续区间的随机变量称为(连续型随机变量)随机变量。(P3) 2.服从正态分布的调幅噪声经过包络检波之后服从(瑞丽分布)分布。(P5) 3.(方差)就是描述随机变量的在其均值周围发散程度的度量。(P6) 4.全体观测结果构成的函数族称为(随机过程)。(P9) 5.一维分布函数只能反映随机过程在某一时刻的统计规律,随机过程在不同时刻的相互联系需要用(多位分布函数)来描述。 6.有一类随机过程的统计特征(不随时间变化),称为平稳随机过程。(P12) 7.线性时不变(LTI)系统的特性在时域用冲击响应(h(t))来描述,在频域用频率响应函数(H(W))来描述。(P15) 8.高斯分布的随机过程通过LTI系统后是(高斯过程)过程。(P16) 9.高斯过程是随机过程的概率密度函数为__________,白噪声是指具有均匀(功率谱密度恒为常数)的随机信号。(P17) 10.在信号传输和处理过程中,经常会受到各种干扰,使信号产生失真或受到污染,这些干扰信号通常称为(噪声)。(P18) 11.白噪声的均值为(零)。(P18) 12.功率谱密度恒为常数的随机信号称为(白噪声)。(P18) 13.限带白噪声的相关函数比理想白噪声的相关函数宽,(既噪声的相关时间加长)。(P20) 14.在雷达系统中要根据观测(回波信号)来判断目标是否存在。(P49) 15.为了寻找未知先验概率情况下的最佳判决准则,首先研究(风险)与先验概率之间的关系。(P58) 16.高斯白噪声是指功率谱密度为(功率谱密度为常数),服从正态分布的噪声。(P74) 17.非白噪声背景匹配滤波器的关键是(白化滤波器)的设计。(P90) 18.所谓均匀代价函数是指当误差超过某一门限值时,代价是(相同),而当误差小于该门限时,代价(为零)。(P106) 19.估计量的性质有(无偏性)、(有效性)_和(一致性)(P109) 20.加权最小二乘法利用了观测噪声的统计特性,并且主要是针对(非平稳噪声)。(P132) 二、选择(2x15=30) 1.标准正态分布的期望和方差分别为(A)(P4) A.0,1 B.1,0 C.1,1 D.0,0

2014年信号检测与估计各章作业参考解答(1~9章)

第二章 随机信号及其统计描述 1.求在实数区间[]b a ,内均匀分布的随机变量X 均值和方差。 解: 变量X 的概率密度 ??? ? ???≤≤-=其他,,01 )(b x a a b x p 均值 []?∞∞-+===2)(b a dx x xp X E m X 方差 ?∞ ∞--=-=12 )()()(2 2 2 a b dx x p m x X X σ 2.设X 是具有概率密度函数)(x p 的随机变量,令x 的函数为 0),exp(>-=a ax y 试求随机变量y 的概率密度函数)(y p 。 解: 反函数0,ln 1 >-=a y a x 雅可比式为 ay dy dx J 1-== 所以 0),ln 1 (1)ln 1()(>-=- ?=a y a p ay y a p J y p 4. 随机过程)(t X 为 )sin()cos()(00t B t A t X ωω+= 式中,0ω是常数, A 和 B 是两个互相独立的高斯随机变量,而且0][][==B E A E , 222][][σ==B E A E 。求)(t X 的均值和自相关函数。

7. 设有状态连续、时间离散的随机过程)2sin()(t t X Ω=π,式中t 只能取正整数,即 Λ,3,2,1=t ,而Ω为在区间)1,0(上均匀分布的随机变量,试讨论)(t X 的平稳性。 8.平稳随机过程)(t X 的自相关函数为1)10cos(22)(10++=-τττ e R X ,求)(t X 均值、二阶 原点矩和方差。 解: 可按公式求解[] )()0(, )0()(, )(222 ∞-==∞=X X X X X X R R R t X E R m σ。 但在求解周期性分量时,不能得出)(∞R ,为此把自相关函数分成两部分: ( ) 12)10cos(2)()()(1021++=+=-τ ττττe R R R X X X 由于)10cos(2)(1ττ=X R 的对应的随机过程为 是随机变量为常数,??A t A t X ),10cos()(1+= 所以[]0)(1=t X E

信号检测与估计简答题集

3 一、简答题注释 简答题(每题5分,共20分)或(每题4分,共20分) 二、第1章简答题 1.从系统和信号的角度看,简述信号检测与估计的研究对象。 答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。 2.简述信号检测与估计的基本任务和所依赖的数学基础。 答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。 3.概述信号在传输过程中与噪声混叠在一起的类型。 答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。 三、第2章简答题 1.简述匹配滤波器概念及其作用。 答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。 2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。 答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。 由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。从而起到加强信号,抑制噪声的作用。 对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。附加相位项T ω-使输出信号的各不同频率成分将在某一时刻T 达到同一相位,振幅代数相加,从而形成输出信号的峰值。对于噪声,由于它固有的随机性,匹配滤波器的相位特性对它没有任何影响。因此,匹配滤波器对信号的各频率分量起到同相相加的作用,而对噪声仍按照随机相位的情形相加,从而输出端的信噪比得到提高。 3.根据白噪声背景下匹配滤波器传输函数与输入确定信号的关系,简述白噪声背景下匹配滤波器的原理。 答:白噪声背景下匹配滤波器的传输函数是输入的已知确定信号频谱的复共轭,并附加相位项

信号检测与估计知识点总结

第二章 检测理论 1.二元检测: ① 感兴趣的信号在观测样本中受噪声干扰,根据接收到的测量值样本判决信 号的有无。 ② 感兴趣的信号只有两种可能的取值,根据观测样本判决是哪一个。 2.二元检测的数学模型: 感兴趣的信号s ,有两种可能状态:s0、s1。在接收信号的观测样本y 中受到 噪声n 的污染,根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。即: y(t)=si(t)+n(t) i=0,1 假设:H 0:对应s 0状态或无信号, H 1:对应s 1状态或有信号。 检测:根据y 及某些先验知识,判断哪个假设成立。 3. 基本概念与术语 ? 先验概率:不依赖于测量值或观测样本的条件下,某事件(假设)发生或 成立的概率。p(H 0),p(H 1)。 ? 后验概率:在已掌握观测样本或测量值y 的前提下,某事件(假设)发生 或成立的概率。 p(H 0/y),p(H 1/y) 。 ? 似然函数:在某假设H 0或H 1成立的条件下,观测样本y 出现的概率。 ? 似然比: ? 虚警概率 :无判定为有; ? 漏报概率 :有判定为无; ? (正确)检测概率 :有判定为有。 ? 平均风险: 4.1 最大后验概率准则(MAP ) 在二元检测的情况下,有两种可能状态:s0、s1, 根据测量值y 作出判决:是否存在信号s ,或者处于哪个状态。即: y(t)=si(t)+n(t) i=0,1 假设:H 0:对应s 0状态或无信号, H 1:对应s 1状态或有信号。 ) |()|()(01H y p H y p y L =f P m P d P ) (][)(][111110101010100000H P C P C P H P C P C P r ?++?+=

信号检测在雷达系统方面应用

信号检测与估计理论在雷达系统方面的应用 摘要:随着互联网应用的普及及发展,信号的检测与估计技术的应用也越来越受到人们的 关注。雷达中的信号检测是一个综合性问题,涉及多个学科,多领域知识,所以它是科学领域最为关注的问题。近年来已经开展了大量雷达系统信号实现方法相关的研究课题,其中回波信号的检测和估计是最为重要的方面。本论文就是针对雷达信号检测和估计的精确性问题加以展开的。 关键词:雷达系统,信号估计,信号检测 第一章雷达系统 1.1起源和发展 早期雷达用接收机、显示器并靠人眼观察来完成信号检测和信息提取的工作。接收机对目标的回波信号进行放大、变频和检波等,使之变成能显示的视频信号,送到显示器。人们在显示器的荧光屏上寻找类似于发射波形的信号,以确定有无目标存在和目标的位置。随着雷达探测距离的延伸,回波变弱,放大倍数需要增加。于是,接收机前端产生的噪声和机外各种干扰也随着信号一起被放大,而成为影响检测和估计性能的重要因素。这时,除了降低噪声强度之外,还要研究接收系统频带宽度对发现回波和测量距离精度的影响。这是对雷达检测理论的初期研究。后来,人们开始在各种干扰背景中对各种信号进行检测和估计的理论研究,其中有些结论,如匹配滤波理论,关于滤波、积累、相关之间等效的理论,测量精度极限的理论,雷达模糊理论等,已在实际工作中得到应用. 1.2雷达的概述 雷达的英文名字是radar,是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。 雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速

1信号检测与估计理论打印版

第1章 信号检测与估计概论
信号检测与估计概论
教 材:信号检测与估计(张立毅) 信号检测与估计理论(赵树杰 ) 清华大学出版社
引言 信号处理发展概况 信号的随机性及其统计处理方法 信号检测与估计理论概述 内容编排和建议
一种抓彩的游戏:四种颜色的彩色玻璃球,如黄、红、黑、白,每 种五粒,四种二十粒。把二十粒球放到一个口袋里,游玩者信手去 抓十粒。 如果你抓出来的玻璃球四种颜色的比例是5500,你将得到重奖; 如果你抓出来的玻璃球四种颜色的比例是5410或5320,奖品可观; 如果你抓出来的玻璃球四种颜色的比例是4411,是小奖品; 如果你抓出来的玻璃球四种颜色的比例是4321,罚一元人民币; 如果你抓出来的玻璃球四种颜色的比例是3322,罚五元人民币。 乍一看,得奖的机会似乎比受罚的机会更多; 结果是:十个人里至少有七个人抓出来的是3322,可能有一两个人 是4321,至于得重奖的,理论上是可能的,实际上却几乎是不可能。 其实,这只是一个最简单的概率或者叫做几率的问题,能够算得出 来,很精确的。四种颜色的球的数量不会相差太远。
1.1 引言
信号检测与估计的概念、理论和方法是 随机信号统计处理的理论基础; 本节主要内容:发展概况、待处理信号 的随机性及其统计处理方法的含义 统计信号处理的理论基础:信号的统计 检测理论、估计理论、滤波理论等
1.2 信号处理发展概况 理论
? 检测 ? 估计 ? 滤波 ? 多维阵列信号处理 ? 自适应信号处理 ? 自适应滤波
1.2 信号处理发展概况
面临很多新的应用问题。 如我国载人航空航天中的应用 (原位探测、信息处理,对我国 科技工作者而言,将是全新的 领域;火星探测、嫦娥工程、 夸父计划)
应用
? 电子信息 ? 自动化工程 ? 模式识别 ? 生物医学工程 ? 航空航天 ? 地球物理
1.2 信号处理发展概况
类别 比较 时域背景特性 平稳随机过程、高斯分布 平稳、非平稳随机过程; 高斯、非高斯分布 频域背景特性 均匀功率谱、高斯功率谱 信号特性 系统特性 数学工具 实现技术 简单信号,编码信号 均匀、非均匀功率谱; 高斯、非高斯功率谱 编码信号,扩频信号, 线性、非线性调频信号 线性时不变最小相位系统 线性时不变,时变系统, 非线性时变、非最小相位系统 随机过程、傅立叶变换 随机过程、傅立叶变换、高阶谱高 阶累积量、时频分析、小波变换 统计信号处理基础 现代信号处理
1.2 信号处理发展概况
统计信号处理基础所研究的内容是现代信号处理必备的理论 基础知识,二者没有严格的界限 信号统计理论研究的日益进步和完善,以及信号处理技术应 用领域的不断深入和扩展,使信号处理,特别是随机信号处 理得到人们十分广泛的重视 随机信号属于随机过程,应采用数学上的统计方法进行处理 因此,从事信号处理的科技工作者应有的素质: ? ? ? ? 建立随机信号统计处理方法的基本概念 掌握扎实的统计信号处理的理论基础 具有运用统计的方法研究分析随机信号处理问题的能力 具有运用统计的方法解决工程技术问题的能力
1.3 信号的随机性及统计处理方法
采用现代模拟器件为主的模拟处理技术 采用DSP为核心器件的数字处理技术
图1.1 无线通信系统原理框图
1

《信号检测与估计》第五章习题解答

《信号检测与估计》第五章习题解答 5.1 考虑检测问题: ()()()T t t n t B t x H ≤≤++=0cos 20φω: ()()()T t t n t B t A t x H ≤≤+++=0cos cos 211φωω: 其中A 、B 、1ω和2ω为已知常数。()t n 是高斯白噪声,φ在()π20,上服从均匀分布。 (a )求判决公式及最佳接收机结构形式。 (b )如果0sin cos cos cos 021021==∫∫T T tdt t tdt t ωωωω,证明最佳接收机可用()∫T dt t t x 01cos ω作为检测统计量并对此加以讨论。 解:设()t n 为均值为零、功率谱密度为2/0N 的高斯白噪声,可得 ()()()()∫+??=T dt t B t x N Fe H x f 0220cos 10,φωφ ()()()()∫+???=T dt t B t A t x N Fe H x f 02210cos cos 11,φωωφ 得到 ()()()()()()()()dt t t N AB dt t N A dt t t x N A dt t B t A t x t N A T T T T e e e e H x f H x f x l φωωωωφωωωφφφ+? +???∫∫∫∫===20100120201021010cos cos 2cos cos 2cos 2cos 2cos 01,, 由于φ在()π20,上服从均匀分布,得到 ()?????≤≤=其他02021πφπφf ()()()()()φπφφφπ φωωωωπ d e e e d f x l x l dt t t N AB dt t N A dt t t x N A T T T ∫∫+?∫∫∫==20cos cos 2cos cos 22020100120201021 根据Bayes 准则可得 ()010 l x l H H >< ()()020cos cos 2cos cos 21020100120201021l d e e e H H dt t t N AB dt t N A dt t t x N A T T T ><+?∫∫∫∫φπ πφωωωω ()()dt t t x N A l d e dt t N A T H H dt t t N AB T T ∫?+∫><+∫∫0 10020cos cos 201202cos 22ln ln cos 102010ωπφωπφωω ()()dt t t x l A N d e A N dt t A T H H dt t t N AB T T ∫?+∫><+∫∫010020cos cos 20012cos 2ln 2ln 2cos 210 2010ωπφωπ φωω 5.2 假定上题中i A 的概率密度函数是 ()()()2022201A A i i i i e A A p A p A f ?+?=δ 求似然比及其在0A 趋于零时的形式。 解:略 5.3 推导高斯白噪声中检测随机频率和随机时延信号的判决规则,并画出最佳接收机结构。设频率和到达时间均匀分布并且统计独立。

相关文档
相关文档 最新文档