文档库 最新最全的文档下载
当前位置:文档库 › 固体火箭发动机动力相似准则研究_蔡国飙

固体火箭发动机动力相似准则研究_蔡国飙

固体火箭发动机动力相似准则研究_蔡国飙
固体火箭发动机动力相似准则研究_蔡国飙

固体火箭发动机设计复习题答案

1. 画简图说明固体火箭发动机的典型结构 参考书中的发动机图吧 2. 固体火箭发动机的质量比是什么?什么是质量比冲? 质量比:推进剂质量与发动机初始质量的比。 质量比冲:单位发动机质量所能产生的冲量。 3. 固体火箭发动机总体设计的任务是什么? 依据导弹总体提出的技术要求,选择并确定发动机总体设计方案,计算发动机性能,确定发动机主要设计参数、结构形式和主要结构材料,固体推进剂类别和药柱形式等。在此基础上提出发动机各部件的具体设计要求。 4.请写出齐奥尔科夫斯基公式 式vm 中为导弹理想飞行速度,Is 为发动机比冲,mp 为药柱质量,mm 为发动机结构质量,ml 为导弹载荷量(除发动机以外的一切质量) 5.举出两种实现单室双推力的方案 (1)不改变喷管喉径,采用不同燃速的两种推进剂药柱,这两种药柱可前后放置,也可同心并列放置。前者推力比受燃速比的限制较小,后者较大。 (2)不改变喷管喉径,采用一种推进剂的两种药形,通过燃面变化实现双推力。该方法简单易行,但推力比调节范围较小。 (3)采用不同燃速的推进剂和不同药形,即同时用调节燃速和燃面的方法实现双推力。该方法有较大的灵活性,推力比调节范围宽,实际应用较为广泛。 (4)采用可调喷管改变推力大小,可得到较宽的推力比调节范围,但结构复杂。 6.什么是最佳长径比? 最佳长径比——对应最佳直径的长径比 第二章 7.什么是肉厚分数? 8.什么是装填密度、装填分数、体积装填分数? ln 1p m s m L m v I m m ??=+ ?+??

9.星形装药燃面变化规律与几何参数的关系? 参考2-2节,P49 10.单根管状装药的设计过程?如何计算? 参考2-4节,P64 11.什么是线性粘弹性? 指当应力值低于某一极限值时,粘弹性态是近似线性的,即在给定的时间内,由阶跃应力所导致的应变与应力值成正比。 12.什么是时温等效原理? 各种温度条件下所获得的松弛模量(或其他力学性能数据),可以通过时间标度的适当移动而叠加;这也就是说,材料性能随温度的变化关系可以用改变时间标度相应地(等效)表示出来。反过来,材料性能依赖于时间的变化,也可以靠改变温度条件相应地表示出来。这种关系就叫做时-温等效原理 第三章 13.固体火箭发动机燃烧室的主要组成部分和功用。 对于贴壁浇铸推进剂药柱的燃烧室,通常由壳体、内绝热层和衬层组成;对于自由装填药柱的燃烧室,一般由壳体、内绝热层和挡药板组成。 壳体主要承受内压作用。由于壳体还是弹体外壳的一部分,所以还要承受外载荷的作用。内绝热层用来对壳体内壁进行热防护。 衬层的作用是防止界面间的分子迁移,使浇铸的药柱与内绝热层粘结更牢,并缓和药柱与内绝热层之间的应力传递。 挡药板用于防止自由装填的药柱的运动。 14.发动机燃烧室壳体受到的载荷有哪些?

固体火箭发动机壳体用材料综述

固体火箭发动机壳体用材料综述 摘要:概述了国内外固体火箭发动机壳体用先进复合材料研究应用现状,同时对固体火箭发动机壳体的纤维缠绕成型工艺进行了阐述。 关键词:固体火箭发动机复合材料树脂基体纤维缠绕成型 1 固体火箭发动机简介 固体火箭发动机是当今各种导弹武器的主要动力装置,在航空航天领域也有相当广泛的应用。它的特点是结构简单,因而具有机动、可靠、易于维护等一系列优点,非常适合现代化战争和航天事业的需要。但固体火箭发动机部件在工作中要承受高温、高压和化学气氛下的各种复杂载荷作用,因此其材料通常具有极优异的性能,往往代表着当代材料科学的最先进水平。标志当代高性能固体发动机的主要特征是:“高能、轻质、可控”,这三者都是以先进材料为基础和支柱的,选用具有优良比强度和卓越耐热性能的先进复合材料已成为提高发动机性能的一项决定性因素。 2 固体火箭发动机壳体用材料 固体火箭发动机壳体既是推进剂贮箱又是燃烧室,同时还是火箭或导弹的弹体,因此,在进行发动机壳体材料设计时,应考虑如下几个基本原则[1]: a. 固体火箭发动机壳体就其工作方式来讲,是一个内压容器,所以壳体承受内压的能力是衡量其技术水平的首要指标; b. 发动机壳体是导弹整体结构的一部分,所以又要求壳体具有适当结构刚度; c. 作为航天产品,不仅要求结构强度高,而且要求材料密度小; d. 发动机点火工作时,壳体将受到来自内部燃气的加热,而壳体结构材料,尤其是壳体结构复合材料的强度对温度的敏感性较强,所以,在设计壳体结构材料时,不能仅限于其常温力学性能,而应充分考虑其在发动机工作过程中,可能遇到的温度范围内的全面性能。评价和鉴定壳体材料的性能水平,固然要以最终产品是否满足使用要求为原则,但从设计选材的角度来说,也应有衡量的指标和

“固体火箭发动机气体动力学”课程 学习指南

1.课程属性 火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。 2.为什么要学习固体火箭发动机气体动力学课程 固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。因此,燃气流动是“固体火箭发动机原理”的重要组成部分。 “固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。 3.“固体火箭发动机气体动力学”的知识结构 把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。 (1)气体动力学模块(14学时) 该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。该模块的主要知识点为 ?课程背景 ?流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热 比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本 概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流 体上的外力,扰动 ?拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程 ?流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一 维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压, 气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动 力学函数 (2)固体火箭发动机中的一维定常流动模块(8学时) 该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。本知识模块的目的是为学生学习固体火箭发动机原理奠定理论基

固体火箭冲压发动机设计技术问题分析

第33卷第2期 固体火箭技术 J o u r n a l o f S o l i dR o c k e t T e c h n o l o g y V o l .33N o .22010 固体火箭冲压发动机设计技术问题分析 ① 徐东来,陈凤明,蔡飞超,杨 茂 (西北工业大学航天学院,西安 710072) 摘要:总结了自1965年以来固体火箭冲压发动机研制技术的总体发展特征和趋势,结合当前新一代战术导弹提出的大空域、宽M a 数和大机动性等越来越高的设计需求,从冲压发动机热力循环技术本质要求出发,分析了当前工程上普遍采用的固定几何进气道、固定几何喷管、燃烧室共用、无喷管助推器和变流量燃气发生器等5项主体设计技术固有的技术缺陷、不足和局限性,明确指出现行的折中设计思想是产生问题的根源,提出未来应遵循“开源节流”设计思想,优先突破喷管调节技术,积极开发进气道调节技术,努力提高现有燃气发生器变流量调节技术水平,切实完善固体火箭冲压发动机热力循环,以促其成功应用。 关键词:固体火箭冲压发动机;设计技术;进气道;喷管;燃气发生器 中图分类号:V 438 文献标识码:A 文章编号:1006-2793(2010)02-0142-06 A s s e s s m e n t o f d e s i g nt e c h n i q u e s o f d u c t e dr o c k e t s X UD o n g -l a i ,C H E NF e n g -m i n g ,C A I F e i -c h a o ,Y A N GM a o (C o l l e g e o f A s t r o n a u t i c s ,N o r t h w e s t e r nP o l y t e c h n i c a l U n i v .,X i 'a n 710072,C h i n a ) A b s t r a c t :T h e d e s i g n c h a r a c t e r i s t i c s a n d t r e n d s o f d u c t e d r o c k e t s s i n c e 1965a r e s u m m a r i z e d .A i m i n g a t d e m a n d i n g d e s i g nr e -q u i r e m e n t s p o s e d b y n e wg e n e r a t i o nt a c t i c a l m i s s i l e s ,n a m e l y ,l o n g r a n g e ,w i d e M a c hn u m b e r r a n g e ,a n dh i g hm a n e u v e r a b i l i t y ,e t c .,t h e i n h e r e n t l i m i t a t i o n s a n dd i s a d v a n t a g e s o f f i v ec o m m o n l y u s e d m a j o r d e s i g nt e c h n i q u e s ,i .e .t h e d e s i g no f f i x e d -g e o m e t r y i n l e t ,f i x e d -g e o m e t r y n o z z l e ,c o m m o nc o m b u s t i o nc h a m b e r ,n o z z l e l e s s b o o s t e r ,a n dv a r i a b l ef l o wg a s g e n e r a t o r ,a r e a n a l y z e df r o m t h ev i e w p o i n t o f e s s e n t i a l r e q u i r e m e n t s o f r a m j e t t h e r m o d y n a m i c c y c l e .T h e p a p e r c l e a r l y p o i n t s o u t t h a t t h e c o m p r o m i s e p h i l o s o p h y i s t h es o u r c e o f t h e s e p r o b l e m s a n d s u g g e s t s t h a t t h e o p t i m u m c o n t r o l i d e a ,i .e .,m a k i n g b r e a k t h r o u g hi nn o z z l er e g u l a t i o nt e c h -n i q u e f i r s t ,a c t i v e l y d e v e l o p i n g i n l e t r e g u l a t i o n t e c h n i q u e ,a n d i m p r o v i n g g a s g e n e r a t o r f l o wc o n t r o l t e c h n i q u e s h o u l db e f o l l o w e d t o p e r f e c t r a m j e t t h e r m o d y n a m i c c y c l e a n df a c i l i t a t e t h e a p p l i c a t i o n s u c c e s s f u l l y . K e yw o r d s :d u c t e dr o c k e t ;d e s i g nt e c h n i q u e s ;i n l e t ;n o z z l e ;g a s g e n e r a t o r 0 引言 固体火箭冲压发动机是第3代冲压发动机。除具 有传统冲压发动机主级比冲高、可提供导弹较远的动力射程且保持高速飞行等性能优势外,因其全固体设计,不仅燃烧稳定可靠,而且突破液体燃料稳定燃烧对于燃烧室的最小尺寸限制,更易于小型化,结构更为简单紧凑,方便贮存和使用维护。所以,被认为是最适合于中等超声速、中远程、小尺寸战术导弹使用的理想高速巡航动力装置。自1965年以来,世界各主要武器大国针对其竞相大力开展了技术研究。 但迄今为止,除前苏联在1965~1967年间研制定型,并成功用于S A -6近程防空导弹外,极少有固体火 箭冲压发动机成功研制和应用案例。特别是自1995年后,针对射程100k m 以上的小尺寸中等超声速超视距空空导弹,欧洲和俄罗斯正在分别大力研制“流星”(M e t e o r )导弹和R -77M 导弹,虽然均历经10余年努力研发,却都迟迟难以定型。不论欧洲等西方发达国家, 即便是继承前苏联衣钵的俄罗斯,历经近半个世纪不懈努力,技术上已经长足进步,却也难以取得研制成功。这究竟是何道理?特别值得深刻反思。 关于冲压发动机的技术发展,国外S o s o u n o v [1] 、W i l s o n [2] 、Wa l t r u p [3] 、F r y [4] 、S t e c h m a n [5] 、B e s s e r [6]和H e w i t t [7]等先后做了阶段性总结和探讨。其中,最具代表性的是在2004年F r y 总结提出的冲压发动机T o p 10 — 142—① 收稿日期:2009-12-28。 基金项目:武器装备预研基金项目(9140A 28030207H K 0332)。 作者简介:徐东来(1970—),男,博士生,主要研究方向为航空宇航推进理论与工程。

FLUENT软件在固体火箭发动机内流场计算中的应用前景

中国兵工学会火箭导弹专业委员会第十一次学术会议 FLUENT软件在固体火箭发动机 内流场计算中的应用前景 方玉琪魏志军 (北京理工大学机电工程学院,北京100081) 摘要FLUENT作为一个商用软件,它在一般工程技术中具有极高的应用价值。本文首先对 FLUENT软件进行了一些基本的介绍,然后结合固体火箭发动机内流场数值模拟中遇到的问题, 分析了软件中的所采取的一些相应的措施,发现FLUENT能较好的满足固体火箭发动机内流场 的数值模拟,在以后的内流场数值模拟中具有较好的应用前景。 主题词固体火箭发动机,内流场,数值模拟,湍流模型,边界条件 1 引言 近年来,随着计算机技术和计算方法的不断进步,固体火箭发动机内流场数值模拟的工作越来越受到重视。在以往的研究中,由于受数值计算水平的制约,人为的将固体火箭发动机燃烧室和喷管中的流场分开计算,从而不能真实反映装药几何形状对喷管流场的影响。分开计算的模式割裂了二者的有机联系,为了统一计算,首先就要生成一体化的网格。在固体火箭发动机内流场计数值模拟中,还要考虑两相流动、传热、燃烧、辐射等诸多问题。目前,通常的做法是将流动和燃烧、传热等分开考虑,以简化燃烧室内流场研究的数学模型。但是燃气的流动仍然涉及到两相、湍流和化学反应,而且由于三维药柱和潜入喷管的应用,使几何边界和初始边界条件难以确定,再加上药柱燃烧造成了边界移动,使问题更趋复杂。那么,能不能找到一种方法或者软件对其进行综合分析考虑呢?在目前的几种计算软件中,FLUENT作为一种用于模拟具有复杂外形的流体流动以及热传导的计算机程序,能够很好的满足数值模拟的要求,具有较好的应用前景。 2 FLUENT软件简介 FLUENT的软件设计基于“CFD计算机软件群的概念”,不同领域的计算软件组合起来,成为CFD软件群。针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度,稳定性和精度等各方面达到最佳,从而高效率地解决各个领域的复杂流动的计算问题。这些不同软件都可以计算流场、传热和化学反应,在各软件之间可以方便地进行数值交换。各种软件采用统一的前后端处理工具,这就省却了科研工作者在计算方法、编程、前后处理等方面投入的重复、低效的劳动,而可以将主要精力和智慧用于物理问题本身的探索上。FLUENT 提供了完全的网格灵活性,可以使用非结构网格,例如二维三角形或四边形网格、三维四面体/六面体/金字塔形网格来解决具有复杂外形的流动。甚至可以用混合型非结构网格。它采用C语言编写,具有很大的灵活性与能力,因此动态内存分配,高效数据结构,灵活的解控 ―169―

固体燃料火箭发动机学习笔记

固体火箭发动机的基本结构:点火装置、燃烧室、装药、喷嘴构成。 固体火箭发动机的工作与空气无关 常见的推进剂有:1.双基推进剂(双基药) 2.复合推进剂(复合药) 3.复合改进双基推进剂(改进双基药)

直接装填! 形式: 自由装填:药柱直接放在燃料室 贴壁浇筑:把燃料直接和燃烧室粘贴在一起(液体发动机发射前现场加注推进剂)固体火箭一旦制造完成即处于待发状态 经过压身或浇注后形成的一定结构形式的装药我们叫他装药或者药柱 药柱的燃烧面积在燃烧过程中随时间变化必须满足一定的规律 完成特定任务所需要的。

装药面积的燃烧规律决定了发动机压强和推力面积的发展规律。 为了满足上述规律需要对装药的表面用阻燃层进行包裹,来控制燃烧面积变化规律。 药柱可以是:当根、多根,也可事实圆孔药,心孔药 燃烧室是一个高压容器! 装药燃烧的工作室。 燃烧时要求要求: 容积、对高温(2000-3000K)高压气体(十几到几十兆帕)的承载能力 与高温燃气直接接触的壳体表面需要采用适当的隔热措施

高温高压燃气的出口 作用: 1.控制燃气流出量保持燃烧室内足够压强。 2.使燃气加速膨胀,形成超声速气流,产生推动火箭前进的反作用推力。

部件作用:进行能量转化 工艺特点: 形状:先收拢后扩张的拉瓦尔喷灌,由收敛段、头部、扩张段、 中小型火箭,锥形喷管(节省成本和时间) 工作时间长、推力大、质量流速大采用高速推进剂的大型火箭采用特制喷管(收敛段和和直线段的母线可能不是直线可能是抛物线双圆弧)仔细设计型面,提高效率 作用:使燃气的流动能够从亚声速加速到超声速流 喉部环境十分恶略,烧蚀沉积现象影响性能(改变喉部尺寸改变性能)。

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析 摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。 关键词:火箭发动机工作原理应用 概述 火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。 固体火箭发动机的基本结构 固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。 图一发动机结构图 1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。 2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。 3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

西工大固体火箭发动机知识点精品总结

一、固体火箭发动机:由燃烧室,主装药,点火器,喷管等部件组成。 工作过程:通过点火器将主装药点燃,主装药燃烧,其化学能转变为热能,形成高温高压燃气,然后通过喷管加速流动,膨胀做功,进而将燃气的热能转化为动能,当超声速气流通过喷管排出时,其反作用力推动火箭飞行器前进。工作原理:1能量的产生过程2热能到射流动能的转化过程 优点:结构简单,使用、维护方便,能长期保持在备战状态,工作可靠性高,质量比高。 缺点:比冲较低,工作时间较短,发动机性能受气温影响较大,可控性能较差,保证装药稳定燃烧的临界压强较高。 二、1.推力是发动机工作时内外表面所受气体压力的合力。F=F 内+F 外 F=mu e +Ae(Pe-Pa) 当发动机在真空中工作时Pa=0.这时的推力为真空推力。 把Pe=Pa 的状态,叫做喷管的设计状态,设计状态下产生的推力叫做特征推力。 2.把火箭发动机动,静推力全部等效为动推力时所对应的喷气速度,称为等效喷气速度u ef 。 3影响喷气速度的因素来自两个方面:a).推进剂本身的性质b) 燃气在喷管中的膨胀程度 3.流量系数的倒数为特征速度C ?,他的值取决于推进剂燃烧产物的热力学特性,即与燃烧温度,燃烧产物的气体常数和比热比K 值有关,而与喷管喉部下游的流动过程无关。 4.推力系数C F 是表征喷管性能的参数,影响推力系数的主要因素是面积比和压强比。当Pe=Pa 时,为特征推力系数,是给定压强比下的最大推力系数,Pa=0时为真空推力系数。 5.发动机的工作时间包括其产生推力的全部时间,即从点火启动,产生推力开始,到发动机排气过程结束,推力下降到零为止。确定工作时间的方法:以发动机点火后推力上升到10%最大推力或其他规定推力的一点为起点,到下降到10%最大推力一点为终点,之间的时间间隔。 6.燃烧时间是指从点火启动,装药开始燃烧到装药燃烧层厚度烧完为止的时间,不包括拖尾段。确定燃烧时间的方法:起点同工作时间,将在推力时间曲线上的工作段后部和下降段前部各做切线,两切线夹角的角等分线与曲线的交点作为计算燃烧时间的终点。 7.总冲是发动机推力和工作时间的乘积。总冲与有效喷气速度和装药量有关,要提高总冲,必须用高能推进剂提高动推力。 8.比冲是燃烧一千克推进剂装药所产生的冲量。提高比冲的主要途径是选择高能推进剂,提高燃烧温度,燃气的平均分子量越小,比冲就越大,比冲随面积比变化的规律和推力系数完全相同。当大气压强减小,比冲增大,真空时达到最大,提高燃烧室压强可增加比冲。 9.在火箭发动机中常用实际值对理论值的比值来表示这个差别。这个比值就叫做设计质量系数,亦发动机冲量系数。 1.推力系数的变化规律:(1)比热比、工作高度一定时,随着喷管面积比的增大,推力系数增先大,当达到某一最大值后,又逐渐减小(2)比热比k 、面积比A e A t 一定时,C F 随着发动机工作高度的增加而增大; 2.最大推力分析:Pc 、At 、Pa 一定时,喷管处于完全膨胀工作状态时所对应的面积比,就是设计的最佳面积比,可获得最大推力; 3.比冲的影响因素:(1)推进剂能量对比冲的影响。能量高,R T f 高,c*高,Is 高; (2)喷管扩张面积比Ae/At 对比冲的影响。在达到特征推力系数前,比冲随喷管扩张面积比的增大而增加。(3) 环境压强Pa 对比冲的影响。Pa 减小,Is 增大;(4) 燃烧室压强Pc 对比冲的影响。当喷管尺寸和工作高度一定时,Pc 越高,u ef 越大。(5) 推进剂初温T 对比冲的影响。比冲随初温的增加而增大。 4.火箭发动机性能参数对飞行器性能的影响: V max =I s lnu (1)发动机的比冲Is 越大,火箭可以达到的最大速度Vmax 也越大,射程就越远。(2)火箭的质量数μ越大,火箭可以达到的最大速度Vmax 也越大.(3) 发动机比冲Is 和火箭的质量数μ可以**理 实c c C =ξ理实s s I I =ξN C F F C c C c ξξξ==理理实实**

超声波法测试固体火箭发动机燃速

超声波法测试固体火箭发动机燃速 王凯,贺晓芳,沈飞,翟江源 (西安航天动力测控技术研究所,陕西西安710025) 摘要:为测量固体火箭发动机燃烧过程中推进剂燃速变化情况, 组建可用于固体发动机地面试验特殊环境的超声波测量平台,应用超声波连续脉冲反射法测量,获得发动机不同界面的超声回波波形数据。通过设置区域增益并观察分析实验数据,从复杂的回波数据中提取出推进剂的厚度变化量,通过计算得到不同时刻推进剂的燃速。回 波图可以清晰反映出推进剂端面的燃烧退移过程, 进而可获得推进剂的燃烧规律。利用超声波法实现固体火箭发动机地面试验条件下推进剂燃速测量, 测得实时连续的发动机燃速,可为固体火箭发动机结构设计及装药设计提供重要参数。 关键词:固体火箭发动机;地面试验;超声波;推进剂; 燃速文献标志码:A 文章编号:1674-5124(2017)08-0019-05 Burning rate measurement of solid rocket motor by ultrasonic technology WANG Kai ,HE Xiaofang ,SHEN Fei ,ZHAI Jiangyuan (Xi ’an Aerospace Propulsion Test Institute ,Xi ’an 710025,China ) Abstract:In order to measure changes in the burning process of solid rocket motor propellant burning rate ,seting up an ultrasonic measurement platform for special environment of the engine ground test ,and get the echo data from three interfaces of solid rocket motor by continuous pulse reflection measurement.Extract the propellant thickness from complex echo data by seting regional gain and analyzing experimental data.Thus ,the burning rate of propellant can be acquired.Regress of burning propellant can be reflected in waveforms.It confirmed the feasibility of the experimental program.Further ,can get the burning regular of propellant.The burning rate of solid rocket motor was measured by ultrasonic method ,and the burning is real-time and continuous.It can provide important parameters for structural design and charge design of solid rocket motor.Keywords:solid rocket motor ;ground test ;ultrasonic ;propellant ;burning rate 收稿日期:2017-02-23;收到修改稿日期:2017-03-20 作者简介:王凯(1990-),男,硕士研究生,专业方向为固体 火箭发动机试验测控技术三0引言20世纪60年代瑞典利用超声波测量了其混合火箭发动机固体燃料的燃速三20世纪80到90年代, 法国的Cauty F 等[1]对推进剂样品的燃速进行了测 量,达到了一定的精度,并将超声燃速测量应用于固体发动机地面试验[2-3]三与此同时美国的几家研究机构也在火箭发动机地面试验中使用超声波进行测试[4]三21世纪初,法国阿里安5助推发动机地面试验中采用超声波法测量推进剂燃速,观测到70cm 推进剂的燃烧端面退移数据,并计算出推进剂燃速的变化三近年来,国外超声波燃速测量方法已经趋于成熟[5-6],研中国测试CHINA MEASUREMENT &TEST Vol.43No.8August ,2017 第43卷第8期2017年8月doi : 10.11857/j.issn.1674-5124.2017.08.005 万方数据

小型固体火箭发动机设计范本

小型业余固体火箭发动机设计范本 科创航天局 李楠 摘要:本文根据个人经验,以具体实例的方式,叙述了一台简单固体火箭发动机的设计流程。文中对发动机各参数的选择、计算进行了较为详细的说明。 目的在于倡导火箭爱好者在火箭的设计、制作方面更加的科学化,精细化。关键词:固体火箭发动机 一、设计要求 1、拟设计一台总冲(It)在600N-S左右的固体火箭发动机 2、发动机既定采用KNDX为燃料 3、发动机的设计推力曲线应尽量平缓,推力均匀 4、发动机的设计应考虑将来发动机用于可导火箭的兼容性 5、发动机要考虑与开伞设备的兼容性 二、基本参数估算 1、推进剂用量估算 KNDX实际密度取1.8 g/ 比冲(Isp)试取120S 则所需推进剂质量为 M= = 600/9.8*120=0.5102kg=510.2g 推进剂体积: V=510.2/1.8=283.4 2、发动机几何尺寸估算 初步假设发动机长径比为5:1 燃料内孔15mm 则发动机尺寸应满足 V=1/4∏(-)H (1) H/Di=5 (2)

其中V ——燃料体积 Di——发动机内径 d ——燃料内孔直径 H ——发动机长度 将数据代入式(1)(2)计算得(求解一个一元三次方程) 发动机内径 Di=43.45mm 发动机长度 H=217.25mm 三、参数计算 上面的计算结果,仅仅是为了明确发动机规格的大方向,还不能满足火箭设计的需要,因此,在下面的设计过程中,主要是围绕上面得出的结果,以SRM 计算软件为平台,确定发动机、药柱的具体尺寸。 1、发动机、药柱基本尺寸的确定 将上述计算结果进行圆整代入SRM,同时细微调整药柱尺寸、数量,使压力曲线平缓,在本方案中,确定药柱方案如下: 药柱外径:42mm 药柱内径:15mm 单段药柱长度:70mm 药柱数量:3 喷燃比变化如右图1: 图1 发动机内径:45mm(计算时应使用42mm,留有3mm做隔热层) 喉口直径初步选择:10 mm 初始喷然比218 压力曲线如右图2: 最大压力:4.6MPa 燃烧时间:1.352S 最大推力:498N 平均推力:424N 总冲:618 NS

固体火箭发动机壳体

固体火箭发动机壳体成型工艺 固体火箭发动机是当今各种导弹武器的主要动力装置,在航空航天领域也有相当广泛的应用。它的特点是结构简单,因而具有机动,可靠,易于维护等一系列优点,非常适合现代化战争和航天事业的需要。但是固体火箭发动机部件在工作中要承受高温,高压和化学气氛下的各种复杂载荷作用,因此其材料通常具有极优异的性能,往往代表着当代材料科学的最先进水平。 固体火箭发动机壳体既是推进剂贮箱又是燃烧室,同时还是火箭或导弹的弹体,因此,在进行发动机壳体材料设计时,要考虑以下几个基本原则: (1)固体火箭发动机壳体就其工作方式来讲,是一个内压容器,所以壳体承受内压的能力是衡量其技术水平的首要指标; (2)发动机壳体是导弹整体结构的一部分,所以又要求壳体具有适当结构刚度; (3)作为航天产品,不仅要求结构强度高,而且要求材料密度小; (4)发动机点火工作时,壳体受到来自内部燃气的加热,而壳体结构材料,尤其是壳体结构复合材料的强度对温度敏感性较强,所以,在设计壳体结构材料时,不能仅限于其常温力学性能,而应充分考虑其在发动机工作过程中,可能遇到的温度范围内的全面性能。 结构图 一、选材 1.1、增强纤维:碳纤维

固体火箭发动机壳体要求复合材料具有高的比强度,比模量和断裂应变。 各种纤维相比,碳纤维具有密度小,拉伸模量和比模量大;耐磨耐疲劳等机械性能优秀;耐腐蚀性能好;热膨胀系数小,导热率高,高温下尺寸稳定性好,不燃,分解温度高;具有润滑性;层间剪切强度及纤维强度转化率都比较高,不易产生静电聚集,使用温度高,不会产生热失强,并有吸收雷达波的隐身功能等优点。飞机结构材料要求轻质高强,耐疲劳、耐腐蚀性能好,尺寸稳定,所以碳纤维是最理想的材料。 拉伸模量为262~320GPa,拉伸强度在5GPa左右,断裂延伸率约为1.7%的高强中模碳纤维是理想的壳体增强材料。 碳纤维复合材料壳体PV/W值是Keclar49/环氧的1.3~1.4倍,可使壳体质量 再度减轻30%,使发动机质量比高达0.93以上。如美国的“三叉戟Ⅱ(C5)”导弹的第一、第二级壳体及“侏儒”导弹的第一、二、三级壳体均采用IM7碳纤维/环氧复合材料。 所以我们选用的是T1000碳纤维,抗拉强度6.37Gpa,抗拉模量294Gpa,断裂延伸率2.2%,密度1.8kg/m3。 1.2、树脂基体:环氧树脂 固体火箭发动机壳体就其工作方式来讲,是一个内压容器,它作为航天产品,不仅要求具有足够的强度、刚度和模量,而且要求密度低,即要求有高的容器特性(PV/W)值。影响PV/W值的因素很多,基体树脂的性能是其中之一。此外,发动机工作后,为使壳体在内部高温燃气的加热下仍保持足够的强度和刚度,树脂基体又应具有较高的热变形温度。固体火箭发动机壳体用复合材料的壳体的选择应遵循如下原则: (1)热力学应变能原则。树脂基体的热变形温度不低于120摄氏度。在树脂力学性能方面,主要考察拉伸性能,而拉伸性能的优劣应以拉伸性能和断裂伸长率的乘积-相对应变能来衡量。相对应变能高的树脂基体其相应容器爆破压强将会高些。对于大型发动机壳体制造用的环氧树脂应具有如下性质:拉伸强度≥80Mpa;拉伸模量≥2800Mpa;断裂伸长率为4~8%;热变形温度>120摄氏度。 (2)树脂体系的工艺性。 (3)原材料的来源、毒性和经济性,还应该考虑原材料的性能的已知性。 环氧树脂具有鲜明的优点和缺点。 优点:固化收缩小,随固化剂种类而异,体积收缩1%~50%。固化物机械强度高。尺寸稳定性好,粘结性好。电性能、耐腐蚀性能优良。若对树脂和固化剂进行选择,能得到耐热性好的固化物。树脂保存期长,选择固化剂和支撑B阶树脂,有良好的制预浸渍制品的特性。固化时不会像聚酯那样,容易受空气中氧的阻聚。

固体火箭发动机原理复习笔记

固体火箭发动机原理 第一章绪论 1.1绪论 火箭发动机:自身携带燃料和氧化剂的喷气发动机(推进剂燃烧不需要依靠空气中的氧气)吸气发动机:自身只携带燃料,燃烧所需要的氧化剂需要吸收空气中的氧气,吸气发动机只能在大气层中工作。 固体火箭发动机(solid propellant rocket engine):使用固体推进剂,燃料和氧化剂预先均匀混合 液体火箭发动机(liquid propellant rocket engine):使用液体推进剂(由液态燃料和液态氧化剂组成),常见的有单组元推进剂——肼,以及双组元推进剂——液氢和液氧 1.2 固体火箭发动机的基本结构和特点 固体火箭发动机的基本结构:固体推进剂装药、燃烧室、喷管、点火装置。 固体火箭发动机的类型:固体、液体、固液混合火箭发动机 固体推进剂(是固体火箭发动机的能源和工质) 种类:双基、复合、复合改双基推进剂 装药方式:自由装填(通常需要挡药板使药柱固定)、贴壁浇注 包覆层:用阻燃材料对装药的某些部位进行包覆,以控制燃烧面积变化规律 燃烧室(是固体火箭发动机的主体,装药燃烧的工作室) 特点:有一定的容积,且对高温高压气体具有承载能力 材料:合金钢、铝合金、或玻璃纤维缠绕加树脂成型的玻璃钢结构 形状:长圆筒型 热防护法:在壳体内表面粘贴绝热层或采用喷涂法 喷管(是火箭发动机的能量转换部件) 拉瓦尔喷管:由收敛段、喉部、扩张段组成 中小型火箭多采用锥形拉瓦尔喷管(收敛段和扩张段均为锥形) 大型火箭一般使用特型拉瓦尔喷管(扩张段为双圆弧、抛物线等) 喷管基本功能: 1.通过控制喷管喉部面积大小以控制排出的燃气质量流率,以控制燃烧室内燃气压强 2.利用先收敛后扩张的喷管结构使燃气由亚声速加速到超声速 喉部材料:(喷喉处工作环境恶劣,常发生烧蚀或沉积现象),需采用耐高温耐冲刷的材料,石墨、钨渗铜等 点火装置(提供足够的热量和建立一定的点火压强,使装药的全部燃烧表面瞬时点燃,尽早进入稳态燃烧) 组成:电发火管+点火剂(烟火剂或黑火药) 或点火发动机(尺寸较大的装药)

固体火箭发动机设计

word文档下载后可任意复制编辑 第1章绪论 1.1设计背景 固体火箭发动机与液体火箭发动机和其他化学能火箭发动机相比,具有很多的优点,因而它被广泛的用作各类小型、近程的军用火箭和战术导弹的动力装置。 近几十年来,由于高能推进剂的出现,先进的装药设计和大型药柱浇注工艺的采用,优异的壳体材料和耐烧蚀材料的问世,以及高效而可靠的推力矢量控制装置的研制成功,已在很大程度上克服了固体火箭发动机的缺点,更由于其结构简单,使它在竞争中显示更加优势的地位。 目前,固体火箭发动机除了用于军事用途外,也用于其他的很多方向。研制和使用新型的高能推进剂,进一步提高推进剂的综合性能,发展无烟推进剂是火箭推进技术主要的研究和发展方向。 总之,随着固体推进技术在航天领域和导弹技术中应用不断发展,会有更多的新课题出现,许多技术问题有待开发。所以,对固体火箭发动机的研究有十分重要的意思。 1.2固体火箭发动机简介 1.2.1 固体火箭发动机基本结构 固体火箭发动机主要由固体推进剂、燃烧室、喷管和点火装置等四大部分组成。图1.1为固体火箭发动机示意图。 1、推进剂装药 装药是装入燃烧室中的具有一定形状和尺寸的推进剂药柱的总称,它是固体火箭发动机的能源。由于装药的燃烧,化学能转化为动能,并且向外做工功,从而推动发动机的运动。常用的固体推进剂有三类:双基推进剂、复合推进剂

word文档下载后可任意复制编辑 和改性双基推进剂。固体推进剂包含有燃烧剂和氧化剂,它自身能够形成封闭的化学反应系统。 2、燃烧室 燃烧室里面装载了固体推进剂,是发生化学反应的场所。它主要由起支承作用的燃烧室壳体和起热防护作用的内绝热层组成,而燃烧室壳体一般由筒体和前后封头组成。大部分燃烧室都制作成圆柱形,他是主要的受力场所。燃烧室材料大多采用强度很高的材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,以大幅度减轻燃烧室壳体的重量。 1——药柱;2——燃烧室;3——喷管;4——点火装置。 图1.1 固体火箭发动机示意图 3、喷管 在喷管里气流的势能转化为动能,从而使气流加速流动,并保持一定的燃烧室压力,它主要由壳体和热防护层组成。对于一般的喷管主要由收敛段、喉部和扩张段三部分组成。由于喷管始终承受着高温、高压、高速气流的冲刷,尤其在喉部情况更加严重,因此需要在喉部采用耐高温耐冲刷的材料(如石墨、钨渗铜等)作为喉衬。 4、点火装置

相关文档