文档库 最新最全的文档下载
当前位置:文档库 › RTK技术在线路测量中误差的控制措施_杨坤

RTK技术在线路测量中误差的控制措施_杨坤

RTK技术在线路测量中误差的控制措施_杨坤
RTK技术在线路测量中误差的控制措施_杨坤

第5期(总第155期

)No .5(Serial No .155)

2011年10月

CHINA MUNICIPAL ENGINEERING

Oct .2011

DOI :10.3969/j.issn.1004-4655.2011.05.017

RTK 技术在线路测量中误差的控制措施

坤,张

(长春市市政工程设计研究院,吉林长春130042)

摘要:随着全球定位系统GPS (Global Positioning System )技术的快速发展,实时动态RTK 技术在线路测量中的应用也越来越广泛。介绍了影响RTK 测量成果精度的误差来源和主要因素,针对主要因素在参数转换、作业点选择、作业时段及成果校验等方面给出了减弱和消除误差的控制措施。关键词:GPS ;RTK ;精度;误差中图分类号:P228.4

文献标识码:A

文章编号:1004-4655(2011)05-0046-02

收稿日期:2011-02-28随着GPS 技术的发展和广泛应用,测量界发生了

很大的变化,

尤其是RTK (Real Time Kinematic ,实时动态)技术的推广与应用,更是提高了测量效率。实践

证明,

RTK 测量精度能满足图根级的控制测量要求,但与静态相比,GPS -RTK 还存在着缺少检核、可靠性不高等缺点[1]

1

RTK 测量误差的来源

RTK 测量的误差[2]可分为2类。

1)同测站有关的误差:包括天线相位中心变化、

多路径误差、信号干扰和气象因素影响等,其中多路径误差是RTK 定位测量中最严重的误差。

2)同距离有关的误差:包括控制点的WGS -84坐标误差、轨道误差、电离层误差和对流层误差[3]

2

影响RTK 测量精度的因素

GPS 测量定位的系统误差主要来源于GPS 卫星

星历、电离层散射、多路径效应、基准站坐标、卫星钟与接收机钟误差、天线相位中心位置的偏差、接收机不同通道间的延迟误差等。此外,还有地球自转、地球潮汐、基线解算时的软件、基线解算时不同的数学模型误差等。上述误差在GPS -RTK 测量时,绝大部分已通过作业方式、

软件处理、接收机改进等来进行消除、削弱,但还有一部分影响是无法完全消除的[4]

。主要有

如下几点。

1)转换参数的影响。由于GPS 测量采用WGS -84坐标系统,我国目前所采用的坐标系统为1954北京坐标系(或1980国家大地坐标系统等),所以GPS-RTK 测量时必须先求转换参数,将WGS -84坐

标转换到所需运用的坐标系中。转换参数的求解是

RTK 测量的基础,转换参数的精确程度是影响RTK 测

量精度的关键因素[5]。

2)测量作业的控制区域。测量作业范围受转换

控制点的约束。一般应在转换控制点的控制圆区域内作业,超过一定范围,测量精度将大受影响。3)卫星信号的影响。GPS 是通过卫星来定位的,

卫星信号的接收是GPS 定位的基础。GPS-RTK 测量要求基准站和流动站的天线能同时接收到相同的5颗

或5颗以上的卫星信号,才能保证正确解算。由于卫星分布随着时间的变化而变化,不同时段卫星数量和位置都不同。在卫星数量较多和位置图形较佳时,天线接收的信号较好,

初始化时间就短,精度较好;反之,在卫星数量较少和位置较差时,初始化时间很长,测量精度就差,甚至不能解算出固定解。如果由于基准站

或流动站选择的位置不当,

还会产生部分卫星信号被高楼等建筑阻挡,出现卫星数量不足或卫星信号被周

围物体反射再接收而产生“多路径效应”,使测量出现错误。另外,卫星信号还会由于电离层、对流层影响,

其他莫名的遮蔽、中断等原因而产生失锁和整体移位、数据出错等“纳伪”现象。

3提高RTK 测量精度和可靠性的措施

1)提高RTK 测点的精度,转换参数的求解十分关键。可通过以下几点措施进行控制。

(1)一般转换参数求解时,尽量用高等级的控制点作为转换控制点,并尽量分布均匀、包含整个测区。如果待测区域没有足够的转换控制点,最好先布设转换控制点和以后待设基准站点,用表态方式一起测量,平差

杨坤,张岩:RTK技术在线路测量中误差的控制措施2011年第5期

求出所需的WGS-84坐标和地方坐标。

(2)可以用单点定位的方式测出基准站的WGS-84坐标,然后用RTK的方式测出转换控制点WGS-84坐标,在输入相应的地方坐标后,直接用一步法求出转换参数。

(3)转换参数求解后,必须进行检核。可以在转换控制点和其他控制点上用RTK方式测点,比较精度,一方面检核转换参数,另一方面也检核原控制点精度,并将精度好、分布均匀的控制点再作为转换控制点,重新求解转换参数。经多次比较后,确定最佳的转换参数。

2)基准站应选择在视野开阔的建筑物楼顶或地势较高处,必须避开电视和电台发射塔、微波站、飞机场、高压线和大面积水域等[6]。

3)对控制点和其他可选择位置的待测点,流动站应与基准站一样,选择合适的位置,避免卫星信号和数据链通信的影响及多路径效应的产生。

4)选择作业时段时,应保证RTK作业能接收到足够多的卫星信号,在每次作业前,首先查看卫星的数量和位置情况,选最佳的时段进行RTK作业。同时,为减少电离层、对流层影响,应避开下午14:00左右的时段。

5)电源供应。每次RTK测量前,都需将GPS接收机和发射无线电的电源充足,保证RTK作业的顺利进行。如果是固定的基准站电台,还可以用交直流转换稳压器代替汽车蓄电池,不但省去电量不足的担忧,而且省去了充电和搬运的麻烦。

6)多基站测量。在同一地区,可以建立多个固定的基准站点,并统一求解转换参数和基准站点的WGS-84坐标。在RTK测量过程中,对同一待测点,用不同基准站点分别测量坐标,在限差范围内求均值。可同时设置多个基准站点,同一台流动站只需改变每个基准站发射电台的频道,就可分别测出对应不同基准站的同一点坐标,不但起检验的作用,而且能提高RTK测量精度[7]。

7)控制点的检验。为了保证RTK测量精度的可靠性,建议在每个基准站点附近设立几个检验控制点,每次RTK作业前,在架好基准站并初始化流动站后,就测试检验控制点,以判断卫星信号的正常与否和仪器的操作是否正确。在同一地区若有相同型号的GPS 接收机,如果转换参数不同,容易接收其他参考站发出的数据链而导致测量数据错误。因此,对工程使用中的GPS接收机应设置特殊的识别码以防止或减少接收错误的数据链,同时加强对控制点或相关地物点的检测判断。

8)不利条件下RTK测量的策略。根据研究和实际测量,由于多路径、对流层延迟等系统误差的影响,RTK测量可能会出现整周模糊度计算错误(甚至无法得到固定解)的情况,短基线的错误率为2.4?10-3,中基线的错误率为6.3?10-1。

RTK测量具有实时、快捷等优点,但其初始化(整周模糊值)的置信度通常为95% 99%,且作业中缺乏检核条件,个别点可能会出现误差。因此,作业中必须注重成果的检核。成果的检核分为作业前检核、作业中检核及事后检核。作业前检核是指在RTK作业前,先在已知点上检查,新测坐标与已知坐标较差符合要求后,才能进行RTK测量;作业中检核一般是指在作业中采用不同起算点测定的部分重合点,或在同一点上采用2次观测法(失锁或关机)观测;采用快速静态模式(观测10min),对检核点进行测量,可以达到事后检核的目的。适当增加观测历元数(如5个历元),可减小观测误差。

4结语

利用GPS-RTK技术提高测量精度,突破了传统测量控制点的界限。但GPS-RTK测量的可靠性差,稍有不慎,给整个工程带来返工,甚至不可挽回的损失。GPS-RTK测量必须提高可靠性,可靠性比精度更重要。只要多比较,多检验,特别是原有控制点的比较检验,就能提高可靠性。在可靠性保证的情况下,再提高RTK测量的精度。

参考文献:

[1]陈迪杰.RTK技术在堤防工程高程测量中的应用[J].人民长江,2003,34(11):25.

[2]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,2002.

[3]王惠南.GPS导航原理与应用[M].北京:科学出版社,2003.

[4]姜卫平,刘经南,叶世榕.GPS形变监测网基线处理中系统误差的分析[J].武汉大学学报:信息科学版,2001,26(3):196-199.

[5]邱斌,朱建军.全球定位系统高程转换的RCR算法[J].测绘通报,2004(7):16-18.

[6]成国辉,许曦.一种GPS过河水准新方法的试验[J].测绘通报,2004(6):62-64.

[7]张志勇.双基准站RTK检测及精度分析[J].测绘通报,2004(7):19-22.

ABSTRACTS

Superpave;

application

On Error Control Measures of Route

Survey by RTK Technology

YANG Kun,ZHANG Yan

(Changchun Municipal Engineering

Design&Research Institute,

Changchun130042,China)

Abstract:With the rapid development of global positioning system(GPS)technology,real time kinematic(RTK)technology has been applied in route survey more and more.The relevant error resources and main factors influencing RTK survey results precision are introduced.Aiming at these main factors,several control measures to decrease and clear up error are proposed from the aspects of parametric switch,working point choice,operational periods and results check,etc.

Key words:GPS;RTK;

precision;error

An Example of Soft Soil Foundation

Treatment in Lingang Area in Shanghai

SUN Gui-hua

[Shanghai Lingang Economic

Development(Group)Co.,Ltd.,

Shanghai201306,China]

Abstract:The method of land creation by silt in urban periphery is regarded as an effective way to improve urban land use efficiency.A series of geotechnical engineering problems are the keys such as dredger fill foundation bearing capacity,the bearing capacity after foundation strengthening and foundation deformation prediction by large area filling,etc.in Shanghai soft soil area.Through geotechnical engineering treatment,aiming at the integrated application of existing mature technologies of different soil properties,improvement&innovation methods are proposed with the double success of technology and economy,which can provide references for similar large area land creation from the sea projects.Key words:dredger fill;

foundation treatment;

high vacuum densification

method(HVDM);

vibration compaction

consolidation drainage

method

Application of Drainage Pipelines Repairing Technology in Soft Soil Foundation

LIU Jian

(Tianjin Branch of Shanghai Urban Construction Design&Research Institute,

Tianjin300073,China)

Abstract:Aiming at crack situation of drainage pipelines and on-site limited factors,steel sheet pile supporting structure is adopted and the detection is completed after excavation.Then,according to pipelines damage positions,repairing the interface and filling the foundation are adopted.During the pipelines repairing period,the measures of water transfer and repairing by segment are adopted,which not only can keep the pipelines repaired but also keep the drainage system run.This project may provide positive meaning for similar projects in the

目录 一、课程设计的目的和任务 (3) 1.1.设计目的 (3) 1.2.任务概述 (3) 二、测区概况 (3) 2.1.测区自然地理概况 (3) 2.2民族种类 (3) 2.3已有资料情况 (3) 2.4测区的范围: (3) 三、设计的依据 (3) 四、主要的技术指标 (4) 4.1GPS测量 (4) 4.2水平角观测 (6) 4.2.1水平距离的观测 (6) 4.2.2导线网 (6) 五、坐标系统的选择 (7) 六、设计方案 (7) 6.1布网的原则 (7) 6.1.1.GPS网型网型方案设计 6.2.图上展绘已知点(或图上查找已知点) (7) 6.3按点位要求与测区情况在图上选点布网 (8) 6.4.判断和检查点间的通视(主要点间) (9) 6.5.外业选点埋石 (10) 6.5.1选点 (10) 6.5.2标志埋设 (10) 六、仪器设备的选择 (11) 七、外野实测方案设计 (11) 7.1. GPS外业工作的原则 (11) 7.2安置天线要求 (12) 7.2.1对仪器设备的要求 (12) 7.3观测方法 (13) 7.3.1 GPS 观测方法 (13) 7.4 地籍勘丈 (13) 7.4.1 、地籍勘丈的方法: (13) 7.4.2. 宗地图编号 (13) 7.4.3. 地籍图的规格及分幅 (13) 7.4.4 地籍勘丈的基本精度 (14) 7.4.5界址点的施测方法 (14) 7.4.6 界址点边长的检核: (14)

7.4.7 地籍图的表示原则: (15) 7.4.8 宗地图 (15) 7.4.9面积量算与汇总统计 (15) 7.4.10提交成果 (15) 7.5数据的记录 (15) 八、数据处理的方法与要求 (17) 8.1.外业观测数据处理 (17) 8.2外业观测数据质量检核 (17) 8.3数据处理和平差计算 (18) 8.3.1数据处理 (18) 8.3.1无约束平差 (19) 8.3.2约束平差 (19) 8.4 GPS 高程拟合 (19) 七、提交成果 (19) 八、参考文献 (20)

项目概述 1 概述 1.1 项目来源 根据国家测绘局《关于全面加快数字城市地理空间框架建设试点与推广工作的通知》(国测国字〔2008〕38号)和《关于伊春等五市列入2009年数字城市地理空间框架建设第一批推广计划的批复》(国测国字〔2009〕8号)等文件要求及受**市人民政府委托,******承担数字**地理空间框架建设项目。“**市1:500数字化地形地籍图测绘”工作是数字**地理空间框架建设的重要组成部分。 1.2 测区概况 **市地处广西西部,** 地区中部,**市(右江区)建成区面积约50平方公里。本测区范围位于东经106°34′-106°47′,北纬23°46′-23°56′之间。 **市地处珠江水系上游,是国家确定的南(宁)贵(阳)昆(明)经济区中心地带,是滇、黔、桂三省(区)边缘交通枢纽、重要的物流集散地和大西南出海通道的咽喉,是中国与东盟双向开放的前沿。**市交通便利,是泛珠三角经济区和中国西南地区与越南等东南亚国家开展直接贸易或转口贸易的黄金宝地。 1.3完成任务情况 **市测区C块控制面积约9.63平方公里,2010年3月10日进入测区开始选点埋石、观测工作,2010年5月17日整个测区外业工作全部结束。 选埋石情况如表1、表2: 表1 1.4作业技术依据、系统基准、起算数据来源和控制网精度要求 1.4.1作业技术依据 1.《第二次全国土地调查总体方案》(2007,国务院第二次全国土地调查领导办公室)。 2.《第二次全国土地调查技术规程》(TD/T 1014-2007)。 c.《土地利用现状分类》(GB/T 21010-2007)。 d.《土地权属争议调查处理办法》(2003,国土资源部)。

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

G P S 控制测量设计书

1.工作大纲 ____________________________________________ 0 1.1任务来源___________________________________________ 0 1.2工作内容及任务______________________________________ 0 2. 技术设计方案_______________________________________ 0 2.1概述_________________________________________________ 0 2.1.1项目区概况_________________________________________________ 0 2.1.2已有资料及其利用情况_______________________________________ 0 2.2技术标准和要求______________________________________ 1 2.3技术路线和技术方案 ___________________________________ 1 2.3.1控制测量设计原则___________________________________________ 1 3.项目目组织实施计划和进度安排 _______________________ 4 3.1项目组织机构 _________________________________________ 4 3.1.1组织机构设置计划本项目组织机构设置计划如下图所示___________ 4 3.1.2各部分的具体职责___________________________________________ 4 3.1.3项目设备资源配置计划_______________________________________ 4 3.2项目进度安排 _________________________________________________ 4 4.质量管理措施、进度控制措施、生产安全保障措施_______ 5 4.1质量保证措施 _________________________________________________ 5 4.2项目进度控制 _________________________________________________ 5 4.3生产及资料安全保障措施 _______________________________________ 5 5. 提交成果资料_______________________________________ 6 6附录 ________________________________________________ 7 6.1GPS点之迹 ____________________________________________ 7

GPS静态控制测量实施指南 一、综述 GPS网建立过程分3个阶段:设计准备、施工作业、数据处理1.设计准备 该阶段的主要工作项目:项目规划、方案设计、施工设计、测绘资料收集、选点埋石、仪器检测。 1.1项目规划 ①位置及范围:测区的地理位置、覆盖范围及控制网的控制 面积 ②用途及精度等级:控制网的具体用途、所要求达到的精度 或等级。(各级GPS网采用中误差作为精度指标,以2倍中误差作为 极限误差。) C级网用途:三等大地控制网、区域、城市及工程测量的基本控制网; D 级网用途:四等大地控制网; E 级网用途:中小城市、城镇及测图、地籍、土地信息、建筑施工 等。 (由于本基坑工程跨距较长,基坑深距大,暂定C、D级测量精度 GPS测量相邻点间基线长度的精度用下面公式表示:

σ为基线向量的弦长中误差,单位mm,a为固定误差,单位mm,b为比例误差系数,单位1 X 10-6 ,d为相邻点间距离,单位为km。 城市GPS测量精度指标:(本工程选用四等) GPS高程拟合板块: D、E级网点按四等水准测量方法进行高程联测, GPS点需要高程联测时,可采用使GPS点与水准点重合,平原、微丘地形联测点的数量不宜少于6个,必须大于3个,联测点的间距不宜大于20km,且均匀分布;重丘、山岭地形联测点的数量不宜少于10个。 各级GPS控制网的高程联测应不低于四等水准测量的精度。 当GPS控制网点间距离小于20km时,可不考虑对流层和电离层的修正;当大于20KM时,每时段应于始、中、终个观测一次气象元素,并采用标准模型加入对流层和电离层的修正。 为GPS控制网点的正常高,先利用已联测高程的GPS点正常高和经GPS控制网平差得到的大地高,求其高程异常值,然后采用拟合或插值等方法求其他高程异常值和正常高。 ③点位分布及数量:控制网点的分布、数量及密度要求。 (GPS网点应均匀分布,相邻点间距离最大不宜超过该网平均点间距的2倍。依据城市测量规范三等基线平均距离为5km,四等为2km,鉴于平时土方开挖收方测量需要5km左右设置一控制观测点。

* *市1:500数字化地形地籍图测绘GPS W量专业技术总结 编写单位:****** 编写者:年月曰 审核意见: 审核者: 职务: 年月曰

项目概述 1概述 项目来源 根据国家测绘局《关于全面加快数字城市地理空间框架建设试点与推广工作的通知》(国测国字〔2008〕38号)和《关于伊春等五市列入2009年数字城市地理空间框架建设第一批推广计划的批复》(国测国字〔2009〕8号)等文件要求及受**市人民政府委托,******承担数字**地理空间框架建设项目。“ **市1:500数字化地形地籍图测绘”工作是数字**地理空间框架建设的重要组成部分。 测区概况 **市地处西部,**中部,**市(右江区)建成区面积约50平方公里。本测区范围位于东经106° 34'—106° 47',北纬23° 46'—23° 56'之间。 **市地处珠江水系上游,是国家确定的南(宁)贵邙阳)昆(明)经济区中心地带,是滇、黔、桂三省(区)边缘交通枢纽、重要的物流集散地和大西南出海通道的咽喉,是中国与东盟双向开放的前沿。 **市交通便利,是泛珠三角经济区和中国西南地区与越南等东南亚国家开展直接贸易或转口贸易的黄金宝地。 完成任务情况 **市测区C块控制面积约平方公里,2010年3月10日进入测区开始选点埋石、观测工作,2010年5月17日整个测区外业工作全部结束。 选埋石情况如表1、表2: 表 作业技术依据、系统基准、起算数据来源和控制网精度要求作业技术依据 1.《第二次全国土地调查总体方案》(2007,国务院第二次全国土地调查领导办公室)。 2.《第二次全国土地调查技术规程》(TD/T 1014-2007 )。 c.《土地利用现状分类》(GB/T 21010-2007 )。 d.《土地权属争议调查处理办法》(2003,国土资源部)。 e.《城镇地籍数据库标准》(TD/T 1015-2007 )。 f.《第二次全国土地调查数据库建设技术规范》(2007,国土资源部)。

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为 1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

四川路桥集团叙永至古蔺高速公路 A合同段第四分部 控制测量技术总结

A合同段第四分部 二0一三年七月二十一日 目录 1概述 1.1工程概况 1.2技术规范 1.3 技术依据 2测量实施 2.1 测量准备 2.2控制点选点 2.3控制点埋设 2.4、数据采集 2.5、数据传输 2.6、预处理 2.7、基线解算 2.8、GPS网平差 3提交资料 附件1 控制点成果表 附件2 控制点示意图 附件3 平差报告 附件4 控制点点之记 附件5 GPS观测手薄

四川路桥集团叙永至古蔺高速公路A合同段第四分部 控制测量技术总结 1、概述 1.1、工程概况 叙永(震东)至古蔺(二郎)高速公路A合同段第四分部地处德耀镇集美村四组至德耀镇集美村1组之间,里程为K9+670~K15+819,全长6146米。该段地形属于盆周山区向云贵高原北部过度地带,整个区域内地形复杂、山势陡峭、沟谷纵横。标段范围内有桥梁、路基、隧道、涵洞等工程,为了方便以后施工需要依据业主提供的已知控制点在标段范围内布设施工控制网。范围内大部分为水田旱地,呈台阶状,大部分控制点只能布设于旱地田埂边。测区范围内只有有一条土质机耕道贯穿,机耕道路面窄,路面质量差,交通不方便;另外由于地形复杂为测量选点增加了难度,测量通视条件较差,因此不宜采用导线测量和三角测量,宜采用GPS静态测量进行首级控制测量。 整个标段呈带状分布,里程较短,面积较小,可以视作平面,对控制点进行了三维无约束平差、二维约束平差和高程拟合。 1.2、技术规范 《全球定位系统(GPS)测量规范》 (GB/T 18314-2009) 《公路全球定位系统( GPS)测量规范》(JTJ_T_066-1998) 1.3、技术依据 根据业主提供的G09、G10、T55-1、T55-3进行GPS控制测量,其中G09、G10、T55-3在解算时将平面坐标和高程一并带入解算,T55-1则只将平面坐标带入解算。平面坐标系为业主提供的工程坐标系(北京54坐标系、中央子午线为105°、投影面高程0米),高程基准为1985年国家高程基准。 根据要求,本次GPS静态控制测量的首级控制为四级GPS控制测量,然后根据首级控制点利用RTK技术采集施工控制点的坐标和高程,采集施工控制点时不少于30秒。 2、测量实施 2.1、测量准备 1、人员配备

误差测量与处理课程实验 报告 学生姓名:学号: 学院: 专业年级: 指导教师: 年月

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法。 二、实验原理 (1)正态分布 设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为 i δ=i L -0L (2-1) 式中i=1,2,…..n. 正态分布的分布密度 ()() 2 2 21 f e δ σδσπ -= (2-2) 正态分布的分布函数 ()()2 2 21 F e d δ δ σδδσπ --∞ =? (2-3) 式中σ-标准差(或均方根误差); 它的数学期望为 ()0 E f d δδδ+∞ -∞ ==? (2-4) 它的方差为 ()22f d σδδδ +∞ -∞ =? (2-5) (2)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义 在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++= =∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有 1 n i i v ==∑0 1)残余误差代数和应符合: 当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1n i i v =∑为正;其大小为求x 时的余数。 当 1n i i l =∑

GPS控制测量技术设计书概述 本次实习的目的是了解控制测量作业的全过程,掌握GPS静态测量数据处理的基本知识,巩固课堂学习的理论知识,将理论与实践有机结合,提高理论水平与外业操作能力。 测量依据、原则 CH 2001-92《全球定位系统(GPS)测量规范》 CJJ 73-97《全球定位系统城市测量技术规程》 CH 1002-95《测绘产品检查验收规定》 CH 1003-95《测绘产品质量评定标准》 CJJ 8-85《城市测量规范》 本工程《技术设计书》 2 测区情况 2.1 测区范围及任务 本测区位于东经108°57'、北纬34°13'附近。位于长安大学校本部东院,测区北临育才路,东至雁塔路,测区内为教学区,地势平坦,建筑物以及树木较多,通视条件较差。本次实习在测区内布设7个GPS控制点,构建一个D级GPS网,满足实习需要。 2.2已有资料 测区如有已知的国家高等级三角点,可考虑联测国家高等级点,将GPS网点的坐标转换到国家坐标系中。如测区无已知的国家高等级三角点,采用测区独立坐标系。 控制网起算数据3.2. 本次实习GPS控制网可考虑利用国家等级点2个,国家等级点必须有西安1980坐标系坐标或1954北京坐标系坐标,作为本次实习GPS网的起算数据。如无已知的国家高等级三角点,则采用测区中任意两点的独立坐标作为本次实习GPS 控制网的起算数据,独立坐标系可选用已已建成的地方独立坐标系,也可以在实习是自己建立。 2.4坐标系统、高程系统和时间系统 GPS基线向量为WGS-84坐标系,GPS网平面平差成果为西安1980坐标系坐标或1954北京坐标系坐标,并转换为测区相应的坐标系。 高程系统采用1985国家高程基准或1956黄海高程系统。 时间系统采用北京时间或UTC时间系统。 2.5GPS网的布设 采用三台GPS接受机,按边连式的布网形式布设GPS控制网,等级为D级。 2.6GPS网的选点 GPS点位的选择应符合技术要求,有利于使用其他测量方法进行联测;点位的基础应坚定稳固,易于长期保存,并有利于安全作业; 点位应便于安置接收设备和操作,视野开阔,被测卫星的地平高度角应大于15。;点位应远离大功率无线点发射源(如电视台、微波站等),其距离不得小于200m,并应远离高压输电线,其距离不得小于50m;点位附近不应有强烈干扰接收卫星信号的物体 GPS静态测量外业观测及观测数据资料的处理 3.1GPS外业观测 本次实习的GPS控制网采用GPS技术静态观测方法施测。

g p s控制测量技术总结 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

项目概述

1 概述 项目来源 根据国家测绘局《关于全面加快数字城市地理空间框架建设试点与推广工作的通知》(国测国字〔2008〕38号)和《关于伊春等五市列入2009年数字城市地理空间框架建设第一批推广计划的批复》(国测国字〔2009〕8号)等文件要求及受**市人民政府委托,******承担数字**地理空间框架建设项目。“**市1:500数字化地形地籍图测绘”工作是数字**地理空间框架建设的重要组成部分。 测区概况 **市地处西部,** 中部,**市(右江区)建成区面积约50平方公里。本测区范围位于东经106°34′-106°47′,北纬23°46′-23°56′之间。 **市地处珠江水系上游,是国家确定的南(宁)贵(阳)昆(明)经济区中心地带,是滇、黔、桂三省(区)边缘交通枢纽、重要的物流集散地和大西南出海通道的咽喉,是中国与东盟双向开放的前沿。**市交通便利,是泛珠三角经济区和中国西南地区与越南等东南亚国家开展直接贸易或转口贸易的黄金宝地。 完成任务情况 **市测区C块控制面积约平方公里,2010年3月10日进入测区开始选点埋石、观测工作,2010年5月17日整个测区外业工作全部结束。 选埋石情况如表1、表2: 表1

作业技术依据、系统基准、起算数据来源和控制网精度要求 作业技术依据 1.《第二次全国土地调查总体方案》(2007,国务院第二次全国土地调查 领导办公室)。 2.《第二次全国土地调查技术规程》(TD/T 1014-2007)。 c.《土地利用现状分类》(GB/T 21010-2007)。 d.《土地权属争议调查处理办法》(2003,国土资源部)。 e.《城镇地籍数据库标准》(TD/T 1015-2007)。 f.《第二次全国土地调查数据库建设技术规范》(2007,国土资源部)。 g.《第二次全国土地调查成果检查验收办法》(2007,国务院第二次全国土 地调查领导办公室)。 h.《第二次全国土地调查成果汇交办法》(国务院第二次土地调查领导小组 办公室)。 i.《广西第二次土地调查实施方案》(桂土调查办发[2007]3号,以下简 称《实施方案》)。 j.《广西城镇土地调查实施方案》(广西第二次土地调查领导小组办公室,二OO九年二月)。 k.《城市测量规范》(CJJ8-99)。

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

E 级GPS 控制测量技术设计书 XXX建筑工程设计院 二0 一四年二月 目录 1、作业技术流程 2、技术要点 准备工作 技术设计 选点埋石 野外观测 数据处理 平差计算 质量检查与自检报告 技术报告 成果整理与提交 3、范例 1、作业技术流程 E级GPS空制测量在地形测量、地籍测量中一般是测区的首级平面控制,控制网的精 度保证是后续其它工序的基础。E级GPS空制测量工作时一般按下列流程进行工作:准备工作一技术设计一选点埋石一野外观测一数据处理一平差计算一质量检查与自 检报告一技术报告一成果整理与提交。 2、技术要点 准备工作 E级GPS空制测量的准备工作主要有:熟悉工程的合同或协议,了解委托单位对工程 的特殊要求。收集与测区有关的高等级控制点成果及相关资料,收集需用的地形图资料、 技术标准,按规范或委托单位的要求制作标石,对参加施工的仪器设备按要求进行检验或校验。进行现场踏勘了解测区现状和已知高等级控制点的保存情况,为技术设计做好准备。准备施工的其它后勤保障工作。

选点埋石 选点 1 ?选点人员应由熟悉GPS测量技术及地质技术的人员承担。选点前必须充分研究专业设计书;充分认知测区的地理、地质、水文、气象、验潮等环境信息;熟悉可利用的各种设施、位置环境、交通、水电等信息。 2. 选点人员应收集测区地质资料,实地勘察选定点位。同时考察卫星通视环境与电磁干扰环境,确定可用标石类型、记录点之记有关内容,实地树立标志牌、拍摄照片等。选点(埋石)所占用的土地,应得到土地使用者或管理者的同意。 3.点位应选择在稳定坚实的基岩、岩石、土层、建筑物顶部等能长期保存、满足观测条件的地点,并做好选点标记。点位尽可能位于地面,城区内应尽量选在楼顶上,以便于保存和通视。点位应尽量选在交通便利,方便观测的位置。 4.选点时应避开环境变化大,测量标志难以永久保存的地点,如易受水淹的河床、低地、靠近铁路、公路、已规划的易受施工影响有剧烈震动的地点。点位离开铁路的距离应不小于100m离公路不小于50m 5. 选点时应避开地质环境不稳定的地区,如断裂破碎带边缘、易发生洪水、滑坡、岩崩区、局部沉降区,有大量物质搬移的矿区、采石场、大量取土、地下水剧烈变化的地点。 6.选点时应远离发射功率强大的无线发射源、微波信道、高压线等,距离不小于200 米,应远离高压输电线和微波无线电传送通道,其距离不得小于50 米。并应实地了解发射源和电磁波影响状况,标注在点之记环视图上。 7.选点时应避开多路径环境影响,避免靠近水面、树冠、高大建筑物、低洼潮湿等地点,应保证15°以上无遮挡。50米以内的各种固定与变化反射体应标注在点之记环视图上。 8?选点时应设计水准联测路线,对于要联测等级水准的GPS空制点,尤其是当点位 处于河流、湖泊、水库的边缘时,在其位置选择上一定要考虑其水准联测的可能性。 9.选点完成后提交工作总结;及其它相关资料,包括点之记信息、本点与相邻点网图、实地选点方案等。 10.选点结束后,实地选点方案必须经过业主或质检部门检查验收,合格后方可进 入埋石阶段 埋石 1. 标石类型:地面采用GB/T 18314-2001《全球定位系统(GPS测量规范》中的混 凝土普通标石(i ),楼顶采用建筑物上标石(j )。标石尺寸如下:

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

大学物理实验报告数据处理及误差分析 篇一:大学物理实验报告数据处理及误差分析 力学习题 误差及数据处理 一、指出下列原因引起的误差属于哪种类型的误差? 1.米尺的刻度有误差。 2.利用螺旋测微计测量时,未做初读数校正。 3.两个实验者对同一安培计所指示的值读数不同。 4.天平测量质量时,多次测量结果略有不同。 5.天平的两臂不完全相等。 6.用伏特表多次测量某一稳定电压时,各次读数略有不同。 7.在单摆法测量重力加速度实验中,摆角过大。 二、区分下列概念 1.直接测量与间接测量。 2.系统误差与偶然误差。 3.绝对误差与相对误差。 4.真值与算术平均值。 5.测量列的标准误差与算术平均值的标准误差。 三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。 四、试说明在多次等精度测量中,把结果表示为 x? (单位)的物理意义。 五、推导下列函数表达式的误差传递公式和标准误差传递公式。 1.v? 2. g?432s t2?r 3 2d?11? a3. ?2s?t2t1 六、按有效数字要求,指出下列数据中,哪些有错误。

1.用米尺(最小分度为1mm)测量物体长度。 3.2cm50cm78.86cm6.00cm16.175cm 2.用温度计(最小分度为0.5℃)测温度。 68.50℃ 31.4℃ 100℃ 14.73℃ 七、按有效数字运算规则计算下列各式的值。 1.99.3÷2.0003=? 2.?6.87?8.93?133.75?21.073?=? 3.?252?943.0479.0 ?1.362?8.75?480.062.69?4.1864.?751.2?23.25?14.781 八、用最小分度为毫米的米尺测得某物体的长度为l=12.10cm(单次测量),若估计米尺的极限误差为1mm,试把结果表示成l?l?的形式。 九、有n组?x,y?测量值,x的变化范围为2.13 ~ 3.25,y的变化范围为0.1325 ~0.2105,采用毫米方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少? 十、并排挂起一弹簧和米尺,测出弹簧下的负载m和弹簧下端在米尺上的读数x如下表: 长度测量 1、游标卡尺测量长度是如何读数?游标本身有没有估读数? 2、千分尺以毫米为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定? 3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么? 物理天平侧质量与密度 1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差? 2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么? 用拉伸法测量金属丝的杨氏模量 1、本实验的各个长度量为什么要用不同的测量仪器测量 ? 2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?

北京建筑大学西城校区D级GPS控制网技术设计书 班级: 姓名: 学号:

一、任务概述 由于校园改造,校园实习场原有控制点被破坏,为了保障测绘实践教学,需要重新建立校园控制网。校园首级平面控制拟布设D 级GPS 控制网,首级高程控制拟布设二等水准网。 二、测区状况 测区位于北京市西城区展览馆路1号,占地12.3公顷,总建筑面积为20.2万平方米。校区经过长期建设,故行道树高大,像篮球场北侧道路。高大的树木在很大程度上给GPS 测量工作带来了不便。 校园周边现有北京市C 级GPS 控制点4个,分别为:西直门桥、紫竹桥西、公主坟、复兴门桥。 三、级别和精度要求 δ=22)*(d b a 式中:δ—GPS 基线向量的弦长中误差(mm ),亦即等效距离误差。 a —GPS 接收机标称精度中的固定误差(mm )。 b —GPS 接收机标称精度中的比例误差系数(ppm )。 d —GPS 网中相邻点间的距离(km )。 四、布设原则 1.GPS 网一般应采用独立观测边构成闭合图形,如三角形、多边形或附合线路,以增加检核条件,提高网的可靠性。 2.GPS 网作为测量控制网,其相邻点间基线向量的精度,应分布均匀。 3.GPS 网点应尽量与原有地面控制点相结合。重合点一般不少于3个(不足时应联测),且在网中分布均匀,以可靠地确定GPS 网与地面之间的转换参数。 4.GPS 网点应考虑与水准点重合,而非重合点,一般应根据要求以水准测量(或相当精度的测量方法)进行联测,或在网中布设一定密度的水准联测点。 5.为了便于GPS 的测量观测和水准联测,减少多路径影响,GPS 网点一般应设在视野开阔和交通便利的地方。

安徽省合肥市城区GPS控制测量技术总结 一、测区概况 合肥市位于安徽省西南部,万河上游。测区内平均高程为海拨121米。主要河流有赵河和潘河并在测区东南部交汇,给测绘工作带来一定困难。测区内道路成网,县乡道路纵横交错,四通八达,省道豫49自北向南纵贯测区,省道2324横穿东西,交通便利,便利了测绘工作的开展。 测区包括城区及其附近地区,测区控制范围大致位于东经113°12′21″-113°19′30″,北纬39°00′13″-39°01′42″之间,面积为96KM2。测图范围大致为东经113°53′59″-112°58′31″,北纬39°01′35″一33°05′42″,面积为 36.75KM2,合1:1于图幅147幅。 二、作业依据和已有测绘资料 1.中华人民共和国建设部标准《全球定位系统城市测量技术规程》。 2.国家测绘局颁布的《全球定位系统(GPS)测量规范》(CH2001-92)。 3、CHl002-95《测绘产品检查验收规定》。 4、CHl003-95《测绘产品检查评定标准》。 5、《合肥市1:1000比例尺航测数字化成图测绘工程技术设计书》 三、坐标系的选择 测区平均高程85m,中央子午线精度为117°,测区投影分带为6°带的第20带,3°带的第39带。GPS网的平面坐标系统选用54北京坐标系,高程采用85黄海国家高程基准。 四、仪器设备和软件 GPS控制测量采用上海中翰科技有限公司合肥分公司的Smart-3100IS型GPS测量系统,为12通道单頻接收机,其静态相对定位精度为: 静态基线±(5mm +1ppmD) 高程±(10mm+2ppmD) Smart-3100IS型GPS测量系统配备有Planning星历预报软件(可预报30天内测区各测点一天24小时的卫星分布状况及健康状况)、Spectrum Survey 后处理解算软件(包含数据传输、基线向量处理、GPS网平差软件、多种GPS数据格式转换等功能),完全能满足GPS 控制测量数据处理的要求。 GPS实测和数据处理时采用的其它设备移动电话、计算机和必要的交通工具等。 五、四等(或D级)GPS网的设计和观测 1.GPS布网 充分利用GPS测量的优点,实测GPS控制点45个,其中已知点4个,未知点41个,组成最小同步环135 个,多边形异步环8 个(计算选取)。独立基线54条,其中必要基线44条,多余基线10条,平均重复设站数为1.7/站。多于《规范》规定的1.6/站。

相关文档
相关文档 最新文档