文档库 最新最全的文档下载
当前位置:文档库 › 复合材料技术报告

复合材料技术报告

复合材料技术报告
复合材料技术报告

航空预浸料- 热压罐工艺复合材料技术应用概况

发布时间:2011-11-23 15:34:27

先进复合材料自问世以来,由于其轻质、高强、耐疲劳、耐腐蚀等诸多优势,一直在航空材料领域得到重视。随着近几十年来的发展,尤其是最近10年在大型飞机上井喷式的应用,先进复材料已经证明了其在未来航空领域的重要地位,它在飞机上的用量和应用部位也已经成为衡量飞结构先进性的重要标志之一[1] 如目前代表世界最先进战机的美国F-22 和F-35,其复合材料占机结构重量达到了26%(F-22 机身、机翼、襟翼、垂尾、副翼、口盖、起落架舱门;F-35 机身翼进气道、操纵面、副翼、垂尾),欧洲EF-2000 战机更是达到了35%~40%(机翼、垂尾、方向舵[2] ;民机领域的两大巨头波音和空客,在其最新型的大型客机波音787、A350XWB 机型中,大幅使用复合材料,分别达到50% 和52%[3],在机身主承力结构中,除一些特殊需要外,基本上实现了全复合材料化。

从当前的复合材料应用来看,航空复合材料具备以下几个方面的特点:在材料方面,飞主承力结构应用高韧性复合材料;在工艺方面,呈现出以预浸料- 热压罐工艺为主,积极开发液体成型工艺及其他低成本成型工艺的态势,对复合材料构件的制造综合考虑性能/ 成本因机[4]设计理念的广泛认知,复合材料已逐渐在主承力结构上站稳了脚跟,而且,为了进一步将复合材料的优点充分发挥,飞机结构设计越来越趋向于整体化和大型化。复合材料在主承力结构上的应用技术是体现航空复合材料水平及应用程度的重要标志。目前复合材料主承力构件仍是以预浸料- 热压罐工艺为主。基于此,本文旨在介绍目前与航空预浸料- 热压罐工艺相关的复合材料技术。

主承力结构用预浸料

1 高性能复合材料体系

“计是主导,材料是基础,工艺是关键”[5]复合材料的制造技术与材料的发展息息相关。航空预浸料-热压罐工艺高性能复合材料到目前已经历了3个阶段。

第一阶段的复合材料采用通用T300 级碳纤维和未增韧热固性树脂,具有明显的脆性材料特征,主要用于飞机承力较小的结构件。第二善,应用范围扩大到垂尾、方向舵和平尾等部件。第三阶段的复合材料为高韧性复合材料,其应用扩大到机材料应用于飞机主承力结构,波音公司首先提出了高韧性复合材料预浸料标准BMS8-276,概述了主承力结构复合材料性能目标,并提出采用冲击后压缩强度

(CAI)作为合材料结构应用性能的评价指标。据此波性能,要求碳纤维拉伸弹性模量提高30%、拉伸强度提高50%,同时,开发高抗分层能力的韧性树脂基体,以将复合材料结构设计许用应变提高到0.6%~0.8%。1985 年NASA 发布RP1142 碳纤维/ 热固性韧性树脂复合材料标准规范。1989 年中模/ 高强碳T800 达到波音公司碳纤维材料标准BMS9-17 要求,并与同期研发的180℃固化高韧性环氧树脂成的复合材料( 如

T800H/3900-2)达到波音公司材料标准BMS8-276要求[6] 国外部分飞机主要复合材料结构设计选材见表1。国内复合材料体系的发展也同样经历相应的阶段,目前已在韧性复材取得一定的成果。国内外部分复合材料性能如表2、表3 所示。

2 预浸料工艺性

随着预浸料-罐工艺在航空主承力复合材料结构上的应用,结构设计逐渐趋于大型化和整体化,其目的是为了更好地发挥复合材料的优势、降低成本和减轻重量。但由此也带来了相关构件制造上的困难。如过去热固性预浸料的固化过程需要吸胶,在预浸料升到一定温度并保持一段时间后才能对其施加压力,以保证制件的质量。随着复合材料构件大型化和整体化程度的不断提升,其在热压罐内固化过程中的温度场分布也变得越来越不均匀,如还采用传统的保温再加压的固工艺,则难以保证预浸料加压带的要求,从而导致制件制造质量的下降和固化成型时间的增加。为解决这一问题,需要改善预浸料本身的工艺特征,以适应复合材料结构变化所带来的新需求。为此,国内外通过大量的研究,均已开发出多种可实现“零吸胶”、“常温加压”工艺的预浸料,从而保证了热压罐工艺复合材料制件的质量一致性,并减少了进罐时间。国内开发的环氧树脂预浸料碳Ⅷ/BA9918 预浸料、碳Ⅶ/BA9916-II 预浸料、CCF300/BA9916-II 预浸料和双马树脂预浸料CCF300/QY9511、碳Ⅶ/QY9611,都可做到“零吸胶”、“常温加压”,部分预浸料已用于多个型号产品的生产。

航空复合材料主承力结构的预浸料- 热压罐成型工艺

1 整体化成型工艺

着复合材料结构设计的发展,考虑进一步减重和降低成本,航空复合材料主承力结构件已越来越倾向于使用整

体化制造工艺,将多个构件一体化制造,以减少复合材料之间的装配连接。目前,预浸料- 热压罐工艺的整体化制造技术可分为共固化、共胶接和二次胶接3 种方案。每种均有各自的特点,因此需根据实际的结构和工艺要求来选择相应的整体化制造技术。在整体化制造中,各构件之间连最为关键的环节,因为它往往是整个结构最为薄弱的环节。如盒段整体结构中,相比,其弱点是承受面外载荷的能力较差,因此需要使用一些手段对该位置面外拉伸方向的性能进行加强。从目前的研究来看,Z-PIN、缝合技术虽然能改善面外拉伸性能,但其对结构的面内力学性能有一定的影响。针对整体化结构R 区的面外承载能力弱的特点,国内有关研究在这方面独辟蹊径,从提高材料性能的角度,开发了ZXC195、ZXC190、ZXC185 等系列增强芯材。该类增强芯材主要通过改善整体结构中R 区材料的韧性,来提高整体结构接头的面外承载能力,因此对于该区域结构的面内性能没有任何影响。目前,部分增强芯材已完成了相关整体化结构的工程应用,并取得了很好的应用效果[10] 。

2 各主承力结构成型工艺

2.1 壁板类成型工艺

复合材料壁板主要用于飞机尾翼、机翼和非筒体成型的机身。该类结构主要由蒙皮和长桁组成。

由于复合材料结构设计经历过等代设计,早期复合材料制造的壁板通常是由各自成形好的蒙皮和长桁通过机械连接组装而成。这样的方式增加了结构的自重,不能很好地发挥复合材料的优点。随着复合材料整体化制造技术的出现,壁板类复合材料结构也逐渐摆脱了机械连接,实现了一体化制造。其制造工艺方案主要有以下几类。

(1)蒙皮与长桁共固化。

分别铺叠蒙皮和长桁;通过模具工装将其组合在一起,接触面铺胶膜(或不铺胶膜);之后整体进热压罐完成共固化。

(2)蒙皮先固化,再与长桁共胶接。

先蒙皮固化;铺叠长桁,通过模具工装将其固定在已固化好的蒙皮上,接触面铺胶膜,之后进罐完成共胶接。(3)长桁先固化,再与蒙皮共胶接。

先固化长桁,并进行必要的机加;铺叠蒙皮,通过模具工装将固化的长桁与其组装,接触面铺膜,之后进热压罐完成共胶接。

(4)二次胶接。

分别固化蒙皮和长桁;将长桁进行必要的加工;通过模具工装将蒙皮与长桁组装,接触面铺胶膜,之后进热压罐完成二次胶接。

(5)混合工艺。

该工艺主要用于结构复杂的壁板结构。其制造工艺根据蒙皮和加筋的先后固化顺序分为多种工艺方案,统称为混合工艺。图1 为采用混合工艺成型的国内某纵横向加筋机身壁板。

以上的壁板类制造工艺方案各自具有不同的优缺点,在实际的工艺方案制定时,设计人员需要考虑具体的情况和相应的工程经验,来选用不同的成型工艺。

2.2 大长细比长桁和C 形梁成型工艺

在飞行器复合材料构件中,有一类大长细比的结构件,如机翼长桁、机翼C 形梁、机身长桁、机身地板梁等。这类构件结构虽然相对简单,但却无法使用自动铺带设备直接铺叠出毛坯,如果用手工铺叠却又不能在成本和周期上满足批量生产的要求。基于这类构件的结构特征,国内外工艺研发人员相继开发出了基于自动铺带技术的适用于大长细比构件的毛坯制备工艺。

(1)隔膜成型。

隔膜成型工艺是在欧洲推出的ALCAS 计划中,开发的一种用于加工飞机前梁的一种典型成型工艺方法。隔膜成型原是一种为热塑性复合材料开发的成型工艺,后发现用于热固性复合材料具有很广泛的用途。它具有成型过程中纤维不易滑动、不易产生皱褶的特殊功效,非常适于加工大型飞机机翼前梁的C 形截面[11]在近年推出的

A400M 飞机的C 形前梁的毛坯制备采用了这种工艺方法。

需要指出的是,该工艺方法并非针对所有的预浸料都适用,相应的树脂应具有一定的流动性。有资料表明,空客A350XWB 在选材中由于坚持选用三代增韧的M21E/IMA 预浸料,其所用树脂是用热塑性树脂韧化的,缺乏流动性,用隔膜成型较困难,因此只好用自动铺丝技术来完成[12] 。

(2)叠层滑移工艺。

叠层滑移工艺是国内研发的专用于大长细比构件的毛坯制备工艺。该工艺首先将构件的复合材料模型进行平面

展开,并可用自动铺带机铺叠展开后的平面毛坯。将平面毛坯放入专用装置并进行加热软化,利用压力使其贴于相应的模具表面,形成最终的制件毛坯[13] 。

基于这种工艺,国内已研制出了10m“C”形梁以及10m“工”形、“J”形、“T”形长桁,且构件的质量完全满足要求。

2.3 盒段整体结构

在现行的飞机翼面类复合材料

整体化结构中,有多种结构设计方案,较为经典的如上、下蒙皮与骨架一体成型的整体盒段,下蒙皮与骨架一体成型并与上蒙皮机械连接的整体盒段等。针对这些不同的复合材料结构形式,需要开发相应的制造工艺方案。几种典型的成型工艺方案如下:

(1)基于“π”形接头的盒段结构成型工艺。

这一类结构方案主要用于飞机平尾、垂尾。其成型路线是先成型上、下“π”形加筋壁板和腹板,然后将腹板与上、下“π”形加筋壁板合拢胶接,组成盒段整体结构。目前该种结构和型工艺已在我国某机型的垂直安定面上得到应用,图2 为国内研制的“π”形接头盒段结构。

(2)基于T 形接头的骨架与上、下蒙皮一体成型工艺。

该类结构先铺叠(或固化)上、下蒙皮,通过模具工装将未固化的骨架与上、下蒙皮毛坯(上、下蒙皮)组装在一起,接触部位填充胶膜,再(或上、下蒙皮)与骨架和胶膜的共固化(或共胶接)。通常这类结构适用于飞机平尾、垂尾部分,如目前波音787 的平尾即采用了这类成型工艺。如图3 所示为国内采用骨架与上下蒙皮一体成型工艺研制的盒段件。

(3)基于T 形接头的骨架与下蒙皮一体成型工艺。

该类结构先铺叠(或固化)下蒙皮,通过模具工装将未固化骨架与下蒙皮毛坯(或下蒙皮)组装,接触面化(或共胶接);固化上蒙皮;上蒙皮再与骨架/ 蒙皮一体成型下壁板进行机械连接。该类结构主要用于战斗机的机翼主承力结构,目前有多种飞机机翼采用了该类结构,如欧洲EF2000 机翼、日本F2 机翼。国内对于该类结构的成型工艺已完成了相关的工程验证,并得到应用。

2.4 机身筒体成型工艺

目前使用复合材料制造机身的结构方案有两类,一类是将机身的每段筒体分为四块壁板分别成型后,再用机械连接方式对接,空客A350XWB 即为这种工艺方案;另一类则是将机身每段筒体整体成型,其代表机型是波音787。

波音787 的机身是用直径5.8m 的成型模胎成型,模胎安装在一旋转夹具上面沿长轴转动,用纤维铺放头进行纤维铺放,先铺长桁然后铺皮。结果可形成外表光滑的变厚度的壳体以及共固化的桁条组成的机身段(如图4),经过热压罐固化后,取下模胎,这一工艺可以代替由上百块蒙皮壁板、加强筋及长桁、上千个紧固件组成机身的工艺。

复合材料数字化/ 自动化制造技术

1 自动铺带/ 铺丝技术

一直以来,预浸料- 热压罐工艺都属于先进复合材料制造工艺中成本较高的成型方式,其中在复合材料毛坯的制造过程中,预浸料的裁减和铺叠是人工成本和人工时间消耗最大的一个环节,在国外人工成本高昂的问题尤其突出。特别是在制件批量生产的前提下,不改变这种局面,制件的制造成本无法降低到市场能够接纳的程度。基于此原因,以及考虑到大尺寸构件制造的质量性,自动铺带/ 铺丝技术应运而生[14] 。

(1)自动铺带技术。

自动铺带机根据铺放制件的几何特征可分为平面铺带和曲面铺带两类。随着自动铺带设备、程、计算机软件、铺带技术以及材料的进一步发展,自动铺带的效率变得更高,性能更可靠,操作性更友好。与手工相比,先进铺带技术可降低制造成本的30%~50%,可成型超大尺寸和形状复杂的复合材料制件,且质量稳定,缩短了铺层及装配时间,工件近净成型,切削加工及原材料耗费减少。

目前,所有波音787 翼面及翼盒构件均采用自动铺带技术制造,A400M 机翼后梁的平板毛坯也同样采用了自动铺带技术。着近年来国内复合材料井喷式的发展与应用,自动铺带技术也同样得到了发展,并取得了一定的应用成果。如北京航空制造工程研究所成功研制了6m×20m 大型自动铺带机,并已在新型飞机的复合材料构件研制中得到应用(如图5)。

(2)自动铺丝技术。

与自动铺带相比,自动铺丝束技术可以成型更复杂的结构件,材料消耗率低。目前自动铺丝技术的代表是美国辛辛那提机床公司Viper 纤维铺放机系统。Viper 纤维铺放系统将缠绕、特型铺带及计算机控制结合起来,自动生产需要大量手工铺层的复杂零件,从而缩短铺层及装配时间,其铺叠生成的工件近净成型,切削加工及原材料耗费比自动铺带技术更少。料制件制造上已成功地大面积使用,其对复合材料的重要性相当于铣床对金属材料结构的重要性。如美国的波音78机型,其23% 的机身(包括5.8m×7m 的47 段及4.3m×4.6m的48 段)均使用了辛辛那提公司的自动铺放机Viper600[4] ;A380 的尾锥、A350XWB 的尾锥和C 形梁同样使用自动铺丝设备制成。

2 手工铺叠的自动化/ 数字化技术

与传统手工铺叠相比,目前手工铺叠工艺具有明显的数字化特征,在整个铺叠过程中使用了许多专用设备来控制和保证铺层的质量,如复合材料预浸料自动剪裁下料系统和铺层激光定位系等。采用专门的数控切割设备来进行预浸料和辅助材料的平面切割,从而将依赖于样板的制造过程转变为可根据复合材料设计软件产生的数据文件进行全面运作的制造过程,大大增加了手工铺叠的工作效率和铺叠质量。目前我国在研和批量生产的航空用先进复合材料构件大部分仍在使用手工铺叠,其在数字化水平上已完全与国外看齐。

结束语

预浸料- 热压罐工艺是高性能热固性复合材料较早开发的成型方法。随着先进复合材料研发与应用的不断进步,这一成熟的制造工艺也同样追随着时代的步伐与时俱进。技术层出不穷,也在航空飞行器复合材料结构制造中得到较大的应用,但预浸料- 热压罐工艺仍以其优异的产品质量占据着重要的地位。且随着自动化、数字化水平的不断提高及相关技术的不断完善,其一直让人诟病的成本高、周期长的缺点也逐渐得到了改善,并被相关领域的人们所接受。随着航空飞行器的进一步发展,预浸料- 热压罐工艺仍需要不断地进步,以满足复合材料发展和应用的进一步需求。

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

镁合金的发展及应用

1 / 8 镁合金的发展及应用 摘要:综述镁合金的特点及其在交通、航空航天、兵器方面的应用情况,并结合兵器零件的使用特点和性能要求,分析了镁合金在兵器装备中的应用前景, 展望 关键词:镁合金,特点,发展,应用 1 引言 镁合金的密度很小,是钢的四分之一、铝的三分之二,但镁合金的比强度却大于钢和铝,是最轻的金属结构材料。因此,镁合金在电子产品、汽车、航空航天等需要高比强度金属材料的领域具备广阔的发展前景。但是镁合金的化学活性高,在有机酸、无机酸和含盐的溶液中均会被腐蚀,且腐蚀速率较高,使得镁合金的应用受到了很大的限制。 镁合金是重要的有色轻金属材料,具有比强度、比刚度高,减振性、电磁屏 蔽和抗辐射能力强,易切削加工,易回收等一系列优点,广泛应用于航空航天、 2 镁合金的特点 (1)重量轻:镁合金的比强度要高于铝合金和钢/铁、但略低于比强度最高的纤维增强塑料;其比刚度与铝合金和钢/铁相当,但却远远高于纤维增强塑料。比强度(强度/密度之比值)、比耐力(耐力/密度之比值)则比铝、铁都要高。在实用金属结构材料中其比重最小(密度为铝的2/3,钢的1/4)。这一特性对于现代社会的手提类产品减轻重量、车辆减少能耗以及兵器装备的轻量化具有非常重要的意义。 (2)高的阻尼和吸震、减震性能:镁合金具有极好的吸收能量的能力,可吸收震动和噪音,保证设备能安静工作。镁合金的阻尼性比铝合金大数十倍,减震效果很显著,采用镁合金取代铝合金制作计算机硬盘的底座,可以大幅度减轻重量(约降低70%),大大增加硬盘的稳定性,非常有利于计算机的硬盘向高速、大容量的方向发展。 (3)良好的抗冲击和抗压缩能力:其抗冲击能力是塑料的20倍;当镁合金

力学实验报告

力学实验报告 篇一:工程力学实验(全) 工程力学实验学生姓名:学号:专业班级:南昌大学工程力学实验中心目录实验一金属材料的拉伸及弹性模量测定试验实验二金属材料的压缩试验实验三复合材料拉伸实验实验四金属扭转破坏实验、剪切弹性模量测定实验五电阻应变片的粘贴技术及测试桥路变换实验实验六弯曲正应力电测实验实验七叠(组)合梁弯曲的应力分析实验实验八弯扭组合变形的主应力测定实验九偏心拉伸实验实验十偏心压缩实验实验十二金属轴件的高低周拉、扭疲劳演示实验实验十三冲击实验实验十四压杆稳定实验实验十五组合压杆的稳定性分析实验实验十六光弹性实验实验十七单转子动力学实验实验十八单自由度系统固有频率和阻尼比实验 1 2 6 9 12 16 19 23 32 37 41 45 47 49 53 59 62 65实验一金属材料的拉伸及弹性模量测定试验实验时间:设备编号:温度:湿度:一、实验目的二、实验设备和仪器三、实验数据及处理引伸仪标距l =mm 实验前 2低碳钢弹性模量测定 E? 实验后 ?F?l = (?l)?A 屈服载荷和强度极限载荷 3载荷―变形曲线(F―Δl曲线)及结果四、问题讨论(1)比较低碳钢与铸铁在拉伸时的力学性能;(2)试从不同的断口特征说明金属的两种基本破坏形式。 4篇二:工程力学实验报告工程力学实验报告自动化12级实验班 1-1 金属材料的拉伸实验一、试验目的 1.测定低碳钢(Q235 钢)的强度性能指标:上屈服强度ReH,下屈服强度ReL和抗拉强度Rm 。 2.测定低碳钢(Q235 钢)的塑性性能指标:断后伸长率A和断面收缩率Z。 3.测定铸铁的抗拉强度Rm。 4.观察、比较低碳钢(Q235 钢)和铸铁的拉伸过程及破坏现象,并比较其机械性能。 5.学习试验机的使用方法。二、设备和仪器 1.试验机(见附录)。 2.电子引伸计。 3.游标卡尺。三、试样 (a) (b) 图1-1 试样拉伸实验是材料力学性能实验中最基本的实验。为使实验结果可以相互比较,必须对试样、试验机及实验方法做出明确具体的规定。我国国标GB/T228-2002 “金属材料室温拉伸试验方法”中规定对金属拉伸试样通常采用圆形和板状两种试样,如图(1-1)所示。它们均由夹持、过渡和平行三部分组成。夹持部分应适合于试验机夹头的夹持。过渡部分的圆孤应与平行部分光滑地联接,以保证试样

信息技术最前沿的应用

信息技术最前沿的应用 信息技术的运用在日常生活中无处不在,如车载雷达、遥感技术、机顶盒、自动化电器、掌上电脑、MP3随身听等,这些与人们的生活息息相关。除此之外,目前还有以下几种应用: 一、“舌头驾驶系统”助残障人活动 最近成功地研制出一种使用微小磁铁进行控制的小仪器,这种米粒大小的仪器可以植在人的舌头下,肢体残疾的人士只需要动一下舌头,就能够轻松地驾驭自己的轮椅甚至操作电脑。这套装置将可协助脊椎神经受到重创的严重残疾人,重新过着以往丰富、活跃及独立的生活。 还有霍金的轮椅装置、盖茨的家、电子骨骼服装、GPS、眼睛打字、电子耳、公交卡收费系统、高速公路电子不停车收费系统、亚轨道太空飞机“山猫”号、形形色色的“记忆”商品,等等,当今社会中信息技术的应用无处不在。 二、手机越来越“聪明” 这两年,经过科研人员的“精心调教”,手机正在将“多功能集一身”的特点发挥到极致,令“一切尽在掌握之中”。 (1)心脏病人的“求救器” 美国国际商用机器公司(IBM)的研究人员日前就为手机增添了一项新功能:为高危心脏病患者发送求救信息。 IBM公司介绍说,新系统的核心是只有一盒口香糖大小的无线电信号转发装置。这一装置采用了可进行短距离、低功率无线通信的“蓝牙技术”,可与便携式心跳监测仪和手机配合使用。当使用者心跳达到“危险”水平时,这套系统能自动拨打一个预设的手机号码,以短信息的方式发出心跳数据。 (2)用手机遥控你的家 日本电信电话公司下属的移动电话系统公司新近开发出“手机遥控居家系统”。它将为终日忙忙碌碌的上班族解决不少后顾之忧。 利用这种系统,用户离家外出后,可使用手机通过因特网照顾家中的各种事务,如开关窗户和照明灯、监视人员出入等。如出现问题,家中设备会自动通过电子邮件向主人报警。 三、可对话的车

私募行业发展现状与趋势

私募行业发展趋势

?我国私募行业发展现状?我国私募行业发展趋势

截止到2017年3月底 管理人数量(家) 基金数量(只)基金规模(亿)基金平均规模 (亿) 公募基金10942088920721.20 私募基金 18596 50424 119000 2.36 私募管理规模VS 公募管理规模私募基金规模自2014年以来高速增长,由2014年底认缴规模为2.63万亿增加到2017年3月底11.9万亿,规模扩大4.5倍,季度环比增长率达到18.26%。 私募认缴规模已经超过公募规模 ①2016年3月底私募实缴规模为8.75万亿,与公募的8.92万亿不相上下,于2016年三季度后开始超过公募基金规模②私募基金管理人数远超公募基金,基金产品数量亦远超公募基金产品数量③私募单只产品平均规模远远小于公募基金,只有2.36亿元,为公募基金产品平均规模21.2亿元的十分之一

政策规范力度、执行力度加强私募行业部分重点监管政策 私募行业相继出台各项监管政策,旨在规范私募机构运营,促进行业良性有序发展。 ?私募投资基金管理人内部控制指引(中基协2016.02.01) ?私募投资基金信息披露管理办法(中基协2016.02.04) ?关于进一步规范私募基金管理人登记若干事项的公告(中基协 2016.2.5) ?中国基金业协会负责人就落实《关于进一步规范私募基金管理 人登记若干事项的公告》相关问题答记者问(中基协 2016.2.22) ?私募投资基金募集行为管理办法(中基协2016.04.15) ?关于私募基金管理人近期入会相关工作安排的通知(中基协 2016.09.08) ?关于做好私募基金“两个加强、两个遏制”相关工作的通知( 中基协2016.08.29) ?私募投资基金服务业务管理办法(试行)(征求意见稿)(中基协2016.11.15)2016年2月5日基金业协会发文8月1日前无备案产品的私募基金将被注销。16年三季度减少8000余家私募,截至3月底目前已经注销私募机构超过12000家。

金属基纳米复合材料制备工艺

金属基纳米复合材料制备工艺 材料研1203 石南起Z1205020金属基纳米复合材料是以金属及合金为基体,以高性能的第二相为增强体,与一种或几种金属或非金属纳米级增强体结合的复合材料,因兼有金属和纳米相而具有独特的结构特征和物理、化学及力学性能,成为一种新兴的纳米复合材料和新型金属功能材料。 1.金属基纳米复合材料的种类和基本性能 (1)相对于传统的金属材料来说,具有较高的比强度与比刚度; (2)与聚合物基复合材料相比,它又具有优良的导电性与耐热性; (3)与陶瓷基材料相比,它又具有高韧性和高冲击性能。 2.金属基纳米复合材料的种类 金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。因此,对这种材料的分类既可按基体来进行、也可按增强体来进行。 按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料。 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料。 按用途分为:1.结构复合材料;2.功能复合材料。 3.金属基纳米复合材料性能特征 金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性 E.良好的断裂韧性和抗疲劳性能 F.不吸潮、不老化、气密性好 4.金属基纳米复合材料制备工艺的分类: (1)固态法:粉末冶金法、真空热压扩散结合、热等静压、超塑性成型 / 扩散结合、模压。(2)液态法:液态浸渗、真空压铸、反压铸造、半固态铸造。 (3)喷射成型法:等离子喷涂成型、喷射成型。 (4)原位生长法。 制备金属基纳米复合材料的具体方法有机械合金化法、熔融纺丝法、粉末冶金法、机械诱发自蔓延高温合成反应法、真空蒸发惰性气体凝聚及真空原位加压法等。 A.机械合金化法 将按合金粉末金属元素配比配制的试料放入立滚、行星或转子高能球磨机中进行高能球磨,制得纳米晶的预合金混合粉末,为防止粉末氧化,球磨过程中采用惰性气体保护;球磨制得的纳米晶混合粉经烧结致密化形成金属基纳米复合材料。在球磨过程中,大量的碰撞现象发生在球粉末与磨球之间,被捕获的粉末在碰撞作用下发生严重的塑性变形,使粉末反复的焊合和断裂。经过“微型锻造”作用,元素粉末混合均匀,晶粒尺度达到纳米级,层状结构达到1um下,比表面积大大增加。由于增加了反应的接触面积,缩短了扩散距离,元素粉末间能充分进行扩散,扩散速率对反应动力的限制减小,而且晶粒产生高密度缺陷,储备了大量的畸变能,使反应驱动力大大增加。 B.高能球磨法 20世纪60年代末,美国首先用高能球磨法制备出氧化物弥散强化合金,高能球磨法是利

镁基复合材料的性能及应用

镁基复合材料的性能及应用 罗文昌2013121532 摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。本文将综述镁基复合材料的不同制备方法及其对复合材料组织、结构、性能的影响,并提出镁基复合材料的研究和发展方向。 关键词:镁基复合材料;基体镁合金;性能;应用;发展 1.引言 现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。复合材料是将两种或两种以上不同性能、不同形态的组分材料通过复合手段组合而成的一种多相材料。近年来,金属基复合材料在许多领域得到了应用。目前金属基复合材料的制备方法已有很多,并在铁基、镁基、铜基、铝基、钛基等金属基复合材料中取得了比较大的成功。镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。根据镁基复合材料的特点,结合原有的金属基复合材料的制备工艺,材料工作者尝试了多种新的适合制备镁基复合材料的方法与工艺,对研制、开发镁基复合材料起到了很好的促进作用。 2.镁基复合材料的组织与性能 相对于传统金属材料和铝基复合材料,有关镁基复合材料的组织与性能的研究目前虽然已经取得了一定的成果,但还不够全面深入,力学性能数据分散性也比较大,仍处于探索性研究阶段。材料工作者对镁基复合材料的耐磨性能和疲劳断裂机理进行了研究,并围绕镁基复合材料的力学性能及物理性能做了一些工作。力学性能主要集中于复合材料的拉伸与压缩性能,时效特性,以及低温与高温超塑性等方面;物理性能有阻尼性能和储氢性能等研究内容。储氢镁基复合材料一般采用球磨法制备。高能球磨后,颗粒活化,镁颗粒与增强相颗粒以及颗粒内部的大量相界、微观缺陷的存在是材料具有优异氢化性能的主要原因。通过机械合金化工艺可以制备出具有优良储氢性能的复合材料,典型体系:Mg—Mg2Ni,而且若在研磨过程中辅以某些有机添加剂对提高材料的储氢性能有很大帮助,但较高的脱氢温度以及相对较慢的吸放氢速度限制了镁基合金实际应用。另外非晶态镁基复合材料的优良性能更是引起了人们的普遍兴趣。在实际应用中,由于镁基复合材料过硬的性能,镁基复合材料在在各领域中被广泛应用。镁基复合材料组织特征为增强体分布在基体合金中,同时引入了大量的界面以及高密度位错缠结,其晶粒度较基体合金也小,无论是高密度位错引起的位错强化,还是细化晶粒的作用都将提高和改善复合材料的拉伸强度和刚度等力学性能。另外,挤压变形、固溶时效以及其它一些工艺的运用和调整都将有利于进一步提高镁基复合材料力学性能镁基复合材料具有良好的阻尼性能(减振性能)、电磁屏蔽性能和储氢特性,是良好的功能材料,还具备密度小、贮氢容量高、资源丰富等优点。镁基贮氢复合材料正被日益重视,主要制备方法有多元合金化、机械合金化、多元复合等。 3.镁基复合材料的应用 从近期发展看,镁基复合材料并没有大规模地应用于常规结构件中,但它们在航空航天和汽车电子工业中的众多构件方面有着广阔的应用前景。 美国TEXTRON、DOW 化学公司用SiC /Mg复合材料制造螺旋桨、导弹尾翼、内部加强的汽

复合材料实习报告总结

复合材料实习报告总结 复合材料实习报告总结 ,隔离膜的铺放顺序,应为抽真空的缘故,我们要住辅助材料的边角不能覆盖至制品上,因为受压会使制品表面有压痕影响之间的工艺性能。一般的是隔离膜在制品的表面,然后是吸胶材料,最后是透气毡,而打真空袋是要明确以不能能漏气也就是要保证真空袋通过腻子胶条和模紧密贴合不漏气,另外一个是要是真空袋抽正空后要与模具和制品紧密贴合不能有褶皱。手糊成型的有点很多,如其一不需要复杂的设备,只需要简单的模具,工具,投资少,成本低。其二生产技术易掌控,人员只需经过短期的培训即可生产。其三复合材料产不受尺寸,形状的限制。其四可以与其他材料同时复合制成一体和对于一些不宜运输的大制品等。缺点就是产品质量不够稳定,生产环境差,气味大,加工时粉尘过多。不能用来制造高性能产品,生产效率低下。这是我感受到的,我对于手糊成型的理解。我们不仅要提高制品的工艺性能,更要减少制品的生产成本和提高工做卫生的环境条件。注重团队合作,时间的分配,设计的和理性的。 而手糊成型完了就接着是热压罐成型工艺过程: 一,模具的准备。模具要用软质材料轻轻搽拭干净,并检查时候漏气。然后在模具上涂布脱模剂。 二裁剪和铺叠。按样板裁好带有离型纸的预浸料,剪切时必须注意纤维方向然后将才好的预浸料揭去离型纸按照规定顺序和方向铺叠,每一层要用橡胶辊等工具将预浸料压实,赶出空气。

三组合和装袋,在模具上将预浸料胚料和各种辅助材料组合并装袋,应检查真空袋周边是否良好。 四热压固化,将真空袋系统组合到热压罐中,接好真空管路,关闭热压罐,然后按确定的工艺要求抽真空、加热、固化。最后就是出罐脱模,固化完成后,冷却到室温后,将真空移除热压罐,去除各种辅助材料后进行修整。 典型的热压罐固化工艺过程五个阶段: 1升温阶段; 2吸胶阶段; 3继续升温阶段 4保温热压阶段; 5冷却阶段。 我们小组遇到问题主要有裁剪时不一,就是尺寸不统一。在进行磨具合拢是不能很好的贴合,模具夹合时有缝隙需要要纤维预浸料填补。我们贴挡胶胶条是要注意把要流胶的位置都挡上。 再次,要深化自己的工作任务。熟悉每一件制品的制作方法,细节。做到烂熟于心。学会面对不同的困难,采用不同的操作技巧。力争让每一件制品都能然自己感到称心如意,更力争增加操作经验,提高产品质量。 最后,端正好自己心态。其心态的调整使我更加明白,不论做任何事,务必竭尽全力。这种精神的有无,可以决定一个人日后事业上的成功或失败,而我们的工作中更是如此。如果一个人领悟了通过全力工作来免除工作中的辛劳的秘诀,那么他就掌握了达到成功的原

纳米复合材料发展与现状

纳米复合材料发展与现状 201041505118 李少军10材料一班 1 纳米复合材料 超细粒子(或纳米粒子)是指尺度介于原子、分子、离子与块状材料之间,粒径在1~100nm范围以内的微小固体颗粒。随着物质的超细化,产生了块状材料不具有的表面效应、小尺寸效应、量子效应,从而使超细粒子与常规颗粒材料相比具有一系列优异的物理、化学性质。纳米粒子经压制、烧结或溅射组合而成的具有某些特定功能的结构即纳米材料。它断裂强度高、韧性好、耐高温,纳米复合同时也提高材料的硬度、弹性模量、Weibull模数,并对热膨胀系数、热导率、抗热震性产生影响。[1] 纳米复合主要指在微米级结构的基体中引入纳米级分散相。纳米复合材料(复合超微细颗粒)表现出许多与模板核本质不同的性质,如不同的表面组成、磁性、光学性能、稳定性及表面积等。纳米复合材料涉及的范围广泛,它包括纳米陶瓷材料、纳米金属材料、纳米磁性材料、纳米催化材料、纳米半导体材料、纳米聚合材料等。纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。纳米材料是物质以纳米结构按一定方式组装成的体系。它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料也被人们誉为21 世纪最有前途的材料。由于纳米材料本身所具有的特殊性能。作为一种全新性能的先进复合材料,在微电子、信息、汽车、宇航、国防、冶金、机械、生物、医药、光学等诸多领域有极广泛的应用前景。 2 纳米复合材料的分类 研究纳米复合材料的一个重要目的是改进并提高块体材料的性能,或通过结构复合来发现块材料中并不存在的性能或效应。和块体材料相比,纳米复合材料的物理和化学性质将更多地依赖于材料的表面缺陷和量子尺寸效应。目前.纳米复合材料的种类繁多,可分为:固态纳米复合材料和液态纳米复合材料。基质材料对于纳米粒子的结构具有稳定作用;而基质材料的不同,又可将纳米复合材料区分为:无机基纳米复合材料和聚合物基纳米复合材料。聚合物基包括单聚合物、共聚合物和聚合物的混合;无机基则包括玻璃,如多孔玻璃、分子筛、溶胶一凝胶玻璃和陶瓷等。[2]还可根据纳米粒子的物理性质可将纳米复合材料区分为:半导体纳米复合材料、铁电体微晶复合材料、染料分子纳米复合材料、稀土纳米复合材料、金属(合金)纳米复合材料、光学纳米复合材料(非线性、发光、光折变等)、磁性纳米复合材料等。 3 纳米复合材料的制备 3.1 溶胶- 悬浮液混合法

镁合金压铸技术的几个主要问题

镁合金压铸技术的几个主要问题及其使用前景 1前言 镁合金材料1808年面世, 1886年始用于工业生产。镁合金压铸技术从1916年成功地将镁合金用于压铸件算起,至今也经历了八十余年的发展。人类在认识和驾驭镁合金及其制品的生产技术方面,经历了漫长的探索历程。从1927年推出高强度MgAl9Zn1开始,镁合金的工业使用获得了实质性的进展。1936年德国大众汽车公司开始用压铸镁合金生产“甲壳虫”汽车的发动机传动系统零件,1946年单车使用镁合金量达18kg左右。美国在1948~1962年间用热室压铸机生产的汽车用镁合金压铸件达数百万件。尽管如此,过去镁合金作为结构材料主要用于航空领域,在其它领域,世界上镁的主要用途是生产铝合金,其次用于钢的脱硫和球墨铸铁生产。 近年来, 由于人们对产品轻量化的要求日益迫切,镁合金性能的不断改善及压铸技术的显著进步,压铸镁合金的用量显著增长。特别是人类对汽车提出了进一步减轻重量、降低燃耗和排放、提高驾驶安全性和舒适性的要求, 镁合金压铸技术正飞速发展。此外,镁合金压铸件已逐步扩大到其他领域,如手提电脑外壳,手提电锯机壳,鱼钩自动收线匣,录像机壳,移动电话机壳,航空器上的通信设备和雷达机壳,以及一些家用电器具等。 镁主要由含镁矿石提炼。我国辽宁省大石桥市一带的菱镁矿储量占世界储量的60%以上,矿石品位高达40%以上。我国生产的镁砂和镁砂制品大量用于出口。充分利用我国丰富的镁砂资源进行深度开发,结合我国汽车、计算机、通讯、航天、电子等新兴产业的发展,促进镁合金压铸件的生产和使用,是摆在我国铸造工作者面前的一项任务。 2、压铸镁合金的研究 镁合金的密度小于2g/cm3,是目前最轻的金属结构材料,其比强度高于铝合金和钢,略低于比强度最高的纤维增强塑料;其比刚度和铝合金和钢相当,远高于纤维增强塑料;其耐腐蚀性比低碳钢好得多,已超过压铸铝合金A380;其减振性、磁屏蔽性远优于铝合金[1];鉴于镁合金的动力学粘度低,相同流体状态(雷诺指数相等)下的充型速度远大于铝合金,加之镁合金熔点、比热容和相变潜热均比铝合金低,故其熔化耗能少,凝固速度快,镁合

信息技术新课程标准版

信息技术新课程标准2011版 ●义务教育阶段信息技术课程定位 中小学信息技术课程是为了适应技术迅猛发展的信息时代对人才培养提出的新要求而设置的必修课程,是以培养学生信息素养和信息技术操作能力为主要目标,以操作性、实践性和探究性(创新性)为特征的指定学习领域。在国家规定的必修课程领域外,各省、市、自治区在保证最低要求的基础上,在课程内容、培养目标、课时安排等方面有一定的自主权。 ●义务教育阶段信息技术课程的总体价值 义务教育阶段信息技术教育的有效实施可以提高学生利用信息技术有效开展各学科学习和探究活动、积极参与社会实践、主动进行终身学习的能力;可以拓展学生适应现代社,会生活所需的信息技术技能,巩固信息素养和技术创新意识;对于培养国家建设和国际竞争所需的信息技术人才、提高全社会的科技文化水平具有非常重要的奠基作用。 ●义务教育阶段信息技术教育目标 总体而言,义务教育阶段信息技术教育的课程目标为培养—发展学生积极学习和探究信息技术的兴趣,养成—巩固良好的信息意识和健康负责的信息技术使用习惯,形成—提高信息处理能力,培养—强化学生使用信息技术、支持各种学习和解决各类问题的意识和能力。义务教育阶段信息技术教育强调,学生在实践活动中体验借助计算机和网络获取、处理、表达信息并用以解决实际问题、开展学科学习的过程…… ●义务教育阶段信息技术内容设置和选择原则 一、小学、初中、高中的信息技术教育要衔接。 小学的信息技术教育基本完成应用软件的学习;初中的信息技术教育要具有“双衔接”,初中不再是零起点。关于义务教育阶段信息技术教育的内容及目标要求的衔接,参考下表: 兴趣与特长应用技能信息素养技术创新 小学激发兴趣,保持学习动机。掌握常用软件/工具的应用技能。体验信息活动,形成信息意识。勇于质疑的问题意识,敢于尝试的创新精神。

中国私募基金行业市场分析报告

中国私募基金行业市场分析报告

目录 第一节私募证券投资基金的行业重要性和基本特征 (5) 第二节私募证券投资基金的扩张——阳光私募视角 (10) 一、发行规模的扩张 (10) 二、发行方式的增加 (13) 三、投资方向维度的结构特征 (17) 四、投资概念维度的结构特征 (19) 第三节期货资管 (21) 一、政策放开带来的发展 (21) 二、期货资管交易策略 (23) 三、期货资管的未来 (25)

图表目录 图表1:各类资管机构规模比较(单位:万亿元) (5) 图表2:私募基金的分类 (5) 图表3:2014 年末以来私募基金规模和产品数量 (6) 图表4:小型私募基金数量庞大 (7) 图表5:各类私募基金管理规模占比 (8) 图表6:各类私募基金管理产品数量占比 (8) 图表7:阳光私募发行规模年度数据 (10) 图表8:2013 年以来阳光私募发行规模的月度数据 (12) 图表9:基于各发行方式实现的阳光私募发行规模占比 (15) 图表10:基于各发行方式实现的阳光私募发行数量占比 (15) 图表11:各类阳光私募发行规模年度数据 (17) 图表12:各类阳光私募发行数量年度数据 (18) 图表13:投资概念维度各类阳光私募产品发行规模和平均年预期收益率(统计截止日为2016.05.17) (19) 图表14:期货资管规模的变化趋势 (22) 图表15:期货公司资管账户持仓规模占比(2015Q3) (23) 图表16:国内期货资管2014 年交易策略规模占比 (24) 图表17:巴克莱CTA 指数相比纳斯达克综指更加稳健,回撤更小 (25)

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

无损探伤实验报告

2011—2012 学年第2 学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:090146A 授课教师:郭巧荣 姓名:李一鲁 学号:090146111

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 所谓超声波检测法是利用超声波在被检材料中的响应关系来 检测孔蚀、裂纹等缺陷及厚度的一种检测方法。利用压电材料产生超声波,入射到被检材料中。超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体),超声波传播到金属与缺陷的界面处时,就会全部或部分反射。反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。可以根据波形的变化特征判断缺陷在工件中的深度、位置和形状。 四、实验步骤 1. 探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2. 超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3. 仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4. 涂耦合剂:在探伤区域内涂抹耦合剂。

5. 进行探伤操作。 五、实验结果描述 纵波进行检测,工件无缺陷时,只显示始波T和底波B,当工件中有缺陷时,在始波和底波之间出现一个伤波;当工件中缺陷横截面积很大时,将无底波,声束被缺陷全反射。 用横波进行检测,工件无缺陷时,一般只显示始波T而不显示底波B,因为横波的穿透能力差,当有缺陷时,在始波后出现一个伤波。 六、回答思考题 1、简述超声波检测法的特点及适用性。 超声波检测法可用于金属、非金属、复合材料制件的损伤探测,既可以检测工件内部的缺陷,也可以检测工件表面的缺陷。可用来检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的裂纹、气孔、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 采用超声波厚度仪从一侧测量构件的厚度,精确度可达到±1%。 可以用超声波厚度仪检测轻微的腐蚀,但不能检测中等或严重的腐蚀损伤。这是因为中等以上的腐蚀损伤,由于超声波的散射,不会得到构件厚度度数。但是,当清除腐蚀产物后,可以用它来测量去腐后的构件的厚度,并可以进一步确定腐蚀造成的材料的减少量。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 设探测面到缺陷的距离为x,材料的厚度为t,从示波器始波T 到伤波F的长度为Lf,从始波到底波的长度为Lb,可得x=(LF/LB)t。由此,可求出缺陷的位置。另外伤波高度随缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸尺寸。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为

信息技术学科发展前沿专题论文

【摘要】从学科研究思维的发展入手,简单剖析了教育技术研究的演化过程;同时结合当前的技术进步和理论发展,总结了教育技术研究思维的发展趋势,以期能够把握教育技术自身进步的内在规律,并为我国教育技术的研究和发展提供有益的借鉴。 【关键词】教育技术;研究思维;发展演化;趋势 教育技术随着它赖以发展的技术基础和理论基础的发展变化,其学科思维从最初的“媒体-特性-效果”研究开始,已经经历了“媒体-传播-过程”研究、“目标-设计-评价”研究、“教学-系统-设计”研究等。综观教育技术研究的发展过程,并结合其技术和理论基础的变化趋势,我们认为今后的教育技术学科研究将会呈现出以下几种发展趋向: (一)从注重“教”的技术向注重“学”的技术方向发展 AECT关于教育技术的1994 定义已经明确指出,教育技术领域的研究对象为学习过程和学习资源。这表明教育技术在新定义上更加强调了“学”的技术。西尔斯和里奇(Seels & Richey, 1994)在其著作《教学技术:领域的定义和范畴》以及在为美国《教育媒体和技术年鉴》提供的有关1994定义制定过程的记录中对为何强调“学”都有明确的说。他们认为将教育技术的重心指向“学”主要有两方面的理由:一是教学技术指向教学产生了语义上的冗余;另一个更重要的理由则是合理地强调学习产出而不是教学的中间过程。至于为什么使用教学技术(Instructional Technology)而不是使用教育技术(Educational Technology)一词,这是由于它:

(a)现在在美国使用更为普遍;(b)包含了更多的实践内容;(c)更具体的描述了技术在教育中的应用;(d)允许在同一个定义语句中同时强调“教”(Instructional)与“学”(Learning)。从教育技术研究的发展历程可以看出,从注重“教”的技术向注重“学”的技术演化始终是领域发展的一个方向。注重“学”的技术并不否认“教”的技术,二者相辅相成,共同构成了教育技术的全部。正如西尔斯和里奇所解释,1994定义指向“学”是为了强调学习产出和结果;明确学是目的,教是手段。如果手段和方法都没有了,目的又如何达到呢?所以,我们认为对教育技术的研究不应过分强调“学”或学生的“自我建构”,而应该平衡发展;否则,不仅将会对教育技术的定义理解产生歧义,引起广大教师的反感,而且容易将领域的发展引向片面化的歧途。 (二)从单一研究思维主导向多元化、综合性研究思维发展 教育技术范畴涉及到学习过程与学习资源的设计、开发、应用、管理和评价等多个领域,每一领域又都包含许多方面,单纯使用哪一种思维范式开展研究都不可能包容整个学科领域。因此,研究思维的多元化将是教育技术研究发展的一个重要趋向。教育技术研究思维的多元化不仅仅是指研究方法的多元化,同时更包含它所依赖的技术基础和理论基础的多元化。科学技术与背景学科的发展变化为教育技术研究思维多元化提供了坚实的基础。常规手段、视听媒体、计算机和互联网络等在教学过程中各有应用价值,教育科学、心理科学、系统科学以及传播科学等对教育技术都有指导意义;特别是

私募基金可行性分析报告doc

私募基金可行性分析报告 篇一:XX-2022年中国私募基金行业市场分析及投资可行性研究报告(目录) XX-2022年中国私募基金行业市场分析及 投资可行性研究报告(目录) 报告简析: 中金企信(北京)国际信息咨询有限公司在市场调查领域已有十余年的调研经验。着力打造一站式服务的多用户报告、市场调查报告、行业研究报告、查阅咨询报告、市场 分析报告、数据监测报告、项目可行性报告、专项调研报告等专业情报信息咨询平台。在此同时与业内企业、官方、第三方机构建立完善的数据与信息平台为该领域企业提供准确高效的市场信息与数据保证。 行业报告围绕市场环境、相关政策法规、上下游产业链调查、技术能力与研发、主要应用领域、市场规模、发展前景、投资潜力、发展战略、国内外市场、技术、应用对比、竞争力分析、整体发展格局、细分区域市场研究(市场规模、市场潜力、竞争格局、投资潜力等)、上下游企业主要财务指标、企业竞争力分析、企业发展战略、在建或拟建项目建议等多方面多角度的分析。本报告展现形式:文字、图表为企业提供准确清晰的研究报告材料。在目前整体市场竞争的大环境下为企业了解并掌握市场动态、洞悉市场先机、确认

经营方面提供实效有效的参考材料。 数据来源: 提供自身团队与外聘顾问专家、外聘团队获取一手数据、国家统计局、发改委、中国海关总署、相关媒介平台、相关协会组织等(针 对每个行业与产品数据来源会有不同,我司报告数据都会注明实效数据来源确保数据权威与准确性)。 报告目录 第一部分行业发展现状 第一章私募基金行业发展概述 第一节私募基金的相关知识 第二节私募基金市场特征分析 第三节私募基金行业发展成熟度 第二章全球私募基金市场发展分析 第一节 XX-XX年世界私募基金产业发展综述 一、世界私募基金产业特点分析 二、世界私募基金产业市场分析 第二节 XX-XX年世界私募基金行业发展分析 第三节全球私募基金市场分析 一、XX-XX年全球私募基金需求分析 二、XX-XX年欧美私募基金需求分析 三、XX-XX年中外私募基金市场对比

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

光电信息技术新进展及感想

光电信息技术新进展及感想 20世纪后期是现代光学和光电技术取得辉煌成就的时代。电子学与光学的结合,产生和建立了光电信息学科,在高新技术领域里的发展势头迅猛,使人类进入了信息时代。“20世纪是电子的世纪,21世纪是光子的世纪”;“光电信息是朝阳产业” ;通过《光电世界》课上老师的讲解,我们了解了许多光电信息技术的内容。如沈京玲讲的:太赫兹科学与技术,何敬锁老师讲的:信息传递的载体----电和光,张岩老师讲的:光学信息处理,苏波老师讲的:太阳能光伏电池、LED应用技术,崔海林讲的:微电子技术、通信网技术。这些内容让我对光电信息技术的领域有了大致的了解,并且在老师的精彩的讲说下激发了我对于世界的兴趣。 光电 在众多光电信息技术中,我对光电子技术这一领域是十分感兴趣的,并且我也十分看好这一领域的发展前景。 光电子技术是指激光在电子信息技术中的应用而形成的技术。光电子技术确切称为信息光电子技术。20世纪60年代激光问世以来,最初应用于激光测距等少数应用,到70年代,由于有了室温下连续工作的半导体激光器和传输损耗很低的光纤,光电子技术才迅速发展起来。 在上网的查找中,我了解到世界光电子产业的总体发展情况,其结果更是让每个人欣慰。正是由于上世纪60年代激光技术的产生,极大地推动了光电子技术的发展。并由此形成规模宏大、内容丰富的光电子产业。近十余年来,光电子相关技术突飞猛进,产品种类也不断推陈出新,其应用更是无远弗届,层面扩及通讯、信息、生化、医疗、工业、能源、民生等领域。展望未来,在轻量化、便携性、低耗能、高效益、整合强的特性下,光电子产业将更深入各领域应用范围,是影响未来社会发展的战略性产业之一。

高性能稀土镁合金及其研究进展

高性能稀土镁合金及其研究进展 镁合金作为一种轻质的绿色工程材料具有很大的应用前景,被称为21世纪的“绿色工程材料”。然而,大部分镁合金的力学性能(尤其高温力学性能)较差,使其应用受到限制。因此,如何改善其力学性能成为亟待解决的问题。添加合金化元素是常用来改善镁合金力学性能的手段之一,尤其是添加稀土元素。稀土元素对镁合金具有“净化”“细化”“强化”“合金化”的四重作用。Mg-RE系合金因其优异的高温拉伸性能、抗蠕变性能及良好的塑性成形能力而备受青睐,被认为是最具有应用前景的高温高强合金体系。因此,本文主要综述近年来国内外在高性能稀土镁合金方面的研究进展,重点介绍制备高性能镁合金的制备方法、加工技术、热处理工艺、强韧化机制及目前研究中存在的问题与不足。 1.Mg-RE系合金 Mg-RE系合金是目前镁合金中最重要的高强耐热镁合金体系,尤其是含有重稀土元素(Gd、Y、Dy、Ho、Er等)的镁合金。Mg-RE系二元合金的时效硬化特性、强度与稀土添加量成正比关系,如在 Mg-Gd二元合金体系中Gd的质量百分含量若低于10%则合金的时效析出偏低或者无析出,直接导致合金的强度及耐热性能降低。为了降低稀土的添加量且不影响时效硬化特性效果,在Mg-RE二元合金的基础上添加其它合金化元素开发出了三元、四元等稀土镁合金。目前,稀土镁合金主要包括在Mg-Gd体系上形成的Mg-Gd-Y、Mg-Gd-Er、Mg-Gd-Ho、Mg-Gd-Dy等系列合金,在Mg-Y体系上形成的Mg-Y-Gd、Mg-Y-Nd、Mg-Y-Sc-Mn 等系列合金,为了细化晶粒稀土镁合金中常常加入Zr元素。 除了早期的WE54、WE43合金,Mordike等通过添加Sc及Mn等元素,开发了抗蠕变性能优于WE43合金的Mg-4Y-1Sc-1Mn(wt.%)合金;He等用普通铸造+挤压+峰值时效的方法制备了高强耐热Mg-10Gd-2Y-0.5Zr(wt.%)合金,其室温下的屈服强度、抗拉强度、延伸率分别可高达331 MPa、397 MPa、1%。最近,Li等通过轧制+时效的方法制备了Mg-14Gd-0.5Zr 合金,其屈服强度、延伸率分别可高达445 MPa、2%。Mg-RE系合金是目前最适合、最有前途的可应用在航空航天或汽车上的镁合金材料,多数单位都将此系列合金的目标性能提高到550Mpa-600Mpa,稳定使用温度在200 o C。晶粒细化、形变强化、沉淀强化是目前稀土镁合金采用的强化手段。目前的研究主要集中在沉淀强化方面。Mg-RE系合金主要的时效析出强 化相为β′′ (DO 19)、β′(cbco),其中,β′′相的化学成分为Mg 3 RE, β′相的化学成分为Mg15RE3。 β′相与基体具有半共格关系,匹配较好,大量、致密、规则析出的β′相,可有效阻止位错运动,被认为是合金强度提高的主要原因之一。 目前的研究仍有不足,主要表现在以下几个方面:(1)合金中含有大量的稀土,导致合金成本偏高;(2)合金的塑性加工性能偏差,有必要寻找改善合金塑性的新方法、新理论;(3)合金的塑性变形机制研究较少,需大研究稀土溶质原子、晶粒尺寸、晶界类型、织构等对滑移系机制的影响规律。 2.Mg-RE-Zn系合金 Mg-RE-Zn合金是现在研究的一个热点,一方面因为Kawamura于2001年用快速凝固粉/

相关文档