文档库 最新最全的文档下载
当前位置:文档库 › 条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布练习题及答案
条件概率与独立事件、二项分布练习题及答案

1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次至少击中3次的概率为( )

A .

B . 2

C .

D .

2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )

3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为、、,则系统正常工作的概率为( )

A .

B .

C .

D .

4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )

5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是1

2

,构造数列{a n },使得a n

=?

??

??

1 第n 次抛掷时出现正面,-1 第n 次抛掷时出现反面,

记S n =a 1+a 2+…+a n (n ∈N *

),则S 4=2的概率为( )

6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( )

7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16

25

,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.

9.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.

10.(2012·厦门质检)从装有大小相同的3个白球和3个红球的袋中做摸球试验,每次摸出一个球.如果摸出白球,则从袋外另取一个红球替换该白球放入袋中,继续做下一次摸球试验;如果摸出红球,则结束摸球试验.

(1)求一次摸球后结束试验的概率P1和两次摸球后结束试验的概率P2;

(2)记结束试验时的摸球次数为X,求X的分布列.

11.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.

(1)任选1名下岗人员,求该人参加过培训的概率;

(2)任选3名下岗人员,记X为3人中参加过培训的人数,求X的分布列.

12.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)

(1)求在1次游戏中,①摸出3个白球的概率;②获奖的概率;

(2)求在2次游戏中获奖次数X的分布列.

1.选B P=C34××+C44×= 2.

2.选A 问题等价为两类:第一类,第一局甲赢,其概率P 1=1

2;第二类,需比赛2局,

第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=3

4

.

3.选B 可知K 、A 1、A 2三类元件正常工作相互独立.所以当A 1,A 2至少有一个能正常工作的概率为P =1-(1-2

=,所以系统能正常工作的概率为P K ·P =×=.

4.选B P (A )=C 2

3+C 2

2C 25=410=25,P (A ∩B )=C 2

2C 25=1

10.

由条件概率计算公式,得P (B |A )=P A ∩B

P A =1

10410

=14

.

5.选C 依题意得知,“S 4=2”表示在连续四次抛掷中恰有三次出现正面,因此“S 4

=2”的概率为C 34? ????123

·12=14

.

6.选C 设“甲、乙二人相邻”为事件A ,“甲、丙二人相邻”为事件B ,则所求概率

为P (B |A ),由于P (B |A )=P AB P A ,而P (A )=2A 4

4A 55=2

5

AB 是表示事件“甲与乙、丙都相邻”,故P (AB )=2A 33A 55

=1

10,于是P (B |A )=1

1025

=14

.

7.解析:设该队员每次罚球的命中率为p , 则1-p 2=1625,p 2

=925.又0<p <1.所以p =35.

答案:3

5

8.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1××=.

答案:

9.解析:设种子发芽为事件A ,种子成长为幼苗为事件B .出芽后的幼苗成活率为P (B |A )=,P (A )=. 故P (AB )=×=.

答案:

10.解:(1)一次摸球结束试验的概率P 1=36=12

两次摸球结束试验的概率 P 2=36×46=1

3.

(2)依题意得,X 的所有可能取值有1,2,3,4.

P (X =1)=12,P (X =2)=13,P (X =3)=36×26×56=536,P (X =4)=36×26×16×66=136

.

则X 的分布列为

11.解:(1)任选1名下岗人员,记“该人参加过财会培训”为事件A ,“该人参加过计算机培训”为事件B ,由题设知,事件A 与事件B 相互独立,且P (A )=,P (B )=.

所以该下岗人员没有参加过培训的概率是

P (A B )=P (A )·P (B )=(1-(1-=.

所以该人参加过培训的概率为1-=.

(2)因为每个人的选择是相互独立的,所以3人中参加过培训的人数X 服从二项分布

B (3,,P (X =k )=

C k 3×

-k

,k =0,1,2,3, 所以X 的分布列为

12.解:(1)①设“在1次游戏中摸出i 个白球”为事件A i (i =0,1,2,3), 则P (A 3)=C 2

3C 25·C 1

2C 23=15

.

②设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3. P (A 2)=C 2

3C 25·C 2

2C 23+C 13C 1

2C 25·C 1

2C 23=1

2,且A 2,A 3互斥,

所以P (B )=P (A 2)+P (A 3)=12+15=7

10.

(2)由题意可知X 的所有可能取值为0,1,2.

由于X 服从二项分布,即X ~B ? ????2,710.∴P (X =0)=? ????1-7102=9100

P(X=1)=C127

10×

?

?

??

?

1-

7

10

21

50

;P(X=2)=?

?

??

?7

10

2=

49

100

.

所以X的分布列为

§11.4 条件概率、二项分布 【复习目标】 独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 【知识梳理】 1. 条件概率 叫作B 发生时A 发生的条件概率,用符号P (A |B )来表示,其公式为 2. 相互独立事件 (1)一般地,对于两个事件A ,B ,如果有 ,则称A 、B 相互独立. (2)如果A 、B 相互独立,则 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有: . 3. 二项分布 进行n 次试验,如果满足以下条件: (1)每次试验只有两个相互对立的结果: ; (2)每次试验“成功”的概率均为p ,“失败”的概率均为 ; (3)各次试验是 . 用X 表示这n 次试验成功的次数,则P (X =k )= (k =0,1,2,…,n ) 若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的二项分布,简记为X ~B (n ,p ). 【复习自测】 1. 把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于 ( ) A.12 B.14 C.16 D.18 2. 某一批花生种子,如果每粒发芽的概率都为4 5 ,那么播下4粒种子恰有2粒发芽的概率是 ( ) A.16 625 B.96 625 C.192625 D.256625 3. 某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋 级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________. 4.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反 对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为1 3,他们的投 票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资. (1)求该公司决定对该项目投资的概率; (2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 【合作探究】 例1 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取 到不合格品后,第二次再取到不合格品的概率为________. 例2 甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3 次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为1 2,且各次投篮互不影响. (1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

《条件概率与独立事件、二项分布》学习指导 一.重、难点释疑及实例剖 1.重、难点释疑 (1)了解条件概率,并掌握条件概率的公式P (A|B )= ) ()(B P AB P ,并理解条件概率的 性质:任何事件的条件概率都在0和1之间,即0≤P (A|B )≤1; (2)了解两个事件相互独立的概念,区别事件的“互斥”与“相互独立”是两个不同的概念;掌握公式P (AB )=P (A )P (B )使用的前提条件:事件A 、B 为相互独立事件;理解1-P (A )P (B )表示两个相互独立事件A 、B 至少有一个不发生的概率. (3)理解二项分布:X ~B (n ,p ),掌握二项分布的概率计算公式:P (X=k )=k n C (1-p )n -k p k ,以及对应的概率分布列,掌握二项分布的常见实例:反复抛掷一枚均匀硬币、已知次品率的抽样、有放回的抽样、射手射击目标命中率已知的若干次射击等,并能解决一些简单的实际问题; (4)独立事件的概率、二项分布是高考考查的重点内容,对这部分知识的考查通常与其他知识结合在一起有一定的综合性. 2.实例剖析 (1)条件概率问题 例1.在10个各不相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( ) A . 5 3 B .5 2 C .10 1 D .9 5 分析:从题设可知,这是一个条件概率问题,可设出要求的事件A 、B ,由条件概率公式进行求解. 解析:方法一:设事件A =“第二次摸到红球”,事件B =“第一次摸到红球”, 则事件A|B 表示“在第一次摸出红球的条件下,第二次也摸到红球”, 由题意知,B 发生后,袋中还有9个球,其中5个红球4个白球,A 发生的概率为9 5, 即P (A|B )= 9 5. 方法二:设事件A =“第二次摸到红球”,事件B =“第一次摸到红球”, 则有P (B )=106 =53 ,P (AB )= 210 26A A = 31 ,那么有P (A|B )= ) () (B P AB P =5 331 =95 . 点评:此题为一典型的求解条件概率问题,解决中用了不同的思路,既可以根据条件概率的含义解决,也可以由条件概率公式求解,无论哪种方法,必须准确地找对事件A 、B 、 A|B 、AB ,并熟练地求出其概率. (2)独立事件问题 例2.某集团公司招聘员工,指定三门考试课程,有两种考试方案. 方案一:考试三门课程,至少有两门及格为考试通过; 方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

第79课 相互独立事件的概率 ●考试目标 主词填空 1.如果事件A (或B )是否发生的对事件B (或A )发生的概率没有影响,那么这样的事件叫做相互独 立事件.相互独立事件A 和B 同时发生,记作A ·B,其概率由相互独立事件概率的乘法公式: P (A ·B)=P(A)·P(B). 2.“互斥”事件A 与B ,要记住其判别的依据是A ∩B=;而“相互独立”事件A 与B ,是指它们中的任何一个发生与否对另一个事件发生的概率没有“影响”. 3.如果在1次试验中,某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次 的概率. P n (k )=k n k k n P P C --)1(. ● 题型示例 点津归纳 【例1】 甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算: (1)两人都击中目标的概率; (2)其中恰有1人击中目标的概率; (3)至少有1人击中目标的概率. 【解前点津】 “两人都击中目标”是事件A ·B ;“恰有1人击中目标”是A ·A B 或·B ;“至少有1人击中目标”是A ·B 或A ·A B 或·B . 【规范解答】 我们来记“甲射击一次击中目标”为事件A ,“乙射击一次击中目标”为事件B . (1)显然,“两人各射击一次,都击中目标”就是事件A ·B ,又由于事件A 与B 相互独立. ∴ P (A ·B )=P (A )·P (B )=0.8×0.8=0.64. (2)“两个各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A ·B ),另一种是甲未击中乙击中(即A ·B ),根据题意这两种情况在各射击一次时不可能同时发生,即事件A ·A B 与·B 是互斥的,所以所求概率为: P =)()()()()()(B P A P B P A P B A P B A P ?+?=?+? =0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3) “两人各射击一次,至少有一人击中目标”的概率为: P =P (A ·B)+[P (A ·A P B ()+·B)]=0.64+0.32=0.96. 【解后归纳】 本题考查应用相互独立事件同时发生的概率的有关知识的正确应用. 【例2】如图,电路由电池A 、B 、C 并联组成.电池A 、B 、C 损坏的概率分别是0.3、0.2、0.2,求电路断电的概率. 【解前点津】 可规定A =“电池A 损坏”,B =“电池B 损坏”,C =“电池C 损坏”.这样,就有事

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次至少击中3次的概率为( ) A . B . 2 C . D . 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为、、,则系统正常工作的概率为( ) A . B . C . D . 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n = ? ???? 1 第n 次抛掷时出现正面,-1 第n 次抛掷时出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________. 9.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.

第61讲 条件概率、n 次独立重复试验与二项分布 1.条件概率 (1)定义:设A ,B 为两个事件,且P (A )>0,称P (B |A )=__P (AB ) P (A )__为在事件A 发生的条 件下,事件B 发生的条件概率. (2)性质:①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=__P (B |A )+P (C |A )__. 2.事件的相互独立性 (1)定义:设A ,B 为两个事件,如果P (AB )=__P (A )·P (B )__,则称事件A 与事件B 相互独立. (2)性质:①若事件A 与B 相互独立,则P (B |A )=__P (B )__,P (A |B )=P (A ),P (AB )=__P (A )·P (B )__. ②如果事件A 与B 相互独立,那么__A 与B __,__A 与B __,__A 与B __也都相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 在__相同__条件下重复做的n 次试验称为n 次独立重复试验. A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=__P (A 1)P (A 2)…P (A n )__. (2)二项分布 在n 次独立重复试验中,用 X 表示事件 A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作__X ~B (n ,p )__,并称p 为__成功概率__.在 n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=__C k n p k (1-p ) n - k __(k =0,1,2,…,n ).

条件概率与独立事件习题课 1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于8”则P(B|A)的值为() A . B . C . D . 2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=()A .B .C .D . 3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率() A . B . C . D . 4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为() A . B . C . D . 5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是.二.解答题 6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示. (1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)

7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表: 年龄(岁)[15, 25)[25, 35) [35, 45) [45, 55) [55, 65) [65, 75] 频数510151055 赞成人数469634 (Ⅰ)完成被调查人员的频率分布直方图; (Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布. 9.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立. (Ⅰ)求甲在3局以内(含3局)赢得比赛的概率; (Ⅱ)记X为比赛决出胜负时的总局数,求X的分布列.

条件概率及乘法公式练习题 1.一个袋中有9 张标有 1,2,3, , , 9 的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率() 2.有一批种子的发芽率为 0.9,出芽后的幼苗成活率为 0.8,在这批种子中,随机抽取一 粒,求这粒种子能成长为幼苗的概率。 3.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的11 概率是 2 ,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是 都出现红灯的概率。 3 ,求两次闭合4.市场供应的灯泡中,甲厂产品占有70%,乙厂产品占有30%,甲厂产品的合格率为95%,乙厂产品的合格率为80%。现从市场中任取一灯泡,假设A=“甲厂生产的产品”,A=“乙厂生产的产品” , B=“合格灯泡”,B =“不合格灯泡”,求: (1) P(B|A) ;( 2)P( B |A) ;( 3)P(B| A ) ;( 4) P(B | A ). 超几何分布及二项分布练习题 1.一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5 的 5 个红球与编号为1,2,3,4 的 4个白球,从中任意取出3个球. (Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率; (Ⅱ)求取出的3个球中恰有 2 个球编号相同的概率; 2.今年雷锋日,某中学从高中三个年级选派 4 名教师和 20 名学生去当雷锋志愿者,学生的名额分 配如下: 高一年级10 人高二年级 6 人 高三年级 4 人 ( I )若从 20 名学生中选出 3 人参加文明交通宣传,求他们中恰好有 1 人是高一年级学生的概率; ( II )若将 4 名教师安排到三个年级(假设每名教师加入各年级是等可能的,且各位教师的选择是相互独立的),记安排到高一年级的教师人数为X ,求随机变量X 的分布列和数学期望 .

相互独立事件与概率的乘法公式 说课人:董新森 工作单位:东平县职业中专 时间:2007年5月22日

“相互独立事件与概率的乘法公式”说课稿 一、教材分析 1、教材所处的地位和作用 本节课是概率的第三个计算公式,是在学习了互斥事件和概率的加法公式后而引入的,是对概率计算公式的进一步研究,同时又为下一步学习独立重复试验概率的计算奠定了知识和方法基础。 2、教学目标 (1)能正确区分互斥事件和相互独立事件,会用乘法公式解决简单问题。 (2)在归纳总结乘法公式过程中,进一步提高由特殊推测一般的合情推理能力。 (3)通过教师指导下的学生探索归纳活动,激发学生学习的兴趣,使学生经历数学思维过程,获得成功的体验。 3、教学重点与难点 教学重点:概率的乘法公式的应用 教学难点:区分互斥事件和相互独立事件 二、教学和学法 本节课采用启发探究式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、归纳、总结的学习方法,让学生经历数学知识的应用过程。

三、教学过程设计 1、从数学问题引入探究主题 若事件A={甲同学的生日是5月份},B={乙同学的生日是5月份},则A∩B={甲和乙的生日都是5月份} 问题:(1)说出事件A和事件B是否为互斥事件,为什么? (引出相互独立事件的概念) (2)试计算P(A)、P(B)、P(A∩B)。 (3)试分析P(A)、P(B)、P(A∩B)三者之间关系。 (4)试举出几个相互独立事件的例子。 2、发现规律 从以上事例中引导学生观察、分析、归纳 P(A∩B)=P(A)×P(B) 一般地说,如果事件A1,A2,…A n相互独立,那么这几个事件

条件概率及乘法公式练习题 1.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的 条件下第二张也是奇数的概率( ) 2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽 取一粒,求这粒种子能成长为幼苗的概率。 3?某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的 1 1 概率是2,在第一次闭合出现红灯的条件下第二次闭合还出现红灯的概率是3,求两次闭合都出现红灯的概率。 4.市场供应的灯泡中,甲厂产品占有70%乙厂产品占有30%甲厂产品的合格率为95% 乙厂产品的合格率为80%现从市场中任取一灯泡,假设A= “甲厂生产的产品” ,A = “乙厂生产的产品”,B=“合格灯泡”,B = “不合格灯泡”,求: (1) P(B|A) ; (2) P( B |A) ; (3) P(B| A ) ; ( 4) P( B | A). 超几何分布及二项分布练习题 1. 一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5 的5个红球与编号为1,2,3,4 的4个白球,从中任意取出3个球. (I)求取出的3个球颜色相同且编号是三个连续整数的概率; (n)求取出的3个球中恰有2个球编号相同的概率; 2.今年雷锋日,某中学从高中三个年级选派4名教师和20名学生去当雷锋志愿者,学生的 名额分配如下: (I )若从20名学生中选出3人参加文明交通宣传,求他们中恰好有1人是高一年级学生的概率; (II )若将4名教师安排到三个年级 (假设每名教师加入各年级是等可能的,且各位教师

的选择是相互独立的),记安排到高一年级的教师人数为X,求随机变量X的分布列和数学期望.

第十章第九节条件概率、事件的独立性与二项分布 (理) 题组一条件概率 1.已知盒中装有3 现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为() A. 3 10 B. 2 9 C.7 8 D. 7 9 解析:设事件A为“第1次抽到是螺口灯泡”,事件B为“第2次抽到是卡口灯泡”, 则P(A)=3 10 ,P(AB)=3 10× 7 9 =21 90 =7 30.在已知第1次抽到螺口灯泡的条件下,第2次抽 到卡口灯泡的概率为P(B|A)=P(AB) P(A) = 7 30 3 10 =7 9. 答案:D 2.设A、B为两个事件,若事件A和B同时发生的概率为 3 10,在事件A发生的条件下,事件B发生的概率为 1 2,则事件A发生的概率为________________. 解析:由题意知,P(AB)= 3 10 ,P(B|A)=1 2 , ∴P(A)= P(AB) P(B|A) = 3 10 1 2 =3 5. 答案: 3 5 3.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 解析:设种子发芽为事件A,种子成长为幼苗为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为: P(B|A)=0.8,P(A)=0.9. 根据条件概率公式P(AB)=P(B|A)·P(A)=0.9×0.8=0.72,即这粒种子能成长为幼苗的

概率为0.72. 答案:0.72 题组二 相互独立事件 4.国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,1 5.假定三人的 行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.1 60 解析:因甲、乙、丙去北京旅游的概率分别为13,14,1 5.因此,他们不去北京旅游的概率 分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=35. 答案:B 5.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是1 2,且 是相互独立的,则灯泡甲亮的概率为 ( ) A.18 B.14 C.12 D.116 解析:理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件AB - C ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C ) =12,所以P (AB - C )=P (A )·P (B )·P (C )=18 . 答案:A 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率. 解:(1)设甲、乙两人考试合格的事件分别为A 、B ,则 P (A )=C 26C 14+C 3 6C 310=23. P (B )=C 28C 12+C 38C 310 =1415. (2)因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为 P (A -B - )=P (A - )P (B - )=(1-23)(1-1415)=1 45 ,

2019年北师大版精品数学资料 条件概率与独立事件 同步练习 【选择题】 1、一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,第一次 取后不放回.则若已知第一只是好的,第二只也是好的概率为( ) A .53 B .52 C .95 D .3 1 2、袋中有2个白球,3个黑球,从中依次取出2个,则取出两个都是白球的概率 ( ) A .53 B .101 C .31 D .5 2 3、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为 ( ) A .P 3 B .(1-P)3 C .1-P 3 D .1-(1-P)3 4、设某种产品分两道独立工序生产,第一道工序的次品率为10%,第二道工序的 次品率为3%,生产这种产品只要有一道工序出次品就将生产次品,则该产品的次品率是( ). A .0.873 B .0.13 C .0.127 D .0.03 5、甲、乙、丙三人独立地去译一个密码,分别译出的概率为51,31,4 1,则此密码能译出的概率是 ( ) A . 60 1 B .5 2 C .5 3 D . 60 59 6、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为 81 80 ,则此射手的命中率为 ( ) A .3 1 B .4 1 C .3 2 D .5 2 7、n 件产品中含有m 件次品,现逐个进行检查,直至次品全部被查出为止.若第 n-1次查出m-1件次品的概率为r ,则第n 次查出最后一件次品的概率为( ) A .1 B .r-1 C .r D .r +1 8、对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4, 0.5和0.7,则三次射击中恰有一次命中目标的概率是 ( ) A .0.36 B .0.64 C .0.74 D .0.63 【填空题】 9、某人把6把钥匙,其中仅有一把钥匙可以打开房门,则前3次试插成功的概率 为 __. 10、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:

高中数学--条件概率与独立事件二项分布 1.两个实习生每人加工一个零件.加工为一等品的概率分别为23和3 4,两个零件是否加 工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.1 2 B.512 C.14 D.16 【解析】 记两个零件中恰好有一个一等品的事件为A ,则P (A )=P (A 1)+P (A 2)=23×1 4+ 13×34=512 . 【答案】 B 2.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( ) A .[0.4,1] B .(0,0.4] C .(0,0.6] D .[0.6,1] 【解析】 设事件A 发生的概率为p ,则C 14p (1-p )3≤C 24p 2(1-p )2 ,解得p ≥0.4,故选 A. 【答案】 A 3.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( ) A .p 1=p 2 B .p 1

p 2 D .以上三种情况都有可能 【解析】 p 1=1-????1-110010=1-????99 10010 =1-????9 80110 0005 , p 2=1-????C 2 99C 21005 =1-????981005则p 1

2. 2.1条件概率与事件的相互独立性 教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。 2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率. 2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自 动提款机上取钱时,忘记了密码的最后一位数字.求 (1) 任意按最后一位数字,不超过2次就对的概率; (2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则1 12()A A A A =表示不超过2次就按对 密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095 P A P A P A A ?=+=+=?. (2)用B 表示最后一位按偶数的事件,则 112(|)(|)(|)P A B P A B P A A B =+ 14125545 ?=+=?. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩, 问这时另一个小孩是男孩的概率是多少? 解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。 这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3. 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为 P ( AB )=P (A )P (B )=0.6×0.6=0.36 (2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。 因此所求概率为 48.06.0)6.01()6.01(6.0)()()()()()(=?-+-?=+=+B P A P B P A P B A P B A P 。

编号 115 二项分布及其应用、条件概率与正态分布(学案) 审核人签字:_____ 领导签字:___________ 【学习目标】:1、记忆条件概率与正态分布的概念,了解正态分布曲线的特点及其所表示的意义; 2、会准确判断概型,理解n次独立重复实验的模型,并能解决一些实际问题. 【知识梳理】: 1、互相独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,即 (|)(),(|)()P B A P B P A B P A ==,这样的两个事件叫做相互独立事件。 2、如果两个事件A 与B 相互独立,那么事件A 与B , A 与 B ,A 与B 也都是 。 3、两个相互独立事件A 、B 同时发生的概率为()P A B ?= ,此公式可以推广到n 个相互独立事件的情形:12()____________.n P A A A ?? ?= 4、条件概率:一般地,设A 、B 是两个事件,且()0P A >,称() (|)() P AB P B A P A = 为在事件A 发生的条件 下事件B 发生的条件概率。条件概率具有以下性质: 5、函数,()______________x μσ?= 的图象称为正态密度曲线,简称正态曲线。 6、对于任何实数a b <,随机变量X 满足()____________,P a X b <≤≈则称X 的分布为正态分布,正 态分布完全由参数 确定。因此正态分布常记作 ,如果X 服从正态分布,则记为 。 7、正态分布的特点:(1)曲线位于x 轴上方,与x 轴不相交,曲线与x 轴之间所围成的平面图形的面积为1; (2)曲线是单峰的,它关于直线 对称; (3)曲线在x μ=处达到峰值 ; (4)当μ一定时,曲线的形状由σ确定,σ越大,曲线 ,表示总体的分布越 ; σ越小,曲线 ,表示总体的分布越 。 8、在实际应用中,通常认为服从正态分布2 (,)N μσ的随机变量X 只取(3,3)a a μμ-+之间的值,并简称 为3δ原则。 一自我检测 1.设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=45 4 ,则n 与p 的值为( ) A .60,34 B .60,14 C .50,34 D .50,1 4 2.设随机变量X ~N (1,52 ),且P (X ≤0)=P (X >a -2),则实数a 的值为( ) A. 4 B. 6 C. 8 D. 10 3..某校约有1000人参加摸底考试,其数学考试成绩ξ~N (90,a 2 )(a >0,试卷满分150分),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的3 5,则此次数学考试成绩不低 于110分的学生人数约为( ) A. 200 B. 300 C. 400 D. 600 4、掷两枚骰子,当至少有一枚5点或6点出现时,就说这次试验成功,则在30次试验中成功次数X 的期望是 5.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班所占的概率为__________. 6.抛掷红、黄两枚骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是_________. 7..设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是__________. 8.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则 (1)P (A )=__________; (2)P (B |A )=_________ 9、设在一次数学考试中,某班学生的分数服从X ~N(110,202 ),且知满分150分,这个班的学生共54人。求这个班在这次数学考试中及格(不小于90分)的人数和130分以上的人数。 。

条件概率与事件的独立性练习题 1.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12 ,且 是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12 D.116 2、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率 为( ) A.81125 B.54125 C.36125 D.27125 3、一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率 是() A. 41 B. 31 C.21 D.4 3 4.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为() A .12581 B .1255 4 C .12536 D .125 27 5、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( ) (A) 0.216 (B)0.36 (C)0.432 (D)0.648 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.

7.2009年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34 . (1)求该考生首次做错一道题时,已正确做出了两道题的概率; (2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.

条件概率与独立事件 【要点梳理】 要点一:条件概率 1.概念 设A 、B 为两个事件,求已知B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为()|P A B ,读作:事件B 发生的条件下A 发生的概率。 要点诠释: 我们用韦恩图能更好的理解条件概率,如图,我们将封闭图形的面积理解为相应事件的概率,那么由条件概率的概率,我们仅局限于B 事件这个范围来考察A 事件发生的概率,几何直观上,()|P A B 相当于B 在A 内的那部分(即事件AB )在A 中所占的比例。 2.公式 . 要点诠释: (1)对于古典(几何)概型的题目,可采用缩减样本空间的办法计算条件概率: 古典概型:(|)AB P A B B = 包含的基本事件数 包含的基本事件数,即()() card (|)card AB P AB B =; 几何概型:(|)AB P A B B = 的测度 的测度 . (2)公式() (|)() P AB P A B P B = 揭示了()P B 、()|P AB 、()P AB 的关系,常常用于知二求一,即要熟练应用它的变形公式如,若()P B >0,则()()()=|P AB P A P B A ,该式称为概率的乘法公式. (3)类似地,当()0P A >时,A 发生时B 发生的条件概率为:()()() |=P AB P B A P A . 3. 性质 (1)非负性:()|0P A B ≥; (2)规范性:()|=1P B Ω(其中Ω为样本空间); (3)可列可加性:若两个事件A 、B 互斥,则()()()+||+|P A B C P A C P B C =. 4.概率()P A |B 与()P AB 的联系与区别: 当()0P B >时,()()() |= P A B P A B P B I .

相关文档
相关文档 最新文档