文档库 最新最全的文档下载
当前位置:文档库 › w+b疲劳试验机案例图片

w+b疲劳试验机案例图片

w+b疲劳试验机案例图片
w+b疲劳试验机案例图片

金属疲劳试验方法

铝合金疲劳实验 李慕姚 1351626 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 了解测定材料疲劳极限的方法。 二、实验设备 1. 疲劳试验机。 2. 游标卡尺。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值 r=m ax m in σσ (2-16) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为σ 1m ax ,经历N 1次循环后,发生疲劳失效,则N 1称为最大应力为σ1 m ax 时的疲劳寿命(简称寿 命)。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力σmax 与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图2-31所示。从图线看出,当应力降到某一极限值σr 时,S-N 曲线趋近于水平线。即应力不超过σr 时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限σr 。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

图2-31 疲劳试验曲线图 工程问题中,有时根据零件寿命的要求,在规定的某一循环次数下,测出σmax ,并称之为疲劳强度。它有别于上面定义的疲劳极限。 用旋转弯曲疲劳实验来测定对称循环的疲劳极限σ-1.设备简单最常使用。各类旋转弯曲疲劳试验机大同小异,图2-32为这类试验机的原理示意图。试样1的两端装入左右两个心轴2后,旋紧左右两根螺杆3。使试样与两个心轴组成一个承受弯曲的“整体梁”上,它支承于两端的滚珠轴承4上。载荷P 通过加力架作用于“梁”上,其受力简图及弯矩图如图2-33所示。梁的中段(试样) 为纯弯曲,且弯矩为M=21 P ɑ。“梁”由高速电机6带动,在套筒7中高速旋转,于是试样横截面上任一点的弯曲正应力,皆为对称循环交变应力,若试样的最小直径为d min ,最小截面边缘上一点的最大和最小应力为 max σ=I Md 2min , min σ=-I Md 2min (2-17) 式中I=64π d 4 m in 。试样每旋转一周,应力就完成一个循环。试样断裂后,套筒压迫停止开关使试验机自动停机。这时的循环次数可由计数器8中读出。 四﹑实验步骤 (1)测量试样最小直径d min ; (2)计算或查出K 值;

高频疲劳试验机的主要作用概述

高频疲劳试验机作用 1疲劳试验的对安全的主要作用概述 疲劳强度不仅在航天、航空、车辆、造船和原子能等尖端工业部门有着十分重要的意义,也是影响一般机械产品使用可靠性和使用寿命的一个重要问题。 根据国外的统计,机械零件的破坏50%~90%为疲劳破坏。例如,轴、曲轴、连杆、齿轮、弹簧、螺栓、压力容器、海洋平台、汽轮机叶片和焊接结构等;很多机械零部件和结构件的主要破坏方式都是疲劳。过去的研究表明,军用飞机喷气发动机构件的主要失效原因是高周疲劳。疲劳失效占喷气式发动机全部构件损伤的49%,而高周疲劳又几乎占所有疲劳失效的一半。 疲劳定义:材料在循环应力或循环应变作用下,由于某点或某点逐渐产生了局部的永久结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程。 近几十年来,随着机械向高温、高速和大型方向发展,机械的应力越来越高,使用条件越来越恶劣,疲劳破坏事故更是层出不穷。 我国虽然尚未对疲劳破坏问题做过全面检查,但同类产品的使用寿命往往比发达国家为低,问题更为严重。因此,开展疲劳强度研究工作对我国的机械工业也是刻不容缓的。

疲劳问题首先是19世纪初,由于蒸汽机车问题提出的,但在后来的其他领域,如航空航天、交通车辆、轮船、桥梁、建筑等,也都出现了众多的疲劳破坏。 第二次世界大战中,有若干战斗机是自己坠落而非被敌方击落的。当时约有20架“惠灵顿”号重型轰炸机发生疲劳破坏。 20世纪50年代以来,航空事业得到全面发展,但全球性的飞机事故接连不断,大部分是属于结构疲劳破坏造成的。1951年英国“鸽式”飞机因机翼的翼梁疲劳破坏而在澳大利亚失事;1952年美国F-89蝎式歼击机因机翼接头疲劳破坏而连续发生事故;1953年英国“维金”号又因主梁疲劳破坏而在非洲失事;1054年英国喷气式客机“彗星-I”号因铆钉边缘出现疲劳裂纹而连续两次在航线上坠毁。 20世纪80年代,某石油钻井平台沉船事件,从技术角度分析也是疲劳破坏导致的。由于在钻井平台的一个支撑立柱上,在接近海平面的位置开了一个作业用工业圆孔,导致海水腐蚀,从而强度减弱,经过若干次随机载荷作用后导致裂纹破坏,最终丧失抵抗力。 20世纪90年代初以来,日本、韩国不断发生桥梁、高架公路的支撑立柱出现裂纹、断裂、扭曲的事件,都是由于支撑立柱承受高周荷载的长期作用导致的疲劳破坏。 1998年6月德国一列高速列车在行驶中突然出轨,造成100多人遇难身亡。造成事故的原因是一节车厢的车轮内部疲劳断裂。

德国MAG高频疲劳试验机技术说明.

10..德国SINCOTEC -100KN高频疲劳试验机技术说明 德国SINCOTEC高频疲劳试验机及参观人员 10.1 德国Sincotec高频疲劳试验机机器用途描述及工作环境 高频疲劳试验机被广泛用来测试各种金属材料及金属材料制品的抵抗疲劳断裂性能、S – N、da/dN-K等曲线,测试Kth和预制断裂韧性试样(如KIC、JIC 等)的疲劳裂纹等;选配不同的夹具或环境实验装置,被广泛用来测试各种材料和零部件(如板材、齿轮、曲轴、螺栓、链条、连杆、紧凑拉伸等等)的疲劳寿命,可完成对称疲劳试验、不对称疲劳试验、单向脉动疲劳试验、块谱疲劳试验、调制控制疲劳试验、高低温疲劳试验、三点弯、四点弯、扭转等种类繁多的疲劳试验。 高频疲劳试验机在各种类型的疲劳试验机中,具有结构简单、没有维护的液压源及阀门、泵或冷却系统、使用操作方便、效率高、耗能低等特点,所以它被广泛的应用在科研、航空航天、高等院校和工业生产等部门。 10.2 德国Sincotec高频疲劳试验机执行以下标准: GB/T 3075 金属轴向疲劳试验方法 ASTM E 467 轴向疲劳试验系统中等幅动态力的标定方法 ASTM E 739 疲劳数据应力-寿命和应变-寿命的线性或线性化统计分析 ASTM E 1942 用于循环疲劳和断裂力学试验的计算数据采集系统导则

GB/T 13816 焊接接头脉动拉伸疲劳试验方法 GB/T 15111 点焊接头剪切拉伸疲劳试验方法 GB/T 6395-2000 金属材料疲劳裂纹扩展速率试验方法 ASTM E606标准,ASTM E647标准,ASTM E399标准, ISO 12737-2005金属材料平面应变断裂韧度试验方法, ISO 12135-2002金属材料-准静态断裂韧性测试的方法 , ISO 4965轴向载荷疲劳试验机动态力校准应变计技术, BS 7448-1:1991断裂结构韧性试验金属材料Kic临界CTOD值和J值得测试方法, BS 7448-2:1997断裂机械韧性试验金属材料Kic临界CTOD值和J值得测试方法, BS 7448-4:1997断裂机械韧性试验金属材料稳定裂纹延伸的抗断裂曲线和初始值得测定方法。 10.3 德国Sincotec 公司技术描述 德国SINCOTEC公司:公司位于德国中部工业区的Clausthal市。公司成立于上世纪六十年代,专注于共振疲劳试验系统的研发和试验工程技术咨询。SINCOTEC公司目前是全球最大的共振疲劳试验机制造厂商,拥有POWER SWING 品牌。德国SINCOTEC在共振试验系统领域是世界的领导者,不但在现有常规的电磁共振技术上优化改进控制和驱动技术,并且独创了领先的电动大位移(12毫米动态行程)共振技术- Power Swing MOT。在控制技术上Sincotec更

各种拉力试验机参数大全(精)

各种拉力试验机参数大全 1、JD-301微电脑桌上型拉力试验机 一、产品简介 本产品主要可测各种材料之拉力、撕裂、剥离、粘接力……抗力物性。可打印出测试日期、时间及显示器设定之显示值。本机可配各式夹具及伸长量测试装置,或依客户需求装配。 二、设计标准 ASTM D903、GB/T16491、GB/T1040、GB/T8808、GB13022、GB/T 2790/2791/2792、CNS-11888、JIS K6854, PSTC-7 三、主要技术参数 容量:5、10、20、25、50、100、200kg (任选) 单位切换:g,kg, N, LB(提供国际标准制、公制、英制三种,自行切换使用) 荷重分解度:1/100,000 荷重精度:≤0.5% 最大行程:600~800mm (可根据客户要求订做) 测试速度:20~300mm/min (旋钮调节) 显示装置:LCD显示(可显示及打印试验次数、测试值、最高值、断裂值等) 外型尺寸:(L*W*H) 500*440*1500mm

重量:75kg 电源:1∮,220V,3A 动力系统:调速电机 传动方式:滚珠丝杆 配送:拉力夹具一套 2、JD-302电脑式桌上型拉力试验机 一、产品简介 本产品主要可测各种材料之拉力、撕裂、剥离、粘接力……抗力物性。可打印出测试日期、时间及显示器设定之显示值。本机可配各式夹具及伸长量测试装置,或依客户需求装配。 二、设计标准 ASTM D903、GB/T16491、GB/T1040、GB/T8808、GB13022、GB/T 2790/2791/2792、CNS-11888、JIS K6854, PSTC-7 三、主要技术参数 容量:5,10,20,25,50,100,200kg (任选Optional) 单位切换:G,kg, N, LB

疲劳万能材料试验机

一、疲劳试验机用途: FLPL疲劳万能材料试验机配置馥勒疲劳测试工装主要用于测试材料及其构件在正弦波、三角波、方波、斜波等动态载荷下的拉压交变疲劳特性。可以完成多种疲劳试验。微机控制系统FULETEST疲劳测试软件基于WINDOWS操作系统作为平台,强大的数据处理功能,试验条件和试验结果自动存盘,显示、打印符合相关国家标准的随机成组试验数据、试验曲线、试验报告。 二、疲劳试验标准参考: GB/T 3075 金属轴向疲劳试验方法; JJG 556-2011 轴向加力疲劳试验机; 三、试验机主机参数: 型号:FLPL104、FLPL204、FLPL304、FLPL504、FLPL105、FLPL305; 轴向试验力:10KN、20KN、25KN、50KN、100KN、250KN; 试验力级别:±0.5%/±1%; 试验力测量范围:1%--100%FS; 电液伺服作动器的最大位移:±50mm/75mm; 疲劳试验频率范围可选:0.1-100 Hz; 框架形式:双立柱;立柱距离:≥600mm;上下夹头间距:50~600 mm; 控制系统:德国多利DOLI控制系统/馥勒FL控制系统测控软件; 控制方式:力、位移两个闭环控制回路,可实现全数字PIDF控制,控制方式可平滑切换。全数字式DSP控制系统,闭环控制频率:1kHz; 全数字内部信号发生器:正弦波、三角波、方波、斜波、组合波等; FLTEST控制系统设计有一套完善的智能化安全管理系统,能实时对试验系统进行巡回自检,实时判断、报告系统的工作状态和工作进程,具有自动监测、自动报警和自动停机功能; 试验控制软件,在Windows多种环境下运行,界面友好,操作简单,能完成试验条件、试样参数等设置、试验数据处理,试验数据能以多种文件格式保存,试验结束后可再现试验历程、回放试验数据,馥勒试验机试验数据可导入在Word、Excel、Access、MATLABFL等多种软件下,进行统计、编辑、分类、拟合试验曲线等操作,试验完成后,可打印出试验报告; 可扩展配置FLWKGD高低温环境试验箱装置、FLWK1200度高温试验炉装置、FLWK1500度快速加热装置等; 四、疲劳万能材料试验机使用环境要求: 室温在10~35℃范围内,其温度波动应不大于2℃/h; 电源电压的变化应不超过额定电压的±10%。电源频率50Hz; 周围应留有不小于0.7m的空间,工作环境整洁、无灰尘; 在无明显电磁场干扰的环境中; 在无冲击、无震动的环境中; 使用环境相对湿度低于80%; 周围环境无腐蚀介质。

万能拉力试验机结构原理-万能拉力计

万能拉力试验机结构原理 万能拉力试验机结构原理 一. 万能拉力试验机概述 万能拉力试验机,广义的说,就是一种产品或材料在投入使用前,对其质量或性能按设计要求进行验证的仪器。从定义可以看出,凡是对于质量或性能进行验证的仪器都可以叫做试验机,但往往有时也叫做检测仪、测定仪、拉力机、检测设备、测试仪等诸如此类的名称。 二.万能拉力试验机可测试项目 (一)普通测试项目:(普通显示值及计算值) ●拉伸应力●拉伸强度 ●扯断强度●扯断伸长率 ●定伸应力●定应力伸长率 ●定应力力值●撕裂强度 ●任意点力值●任意点伸长率 ●抽出力●粘合力及取峰值计算值 ●压力试验●剪切剥离力试验 ●弯曲试验●拔出力穿刺力试验 (二)特殊测试项目: 1.弹性系数即弹性杨氏模量 定义:同相位的法向应力分量与法向应变之比。为测定材料刚性之系数,其值越高,材料越强韧。 2.比例限:荷重在一定范围内与伸长可以维持成正比之关系,其最大应力即为比极限。

3.弹性限:为材料所能承受而不呈永久变形之最大应力。 4.弹性变形:除去荷重后,材料的变形完全消失。 5.永久变形:除去荷重后,材料仍残留变形。 6.屈服点:材料拉伸时,变形增快而应力不变,此点即为屈服点。屈服点分为上下屈服点,一般以上屈服点作为屈服点。屈服(yield):荷重超过比例限与伸长不再成正比,荷重会突降,然后在一段时间内,上下起伏,伸长发生较大变化,这种现象叫作屈服。 7.屈服强度:拉伸时,永久伸长率达到某一规定值之荷重,除以平行部原断面积,所得之商。 8.弹簧K值:与变形同相位的作用力分量与形变之比。 9.有效弹性和滞后损失:在拉力机上,以一定的速度将试样拉伸到一定的伸长率或拉伸到规定的负荷时,测定试样收缩时恢复的功和伸张时消耗的功之比的百分数,即为有效弹性;测定试样伸长、收缩时所损失的能与伸长时所消耗的功之比的百分数,即为滞后损失。 三. 万能拉力试验机主要计数指标 A.荷重元:10-50KN区间选配 B.力量解析度:1/10000 C.力量准确度:≤0.5% D.力量放大倍数:7段自动切换 E.位移解析度:1/1000 F.位移准确度:≤0.5% G.金属引伸计解析度:1/1000 H.金属引伸计准确度:≤0.5% I.大变形引伸计准确度:±1mm

疲劳试验-大纲

金属疲劳试验 一、实验目的 1.了解疲劳试验的基本原理; 2.掌握疲劳极限、S-N曲线的测试方法; 3.观察疲劳失效现象和断口特征 二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立最大应力σmax或应力振幅σa与相应的断裂循环周次N之间的曲线关系。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σR表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳极限以σ-1表示。中低强度结构钢、铸铁等材料的S-N曲线属于这一类。实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命,如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σR(N)表示。 (a)(b) 图1 金属的S-N曲线示意图 (a)有明显水平部分的S-N曲线(b)无明显水平部分的S-N曲线

2. S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按以下公式计算疲劳极限: ∑==n i i i N R v m 1)(1σσ 式中m —有效试验总次数;n —应力水平级数;σi —第i 级应力水平;v i —第i 级应力水平下的试验次数。 例如某实验过程如图2所示,共14根试件。预计疲劳极限为390MPa ,取其2.5%约10 MPa 为应力增量,第一根试件的应力水平402 MPa ,全部试验数据波动如图2,可见,第四根试件为第一次出现的相反结果,在其之前,只有第一根在以后试验波动范围之外,为无效,则按上式求得条件疲劳极限如下: σR(N)=13 1(3×392+5×382+4×372+1×362)=380MPa 图2 增减法测定疲劳极限试验过程 (2) S-N 曲线的测定 测定S-N 曲线(即应力水平-循环次数N 曲线)采用成组法。至少取五级应力水平,各级取一组试件,其数量分配,因随应力水平降低而数据离散增大,故要随应力水平降低而增多,通常每组5根。升降法求得的,作为S-N 曲线最低应力水平点。然后以其为纵坐标,以循环数N 或N 的对数为横坐标,用最佳拟合法绘制成S-N 曲线,如图3所示。

电子万能拉伸试验机

电子万能拉伸试验机 ——试验机创新研究中心 电子万能拉伸试验机是属于电子万能试验机的一种,主要实现拉伸的实验,其实,万能试验机完全可以实现压缩、剪切、弯曲、撕裂等多种功能,只不过该电子万能拉伸试验机更倾向于在拉伸方面的使用。 电子万能拉伸试验机可测试项目 (一)普通测试项目:(普通显示值及计算值) 拉伸应力拉伸强度 扯断强度扯断伸长率 定伸应力定应力伸长率 定应力力值撕裂强度 任意点力值任意点伸长率 抽出力粘合力及取峰值计算值 压力试验粘合力剥离力试验 弯曲试验拔出力穿刺力试验 (二)特殊测试项目: 弹性系数即弹性杨氏模量 定义:同相位的法向应力分量与法向应变之比。为测定材料刚性之系数,其值越高,材料越强韧。 比例限:荷重在一定范围内与伸长可以维持成正比之关系,其最大应力即为比极限。 弹性限:为材料所能承受而不呈永久变形之最大应力。 弹性变形:除去荷重后,材料的变形完全消失。 永久变形:除去荷重后,材料仍残留变形。 屈服点:材料拉伸时,变形增快而应力不变,此点即为屈服点。屈服点分为上下屈服点,一般以上屈服点作为屈服点。屈服(yield):荷重超过比例限与伸长不再成正比,荷重会突降,然后在一段时间内,上下起伏,伸长发生较大变化,这种现象叫作屈服。 屈服强度:拉伸时,永久伸长率达到某一规定值之荷重,除以平行部原断面积,所得之商。 弹簧K值:与变形同相位的作用力分量与形变之比。

电子万能拉伸试验机机操作步骤: (1)检查油路上各阀门是否处于关闭位置;换上与试件相配的夹头;保险开关应当有效. (2)根据所需最大载荷选择测力度盘装上相应的重锤.有的试验机附有可调整的缓冲器也需相应的调整好.缓冲器的作用是保证在卸载时或者试件断裂时使摆锤缓慢回落避免撞击机身. (3)装好自动绘图器的传动装置笔和纸等. (4)开动油泵电机检查运转是否正常.然后打开送油阀门向工作油缸中缓慢输油.待活动台上升20mm左右将送油阀关到最小调整平衡砣20使摆杆21处于铅垂位置然后旋转水平齿杆将测力指针和从动指针对准零点.这时工作油缸内的油压与活动立柱工作台上横头等部件的重量相平衡因为在实验时这部分重量不应计入到试件所受的载荷上去.加载时测力指针带动从动指针一起转动;当卸载或试件断裂时测力指针迅速退回而从动指针则停留不动示出卸载时或断裂时的最大载荷值。 电子万能试验机历史概述: 电子万能试验机是未来试验机市场发展的趋势,而且在国内,国家支持和推荐广大的企业采用电子万能试验机。电子万能试验机与传统的试验机相比,其是电液伺服的对环境不会造成污染。而且运行平稳,准确率高是材料检测不可或缺的理想选择。 电子万能试验机是我国市场中较为先进的产品。其采用了接近国际水平的试验机技术,针对不同的试验机购买者,设计不同的电子万能试验机产品。因为在客户的心目中已经树立了良好的产品形象,得到了广大企业的青睐。 当今我国工业快速发展的前提下,电子万能试验机的使用将会越来越普遍。相比与传统的试验机而言,虽然在价格上电子万能试验机有一些贵,但是其性价比是很高的。电子万能试验机在使用效率和使用寿命上,都远远大于传统的试验机产品。 电子万能试验机在我国的使用范围是很广的。无论是工矿企业、科研单位,还是大专院校、工程质量监督站等部门都离不开电子万能试验机的运用。电子万能试验机可以用于对金属材料和非金属材料进行拉伸、压缩、弯曲和剪切等力学性能的试验。 电子万能拉伸试验机与液压万能拉伸试验机的使用性能区别: 电子万能拉伸试验机,不用油源。所以更清洁,使用维护更方便,它的试验速度范围可进行调整,试验速度可达0.001mm/min-1000mm/min,速比可达100万倍之多,试验行程可按需要而定,更灵活。测力精度高,有些甚至能达到0.2%.体积小,重量轻,空间大,方便加配相应装置来做各项材料力学试验。真正做到了一机多用。目前国内的主流试验机厂家生产的电子万能试验机,均可以做到载荷控制,应变控制,位移控制所谓的三闭环控制。 液压万能拉伸试验机,受油源流量的限制,他的试验速度较低。手动液压万能试验机,

高频疲劳试验机的工作原理

高频疲劳试验机的工作原理 一、高频疲劳试验机的风冷装置 本实用新型涉及一种风冷装置,具体来说是一种用于高频疲劳试验机的风冷装置,为现有的高频疲劳试验机提供一种非常实用的附加功能。工程结构失效约80%以上是由疲劳引起的。为使设计出来的工程结构及其零部件满足现场对疲劳强度和寿命的要求,必须首先通过开展疲劳试验,掌握相关材料的抗疲劳性能,如疲劳S-N曲线、疲劳极限等。高频疲劳试验机便是这样一种用来进行材料抗疲劳性能测试的机器。相对于电液伺服疲劳试验机,它具有加载频率高、试验周期短的特点,广泛应用于我国冶金、航天、交通等研究领域。然而,如果受测材料具有较高的阻尼,或者试验载荷接近材料的屈服强度,则会因试验中较高的加载频率,导致试验件局部(通常是最小截面处)过热,甚至发生蠕变,迫使试验无法在预期载荷下进行,获得的试验数据也就不能反映材料真实抗疲劳性能。通过在高频疲劳试验机上附加风冷装置,可以有效地解决这个问题;利用夹持单元,可以将该装置方便地附加于现有试验机上,并实现任意受风部位的定位;利用气流控制单元,可根据试验件发热情况,和试验对试验件单侧受风冷却或整体受风冷却的需求,改变试验件受风部位气流分布模式。该装置成本低廉,只增加很少的附加费用就可获得这一非常实用的功能。另外,可在风管入口处配一流量调节阀,用来调节送风量大小。 二、产品特征: 1、本实用新型的目的在于在此提供一种用于高频疲劳试验机的风冷装置,为现有的高频疲劳试验机提供一种非常实用的附加功能。频疲劳试验过程中对试验件的冷却,为现有的高频疲劳试验机提供了一种非常简便实用的功能。通过夹持单元将装置安装在疲劳试验机主立柱上,利用立柱升降及单元部件自身的移动与旋转,便可实现对试验件任意受风部位的定位;通过在气流控制单元中的出风罩,便可根据试验件实际发热情况,和试验对试验件单侧受风冷却或整体受风冷却的需求,调整出风气流分布状态。利用这种风冷装置,无须对高频疲劳试验机进行任何改动,安装使用方便,且装置所需原材料价格低廉,加工制造简单,维护部件少,可靠性高。 2、本实用新型的优点在于:用本实用新型提供的风冷装置,能够实现高频疲劳试验过程中需进行冷却试验件的风冷处理,这对高频疲劳试验而言是一个非常实用的功能;该装置能够很便捷地安装到现有的高频疲劳试验机上,并且具有加工简单、成本低廉等突出优点。 三、操作方法: 下面结合附图对本实用新型做出详细说明: 1、如图l所示;本实用新型提供一种用于高频疲劳试验机的风冷装置,本装置设有夹持单元101和气流控制单元102,利用夹持单元101将风冷装置固定在试验机主立柱104上;利用气流控制单元102调节风冷气流分布状态。 2、图2是本实用新型所述夹持单元示意图,所述夹持单元101由立柱夹持环lOla 和连接臂lOlb组成。所述立柱夹持环lOla通过螺栓紧固的方式将装置固定于高频疲劳试验机的主立柱104上,利用主立柱104升降或夹持环lOla固定位置的调整,能够实现装置在z轴方向移动;通过转动立柱夹持环lOla,能够实现装置绕

万能材料拉力试验机

万能材料拉力试验机 万能材料拉力试验机系统配置由机械主机、计算机、电子控制箱、打印机等组成,系统主要功能和性能指标要求如下: 一、主要功能 1、可根据GB标准进行试验和数据处理。 2、本产品适用于金属、非金属、复合材料及制品的拉伸、压缩、弯曲、剪切等力学性能试验,并配相应的夹具(试样均为标准试样) 3、可测定材料的拉伸强度、压缩强度、弯曲强度、剪切强度、屈服强度、断裂伸长率、弹性模量、应力、应变等多种参数。 4、曲线方式: 拉伸:力—伸长、应力-应变、强度-时间;力-时间、伸长-时间、应变-时间。 压缩:力-变形、应力-应变、强度-时间、力-时间、变形-时间、应变-时间 抗弯:力-挠度、强度-时间、力-时间、挠度-时间。 5、曲线对比:同组试验的曲线可以多种颜色迭加对比。 6、局部放大试验:曲线上的任意段可进行区域放大分析。 7、数据分析:在曲线图上的试验数据可随意选取分析。 8、报告选择:可按用户需求选择不同的报告格式,可用EXCEL或Word直接查看报告或取部分打印 9、试样选定:一组试样结果可选定有效试验,并可连续测试 10、自动存储:试验条件、测试结果、测试曲线和数据可自动存储,随时调用。 11、断裂停车:试样拉断瞬间能自动停车。 12、自动保护:有自动过负荷、过流、过压、欠压、超温、上下限位保护。 13、横梁位置:本机除具有独特的标尺横梁位置指示外,还有横梁位置数字显示功能。 14、控制功能:具有恒速控制方式。 15、手动控制:除自动控制外,还有中文液晶显示手动控制箱,可手动操作横梁上下变速,使移动横梁位置控制更方便。 16、可选择不同的力值单位(N、kgf、gf) 17、打印:能对试验数据处理、存储、打印、绘制曲线,并打印完美报告单,也可集中或分开打印。 18、清零:可对负荷、变形、位移测量随时进行手动或自动清零。 二、主要技术参数及精度 1、试验机等级:0.5级 2、最大试验力:50KN 3、高精度传感器精度:±0.5% 4、负荷精度:±0.5% 5、速度精度:±0.5% 6、速度范围:0.05-500mm/min 7、位移精度:示值相对误差±0.5% 8、小变形精度:±0.5% 9、小变形测量范围:标线间:50mm 测量范围:10mm 10、大变形测量范围:1000mm左右 11、有效试验宽度:420mm左右 12、夹具间有效行程:560mm左右

疲劳试验简介

疲劳试验(fatigue test)利用金属试样或模拟机件在各种环境下,经受交变载荷循环作用而测定其疲劳性能判据,并研究其断裂过程的试验,即为金属疲劳试验。 1829年德国人阿尔贝特(J.Albert)为解决矿山卷扬机服役过程中钢索经常发生突然断裂,首先以10次/分的频率进行疲劳试验。1852~1869年德国人沃勒(A.W hler)为研究机车车辆,开始以15次/分的频率对车辆部件进行拉伸疲劳试验,以后又用试样以72次/分的频率在旋转弯曲疲劳试验机进行旋转弯曲疲劳试验,他的功绩是指出一些金属存在疲劳极限,并将疲劳试验结果绘成应力与循环周次关系的S-N曲线(图1),又称为W hler曲线。1849年英国人古德曼(J.Goodman)首先考虑了平均应力不为零时非对称载荷下的疲劳问题,并提出耐久图,为金属制件的寿命估算和安全可靠服役奠定理论基础。1946年德国人魏布尔(W.Weibull)对大量疲劳试验数据进行统计分析研究,提出对数疲劳寿命一般符合正态分布(高斯分布),阐明疲劳测试技术中应采用数理统计。 60年代初,从断裂力学观点分析金属疲劳问题,进一步扩大了疲劳研究内容。近年来,由于电液伺服闭环控制疲劳试验机的出现以及近代无损检验技术、现代化仪器仪表等新技术的采用,促进了金属疲劳测试技术的发展。今后应着重各种不同条件(特别是接近服役条件)下金属及其制件的疲劳测试技术的研究。 试验种类和判据 金属疲劳试验种类很多,通常可分为高周疲劳、低周疲劳、热疲劳、冲击疲劳、腐蚀疲劳、接触疲劳、声致疲劳、真空疲劳、高温疲劳、常温疲劳、低温疲劳、旋转弯曲疲劳、平面弯曲疲劳、轴向加载疲劳、扭转疲劳、复合应力疲劳等。应根据金属制件的服役(工作)条件来选择适宜的疲劳试验方法,测试条件要尽量接近服役条件。进行金属疲劳试验的目的在于测定金属的疲劳强度(抗力),由于试验条件不同,表征金属疲劳强度的判据(指标)也不一样。 高周疲劳:高周疲劳时,金属疲劳强度判据是疲劳极限(或条件疲劳极限)即金属经受“无限”多次(或规定周次)应力循环而不断裂的最大应力,以σr表示,其中γ为应力比,即循环中

30吨电子万能试验机

30吨电子万能试验机 一、简介: WDW-300E是新一代30吨电子万能试验 机。主要用于各种金属、非金属及复合材 料的拉伸、压缩、弯曲、剪切、剥离、撕 裂等力学性能指标的测试。系统采用微机 闭环控制,具有宽广准确的加载速度和测 力范围,对载荷、位移的测量和控制有较 高的精度和灵敏度。该设备适用于金属、 胶粘剂、管材、型材、航空航天、石油化 工、防水卷材、电线电缆、纺织、纤维、 橡胶、陶瓷、食品、医药包装、土工布、 薄膜、木材、纸张等制造业以及各级产品质量监督部门,同时还适用于大中专院校进行教学演示工作。 30吨电子万能试验机主机的设计具有外形美观、操作方便、性能稳定可靠的特点,无污染、噪音低、效率高。辅具的设计与主机相匹配,结构为楔型平动式、手动旋转夹紧,试样不受附加力。夹持方便、可靠、不滑移。 30吨电子万能试验机采用调速精度高、性能稳定的日本松下公司数字式交流伺服调速系统与电机作为驱动系统;特别设计的同步齿型带减速系统和滚珠丝杠副带动试验机的移动横梁运动;以Windows为操作平台的基于数据库技术的控制与数据处理软件采用了虚拟仪器技术代替传统的数码管、示波器,实现了试验力、试验力峰值、横梁位移、试样变形及试验曲线的屏幕显示,所有的试验操作均可以在计算机屏幕上以鼠标输入的方式完成,具有良好的人机界面,操作方便;插装在PC机内的双通道全数字程控放大器实现了真正意义上的物理调零、增益调整及试验力测量的自动换档、调零和标定,无任何模拟调节环节,控制电路高度集成化,完全取消了电位器等机械调整器件,结构简单,性能可靠。上述各项技术的综合应用,保证了该机可以实现试验力、试样变形和横梁位移等参量的闭环控制,可实现恒力、恒位移、恒应变、等速度载荷循环、等速度变形循环等试验。用户可以使用PC机专家系统自主设置恒应力、恒应变、恒位移等控制模式,各种控制模式之间可以平

疲劳试验机的基本参数.doc

1 PWS-E1000电液伺服动静万能试验机 PWS-E1000 电液伺服动静万能试验机 技 术 方 案 书 济南鸿君试验机制造有限公司 2012 年 12 月 技术支持 : 济南鸿君试验机制造有限公司动态专机开发部 1

2 PWS-E1000电液伺服动静万能试验机 PWS-E1000 电液伺服动静万能试验机 技术方案 1、简介:1000kN 电液伺服动静万能试验机是济南试金开发的PWS系列试验机之一,该试验机采用试金成熟的动静态电液伺服试验技术,利用单元化、标准化、模块化 设计手段设计制造,从而大大提高了系统的稳定性和可靠性,系统的关键单元和元 件均采用当今国际先进技术制造,整个试验系统的整体性能与国际著名动态试验机 公司相当。 1000kN 电液伺服疲劳试验机主要用于金属材料及结构件的动态疲劳试 验,和静态拉、压、弯、剪力学性能试验。是高校、科研院所、企业等进行材料试 验的理想设备。 2方案描述:该方案描述的试验机主要进行各种零部件的静态力学试验和动态疲劳 试验。该试验机主要由主机(上置试金伺服直线作动器NCA1000)、德国DOLI 公司全数字伺服控制器EDC580及相关软件、以及其他必要的附件等组成。系统进行工作的基本原理如下图。 信号发生器伺服控制器伺服驱动伺服阀恒压伺服泵站 测量放大器伺服直线作动器 传感器被试件试验用夹具 2.1 主机:主机为四立柱框架式结构,伺服直线作动器上置。 2.1.1横梁采用液压升降、液压夹紧、弹性松开式结构,保证横梁升降方便,夹持 稳固可靠。 2.1.2 横梁升降油缸外形美观质量可靠,可无级调整试验空间。 2.1.3 横梁夹紧、运动液压模块采用进口液压元件制造,其中换向阀采用手动方式,保证高频试验时具有较高的可靠性。 2.1.4 进回油路配置由精度不大于3u 国产温州黎明(引进德国贺德克技术)精 密滤油器以及具有消脉、蓄能功能的进回油路蓄能器(中英合资奉化奥莱尔)组成 的液压滤油蓄能稳压模块。 2.1.5 伺服直线作动器上置,下联负荷传感器。 技术支持 : 济南鸿君试验机制造有限公司动态专机开发部 2

关于万能拉力试验机选购选型问题

关于万能拉力试验机选购选型问题 有很多试验机采购人员在试验机的选型在技术上存在的误区,现对存在的问题进行整理,希望能给用户的选型带来帮助! 一、万能拉力试验机量程选择: 根据试验材料的最大载荷选择所需要的试验机最大载荷(即量程),推荐材料试验载荷在试验机量程的70%——90%左右为佳,这样既保证了试验的分辨率也可以延长试验机的使用寿命; 二、万能拉力试验机精度等级选择: 目前国内试验机的精度普遍使用1级和0.5级两种,对于一般的材料试验选择1级的试验机完全足够,没有必要多花钱提高精度,对于科学研究和材料分析就需要0.5级精度的试验机;其实对于0.5级和1级精度的试验机在技术上差别并不明显,校验的方法和手段基本是一样的,这是修正点的不一样上,随着传感器技术的发展,传感器元件的线性度已经达到一个很高的水准,只要测量电路没有缺陷,抗干扰性能好的话,所有的试验机都会达到0.5级的精度是没有问题的,对于电测已经远远超出了0.5级的限定,国家标准定义的相对误差有待商榷。 三、万能拉力试验机分辨率和动态性能(带宽)选择: 分辨率是试验机的一个重要参数,合适的分辨率将有利于测量的解析度,测量出较小的分度,有效分辨率和动态性能是一对矛盾,一味的提高有效分辨率是以牺牲动态性能(带宽)为代价的,带宽的降低直接导致的结果是材料屈服波动不明显甚至出现屈服就是一个平台的现象,所以在选型是也要对这对参数进行有效的考虑; 四、万能拉力机同步性能选择: 材料试验采集的数据是在同一时刻的材料的载荷和变形,如果二者不同步就会出现载荷朝前于变形或者变形朝前于载荷的显现,对于在进回程测量弹性材料时出现同一个载荷对应两个变形的问题,进回程曲线不重合的现象。 “沈阳宝特仪器有限公司”致力于材料检测的细节研究,解决了以上所发生的问题,自主研发的基于32位ARM微控制器的嵌入式闭环测控系统,采用24bitA/D转换器,31.5Hz低通滤波器(带宽),采集频率达100Hz以上,,1:200万调速比使伺服电机的调速性能达到更佳状态,采用实时多任务操作系统实现负荷、变形和位移的三种闭环控制,同步采样技术

浅谈电子拉力试验机的组成与检测

浅谈电子拉力试验机的组成与检测 —本文章由科建仪器提供 电子拉力试验机由一根(单臂)或两根(门式)垂直的承载柱所组成,它安装在一个固定水平基板上,顶部是一个活动的水平横梁。在当今的大部分电子拉力机中,支柱通常是由丝杠驱动,来确定活动横梁的位置。 电子拉力试验机的规格由框架能够承受的最大负载和承载单元的最大负载结合起来进行表示。负载单元安装在电机驱动或油压驱动的移动横梁上。与夹具相连的承载单元测量力,可以从数字显示或电脑上读数。许多电子拉力机具有可互换的传感器,从而能与待测试材料匹配。为了诱发塑料的应变,电子拉力机在样板上施加了力。拉伸、弯曲、压缩或剪切方面的特殊测试按照样板中诱发应变的方向和施力的速度而被分类。由标准的电子拉力机来完成基础测试。它们通常要在0.1mm/min 至500mm/min的速度范围中加载,不同的材料要求不同的测试速度。破裂成长和疲劳等动态和循环测试一般是在很长的时段内,需要在载荷较低的伺服油压电子拉力机之上完成的。 早期的电子拉力试验机都有指针和图表记录器。它们现在已经完全被数控器和电脑软件所代替。新型控制器可以自动测试,并显示出相应数据,甚至测试进行中可以即时显示应力应变曲线。减轻了实验员计算的工作量。电子拉力机针对塑料的测试至今最普通的是拉伸强度与模量、弯曲强度与模量。对于ASTMD638和ISO527规定的拉伸测试,试样的两端被夹住。一个夹具固定,另一个在横梁中,从固定夹具处移开,拉住试样,直至其断裂,随后横梁会自动停下来。把试样放在测试机固定底座上的两个支撑上,进行弯曲测试(ASTMD790、D6272和ISO178)。为了这个测试,横梁的运动方向与拉伸测试的相反,推着而不是拖着试样的非有支撑的中央,直至其弯曲并有可能断裂。在国内,因为很多热塑性塑料在这个测试中不会断裂,按标准测试方法需要计算挠度达到厚度1.5倍时的弯曲应力,最常用的是对4mm厚的试样弯曲挠度6mm。

电液伺服疲劳试验机技术参数

电液伺服疲劳试验机技术参数 一、招标设备 20KN电液伺服疲劳试验机1台。 ★该产品须为国内知名品牌厂家生产的市场成熟稳定产品。设备生产厂家必须具有该设备的制造计量器具许可证资质及通过相应质量体系认证;必须具有同型号设备在近3年内案例至少五家以上(提供合同复印件。 二、产品适用标准 JJG 556-2011《轴向加荷疲劳试验机》、GB/T3075、HB5287、ASTM E647、ASTM E399、GB/T4161、GJB715、NASM1312标准等。 三、应用范围 该设备主要用于对各种金属或非金属材料及零部件进行疲劳试验、断裂力学性能试验、拉压弯剪等静态性能试验等。可配备高温炉、高低温环境箱等还可进行多种环境条件下的动静态力学性能试验。 四、主要技术指标 1)最大试验力:±20kN。 2)最大动态幅值:20kN。 3)有效测量范围:2%~100%F.S。 4)静态试验力示值相对误差:≤±0.5%;动态试验力示值相对误差:≤±1%。 5)作动器行程(位移):±50mm。 6)位移测量精度:≤±0.3% F.S;位移分辨率:≤0.001mm。 7)变形测量精度:≤示值的±0.5%,有效范围为满量程的2%~100%F.S。 8)试验波形:正弦波、三角波、方波、斜波、梯形波、锯齿波、半正弦波、脉动三角波、脉动锯齿波、脉冲波、自定义波、组合波等;频率范围为0.001Hz ~ 50Hz;分辨率≤0.001Hz。 ★9)最大载荷20kN,振幅±2mm时,可达到的最大频率不小于4Hz。

10)最大记数范围:109-1;计数误差:≤±1次。 11)控制模式:具有位移、负荷、变形三种控制模式,且模式可平滑转换。 ★12)受力同轴度:≤6%。 ★13)夹具形式:采用液压夹具,配置棒材及板材夹块各1套,三点弯家具1套。 ★14)夹头间距:700mm。并带T型槽工作台(有效工作长度≥800mm、宽度≥600mm)。 ★15)液压泵站:应采用进口液压泵组,额定流量不低于20L/min、额定压力不低于20MPa。 五、性能要求 1)具有完备的保护功能:油源过压保护,油温互锁保护,滤芯堵塞保护,位移、负荷、变形上下限设定超限保护,伺服阀失控保护,电机过流保护等,试验过程中可做到无人值守。 2)计算机系统应操作直观便捷,能轻松完成试验参数设置、试验控制、数据分析与处理;负荷、变形、位移具有多种显示模态,如瞬时值、峰谷值、平均值和幅值、循环次数等;统计、打印试验结果及试验曲线等;可用常规数据处理软件对存储记录的数据进行二次处理等。 六、主要配置及要求

金属疲劳试验

金属疲劳试验主讲教师:

一、实验目的 1. 了解疲劳试验的基本原理。 2. 掌握疲劳极限、S-N曲线的测试方 法。

二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立 最大应力σ max 或应力振幅σ α 与其相应的断裂 循环周次N之间的关系曲线。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。

这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σ R 表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳 极限以σ -1表示。中低强度结构钢、铸铁等材料的S- N曲线属于这一类。对这一类材料在测试其疲劳极限时,不可能做到无限次应力循环,而试验表明,这类材料在交变应力作用下,如果应力循环达到107周次不断裂,则表明它可承受无限次应力循环也不会断裂,所以对这类材料常用107周次作为测定疲劳极限的基数。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命。如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σ R(N) 表示。

2.S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按下列公式计算疲劳极限: ()11n R N i i i v m σσ==∑ 1

PLG_C型微机控制高频拉压疲劳试验机说明书

PLG-100C 微机控制高频拉压疲劳试验机使用说明书 长春试验机研究所 2 0 0 5年

目录 一.用途 (3) 二.性能及规格指标 (4) 三.试验机的结构及工作原理 (5) 3.1 主机系统工作原理简介 (5) 3.2 微机系统工作原理简介 (5) 3.3模拟控制系统原理简介 (5) 四.试验机的安装、调整与检查 (6) 4.1 主机的安装 (6) 4.2 主机的调整与检查 (7) 4.3 电控系统的调整与检查 (7) 五.试验机的使用 (7) 5.1 试样的装夹 (8) 5.2 电控系统的操作与使用 (8) 5.2.1 几个注意事项的说明 (8) 5.2.2 电控系统面板操作 (8) 5.2.3 磁铁电感量的选择 (9) 六.计算机软件的操作说明 (10) 6.1软件的安装 (10) 6.2 软件的操作 (10) 6.2.1 控件及其使用方法 (11) 6.2.2 软件的起动过程 (12) 6.2.3 功能按钮的使用 (12)

6.2.4 各种参数的给定操作 (18) 6.2.5 菜单项的使用 (19) 6.3 测量放大器的档位设置 (24) 6.4 电控箱的操作 (24) 七.维修保养 (25) 7.1 定期校准负荷力及标定 (25) 7.2 计算机的检查 (25) 7.3 功放单元的检查 (25) 7.4 速度控制单元 (25) 八.几个问题的说明 (25) 8.1交流稳压电源的使用 (25) 8.2 试样破断时频率降的设定 (26) 8.3 使用环境 (26) 九.日常使用操作规程 (27) 十.维护及使用注意事项 (28) 附表一:电气系统连接电缆表 (30) 附图一:电气原理图 (31) 附图二:强电接线原理图 (33) 附图三:主机结构示意图 (34) 附图四:试样装夹示意图 (35) 附图五:主机吊运示意图 (36) 附图六:主机安装示意图 (37) 附图七:夹具安装示意图 (38)

相关文档
相关文档 最新文档