文档库 最新最全的文档下载
当前位置:文档库 › 遗传算法在图像处理中的应用

遗传算法在图像处理中的应用

遗传算法在图像处理中的应用
遗传算法在图像处理中的应用

课程:新技术讲座

题目:遗传算法在图像处理中的应用姓名:

学号:

目录

摘要 (2)

1.引言 (3)

2.遗传算法的基本原理和基本性质 (3)

3.遗传算法在图像处理中的应用 (5)

3.1在图像增强中的应用 (5)

3.2在图像恢复中的应用 (6)

3.3在图像分割中的应用 (7)

3.4在图像压缩中的应用 (8)

3.5在图像匹配中的应用 (9)

4.遗传算法在图像处理中的问题及发展方向 (10)

参考文献 (10)

遗传算法在图像处理中的应用

摘要

遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。

关键词:遗传算法,数字图像处理

Abstract

Genetic Algorithm is a simulation of the life evolution mechanism, random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving complex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in computer science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on Genetic Algorithm in digital image processing.Moreover,it studies the problems of the Genetic Algorithm in the field of image processing and the direction of development in the future,Moreover,the author elaborates the personal opinion in the end.

keyword :Genetic Algorithm,Digital image processing

1.引言

遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。尤其是对研究智能领域的人来说,遗传算法的身影更是无处不在,在智能传感,机器学习,模式识别,计算智能,图像理解等课程中,对遗传算法在各个领域的应用都有所提及。

图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。图像处理是计算机视觉中德一个重要研究领域,然而,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。于是,研究者就开始探索怎么样才能使这些误差最小从而使计算机视觉达到实用化的重要要求,最终,遗传算法凭借其在这些图像处理中的优化计算方面独特的优势成为各种算法的佼佼者,得到了广泛的应用。

2.遗传算法的基本原理和基本性质

遗传算法是具有“生成+检测”的迭代过程的搜索算法,它的基本处理流程图如下图所示。

由上图可知,遗传算法模拟了自然选择和遗传进化中发生的繁殖、交配和突变现象,从任意一个初始种群出发,通过随机选择、交叉和变异操作,产生新的更适应环境的个体,使群体进化到搜索空间中越来越好的区域。这样一代一代不断繁殖、进化,最后收敛到一群最适应环境的个体上,求得问题的最优解。遗传算法对于复杂的优化问题无需建模和复杂运算,只要利用遗传算法的三种算子就能得到最优解。

GA把问题的解表示成染色体(也称串),GA的求解步骤如下:

(1)参数编码。这个要素是要建立一个空间映射,就是问题的解空间与编码空间的映射,每个不同的候选解用有一个单独的串号。

(2)初始群体的设定。将种群进行初始化。

(3)适应度函数的设计。在种群中,将每个个体的染色体进行解码,变

成适合计算式适应度的函数形式。

(4)选择。将适应度大的个体作为优秀个体繁殖下一代,适应度越大被选择繁殖下一代的可能性也就越大。

(5)交叉。将选中的两个用于繁殖下一代的位置相同个体的位置进行交叉互换。

(6)变异。按照基因突变的概率翻转串中的基因。

(7)重复步骤(4)到步骤(6)使得结果满足已设定的遗传条件。

GA结构较为简单,算法也不复杂,但是又具有良好的选择效果,具有自适应性、子组织性和自学习性等特点,具有许多其它算法没有的优点,主要有:(1)GA 是对参数编码进行操作, 而非对参数本身, 减少约束条件的限制, 如连续性、可导性、单峰性等。

(2)GA 是多点搜索, 减少了陷于局部优解的风险。

(3)GA 仅用适应度函数来指导搜索, 不需要其他推导和附加信息, 对问题依赖性小。

(4) GA 的寻优规则是概率性的而非确定性的。

研究者们在应用GA 过程中也不断研究改进GA的性能,使GA更能满足时代的需要,比如在选择策略中提出了精英选择、稳态选择和竞争选择等新的机制; 在变异环节提出了两点、多点和一致变异作为传统一点变异的改进和补充; 在编码环节中应用格雷码和动态编码等克服传统二进制编码和定点十进制整数编码所就带来的问题; 此外, 还提出自适应技术动态改变GA 控制参数, 克服采取传统的静态控制参数策略引起的多样性和收敛性不均衡问题, 以及用梯度方法、单纯型法或模拟退火方法精细调整的混合GA, 以提高算法的收敛速度; 用均匀分布的初始群体代替随机产生的初始种群; 研究了分布式GA、迁徙GA 和并行GA等, 进一步推动了GA 的发展。

3.遗传算法在图像处理中的应用

3.1在图像增强中的应用

图像增强技术是将不清晰的图像经过优化处理变成一张比之前更加清楚,或者变成一张使得特点更加鲜明的照片,以便于对图像再进行后期的加工。目前图像增强方法主要包括将图像进行某种变换的频域法和对直接对原始图像进行处理的空域法两种。而基于遗传算法的图像增强技术的实现则是利用遗传的选择方法找到一个最优或者局部最优的方法。具体的操作方法是,首先将每一个目标值设置一个基位,用实数进行编码,这样问题就转化成求解这个目标基位组合的题目。然后,对适应度进行设计,适应度设计为个体进化提供动力,在设置适应度的时候既要考虑图像的整体和局部的质量问题,也要将结构和细节考虑进去。再

后,对遗传算子进行设计,先根据前面设置的适应度值将个体从大到小进行排列,从中选择优秀的个体进入下一个程序当中;为了防止遗传算法在计算的过程中过早收敛,对种群的多样性进行保护,在计算过程中采用交叉操作的方法产生新的个体;对进化方向进行微调,采用变异操作的方法,对一个被选中的变异操作来说,就是采用“1”→“0”和“1”→“0”的方式进行变异。最后,设置算法的结束条件,一般算法的结束条件就是迭代次数达到了最大进化代数或者最大适应度的值变化不明显。

例如,对于一幅数字图像f(.),f(x,y)是图像在x 行y 列的像素值。f ’(x,y)为增强后的图像在对应点的像素值。则有:

()()()()()'(,)g m x,y k f x,y m x,y f x y =+-

其中g(.)是一个对比度扩展函数。m(x,y)为x 行y 列处像素值占在它的某个邻域内的局部均值。K>0是一个控制参数,其大小直接影响到图像的处理质量。

因此,数字图像的增强过程可以转化为寻找求最优参数k 的过程。进而,可用遗传算法按照上述过程进行寻优。

3.2在图像恢复中的应用

图像恢复就是把一个退化(或劣化)图像尽量恢复到它的原始面目, 是数字图像处理中的一个重要分支。目前已提出许多有效的图像恢复方法, 如逆滤波法、维纳滤波法、奇异值分解伪逆法、最大熵恢复法等 。由于引起图像退化的原因未知或不能用函数表达, 使得上述方法面临较多的约束问题或是计算量过大问题, 由于难以确定退化函数h, 限制了其实际应用的效果。

GA 用于灰度图像的恢复, 一般将染色体编码成以各像素的灰度值为元素的2维矩阵, 即一个染色体就代表一幅图像, 每个基因对应一个像素, 采用自然数编码。每个个体的适应度函数为

2F ()*i i f g h f =-

其中, f i 为个体i 代表的推测恢复图像, g 为观测到的退化图像, h 为退化过程, 函数值越大表示个体越好。在交叉操作时一般采用窗口交叉, 即在父代染色体矩阵中选择相同大小的窗口, 进行交换。变异操作采用临近小范围内的平均值替换需要变异的某一基因值。此外,GA 也用于彩色图像的恢复,并且取得

了很好的效果。

基于GA 的图像恢复方式, 突破了原有的理论,而且其开放的结构易于与其他方式融合, 如与模糊逻辑相结合的模糊GA 等。利用GA 恢复图像不仅较好的克服了噪声的影响, 而且使图像更平滑, 边缘没有条纹效应, 视觉效果好。强大的全局搜索能力是遗传算法图像恢复方法行之有效的主要原因。

3.3在图像分割中的应用

图像分割是自动目标识别的关键和首要步骤,其目的是将目标和背景分离,为计算机视觉的后续处理提供依据。目前图像分割的方法很多,常用的包括阈值法、边缘检测法和区域跟踪法。其中域值法是图像分割的最常用方法。

当前常用的域值分割方法如最小误差阈值法、最大类别方差法(Otsu 法)以及最佳直方图熵法。下面我们以Kapur 等人提出的最佳熵法(KSW 熵法)为例讨论遗传算法在图像分割中的应用。KSW 熵法是一种不需要先验知识,而且对于非理想双峰直方图的图像也可以较好分割的方法。其缺点是在确定阈值时,尤其是确定多阈值时,计算量很大。将信息论中Shannon 熵概念用于图像分割时,测量图像灰度直方图的熵,由此找出最佳阈值,其出发点是使图像中目标与背景的信息量最大。

根据shannon 熵的概念,对于灰度范围{0,1,?,255}的直方图,其熵测量为

1T i 0H =-l i i p Lnp -=∑

其中pi 为第i 个灰度出现的概率。设阈值t 将图像划分为目标与背景两类,则令

0t t i i p p ==∑ 0ln t

t i i i H p p ==-∑ 由阈值t 分为A,B 两类后,两类的概率分布分别为p0/pt, pt, ? ,pl/pl; pt+1/(1-pt),pt-2/(1-pt), ?, pt-1/(1-pt), 与每个分布有关的熵分别为HA(t)和HB(t)

1()ln ln t i t t A t i t t t p p H H t p p p p =-=-=+∑

0123'(,)y x y b b x b y b xy =+++ 11()ln ln(1)111l i i T t B t i t t

t t p p H H H t p p p p -=+-=-=-+---∑ 图像的总熵H(t)为HA(t)和HB(t)之和,即:

()ln (1)1t T t t t t t

H H H H t p p p p -=-++- 当该函数取最大值时即为图像的最佳分割,因此将其作为遗传算法中的适应度函数。

(1) 编码。我们选取有255 个灰度级的灰度图,由于图像灰度值在0-255 之间,故将各个染色体编码为8 位二进制编码,代表某个分割阈值。初始代个体的值为随即产生,其对应的适应度值也各有高低。

(2) 群体体模型。若个体数过多,则每一代适应度值的计算机过大,因此个体数应设置合理。我们在此将个体数设为10, 最大繁殖代数为50.

(3) 解码。对二进制染色体数组解密为0-255 之间的值,以求其适应度值。

(4) 适应度函数。采用H (t )式作为适应度函数。

(5) 算法的基本操作:选择:遗传算法的收敛定义指出保留最优个体(精英策略的遗传算法全局收敛。因此本文在进行选择操作时,先进行轮盘赌选择法(蒙特卡罗法),再采用精英策略。交叉:交叉互换的目的是产生不同于父体的子体。交叉率越大,交叉操作的可能性也越大;如果交叉率太低,收敛速度可能降低。单阈值分割由于只有一个参数,所以采用单点交叉,在此设交叉率为0.6。变异:变异是子代基因按小概率扰动产生的变化。本文选取变异概率为0.1。终止准则:规定算法执行到最大代数(50 代)或经过某些代进化,群体的最高适应度不再发生变化(稳定条件),算法停止,具有最高适应度值的个体即为分割阈值。

3.4在图像压缩中的应用

图像压缩技术最主要的原理就是将拥有自相似性的对象用这一组简单的代

数关系式进行表达的过程。将互相不重叠的小块定义为值域块,然后进行编码,并使经过映射后的定义域块与值域块的距离在某种度量值下最小,在分解和处理过程中,由于值域块的数量过于庞大,压缩搜索过程任务繁重,遗传算法的强大全局搜索能力就能很好的派上用场,发挥良好的效果。

有研究者用区域块左上角的坐标x, y 和区域块的旋转变换z (共有8 种旋转)进行染色体编码,在搜索最优定义域块时使用的两个参数是定义域块相对于值域块位移的水平和垂直分量( xi, yi ), 用10位二进制串对其进行编码, 每个参数用5位编码;有一种带分类的编码法, 这样的编码具有特征集中, 搜索速度快的特点,能够改进遗传算法的速度, 克服压缩中分类匹配算法的局部最优和随机搜索问题。

3.5在图像匹配中的应用

图像匹配是图像处理中一个重要的课题,在计算机视觉、运动目标跟踪与识别、序列图像压缩中运动补偿、医学图像处理等领域有广阔的应用前景.在对图像的理解中,匹配技术起着重要的作用,是实现图像理解的基础。下面介绍一种基于遗传算法的图像校准函数辨识方法。

假设灰度图像A 上一点(x ,y )的灰度为A (x ,y )。定义下面的非线性变换:

0123x '(,)x y a a x a y a xy =+++

0123'(,)y x y b b x b y b xy =+++

经过以上变换,得到图像A ’。现在要考虑的是确定系数a0,a1,a2,a3,和b0,b1,b2,b3,使图像A ’与歪斜图像B 之间的误差最小,则我们根据获得的变换图像推断歪斜图像B 中发生了变化的部分。将遗传算法应用于变换函数的

辨识, 考虑对系数(a0,a1,a2,a3,b0,b1,b2,b3)进行个体染色体编码,个体的适应度可根据其系数计算变换后图像A ’与歪斜图像B 之间的误差进行评价,误差值可按下式计算。个体的误差值越小,则其适应度越大。

2

x ''('(',')(x ','))y A x y B y -∑∑ 由于未考虑歪斜图像灰度的变化(除局部的变化外),在对于歪斜之外的变化很大的场合,用这种方法进行图像校准是不合适的。

4.遗传算法在图像处理中的问题及发展方向

(1)遗传算法用于图像增强技术能够很好的达到预期效果,但是在时间上进行考量,目前的方法在寻找最优解方面速度好比较慢,可以考虑在运算过程中使用并行遗传算法,是未来遗传算法在这个领域的发展方向。(2)在图像恢复技术中,遗传算法的计算量相对较大,而且解不止一个,未来要在编码技术上多投入精力,解决遗传算法早熟的问题。(3)遗传算法在图像重建过程中还没能形成一个成熟的算法,目前拥有的算法都具有一些问题,如速度较慢,处理出的图像边缘不清晰等,需要进行更多有效的探索。(4)在图形压缩技术方面,由于遗传算法在寻找最优解和分形计算时间上具有一定的优势,但是控制参数一般都是经验获得的,如何自适应的控制这些参数是未来发展的趋势,也是增强压缩和解码质量的一个重要手段,遗传算法与分形结构的结合具有良好的发展前景。

参考文献

[1]. 张元亮, 郑南宁, 贾天旭. 基于遗传算法的分形图像压缩[J].信息与控制, 1998,27(6):469~474

[2].田莹,苑玮琦.遗传算法在图像理解中德应用[J].中国图像图形学报,2007.12(3):389~396

[3].杨云,杨阳.图像处理过程中遗传算法的应用[J].计算机光盘软件与应用,3013.4(1):112~113

[4].侯格贤, 吴成柯. 一种利用遗传算法的快速匹配算法[J].西安电子科技大学学报,1998,25(4):450~453.

[5].Suganthan P N.Structural pattern recognition using genetic algorithms [J].Pattern Recognition,2002,35(9):1883~1893.

遗传算法的优缺点

遗传算法属于进化算法( Evolutionary Algorithms) 的一种, 它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子: 选择、交叉和变异. 。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法( GA)。算法中称遗传的生物体为个体( individual ),个体对环境的适应程度用适应值( fitness )表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因 (gene)。一定数量的个体组成一个群体(population )。对所有个体进 行选择、交叉和变异等操作,生成新的群体,称为新一代( new generation )。遗传算法计算程序的流程可以表示如下[3]:第一步准备工作 (i)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m。通常用二 进制编码。 (2 )选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm (3、确定适应值函数f (x、。f (x、应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂 面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi ,同时计算群体的总适应值。 第四步选择 计算每一串的选择概率Pi=fi/F 及累计概率。选择一般通过模拟旋转滚花轮 ( roulette ,其上按Pi大小分成大小不等的扇形区、的算法进行。旋转M次即可选出M个串来。在计算机 上实现的步骤是:产生[0,1]间随机数r,若rpc ,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。 (2)对每一对,产生[1 , m]间的随机数以确定交叉的位置。 第六步变异 如变异概率为Pm则可能变异的位数的期望值为Pm x mx M,每一位以等概率变异。具体为 对每一串中的每一位产生[0 , 1]间的随机数r,若r

图像处理在航天航空中的应用-结业论文

图像处理在航天航空中的应用-结业论文

论文题目:图像处理在航天和航空技术方面的运用 学院:机械电气工程学院 班级: 2012级机制3班 姓名:张娜 学号: 20125009077

摘要:图像处理技术的研究和应用越来越受到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术的特点、优势,列举了数字图像处理技术的应用领域并详细介绍了其在航天航空领域中的发展。 关键字:图像处理简介技术的优点发展技术应用 一、引言 数字图像处理是通过计算机采用一定的算法对图像图形进行处理的技术,它已经在各个领域上都有了较广泛的应用。图像处理的信息量很大,对处理速度要求也很高。本文就简单的介绍图像处理技术及其在各个领域的应用,详细说明图像处理在航天航空技术方面的应用。 二、数字图像处理简介 (一)图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 (二)数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。数字图像处理的早期应用是对宇宙飞船发回的图像所进行的

图像处理技术原理及其在生活中的应用探讨

图像处理技术原理及其在生活中的应用探讨 摘要在社会生活实践中,图像处理技术获得了广泛的应用。这种技术之所以可以得到广泛应用,与其极强的功能所分不开的。在计算机算法不断改善的过程中,图像处理技术的发展前景是非常广阔的。笔者对图像处理技术的原理进行了分析,并其对在生活中的应用进行了探究[1]。 关键词图像处理技术原理;生活;应用 1 图像处理技术的原理分析 所谓的图像处理技术,就是通过计算机技术以及相关的技术来对图像进行处理,从而使图像更好地为我们所利用的一种技术。在这个过程中,需要运用到几个技术要点。第一个就是使图像进行转换,从而得到计算机容易识别的矩阵,这种矩阵被称为是“数字矩阵”。这样得到的矩阵更容易被计算机所存储。第二就是通过多种算法来实现对计算机所存储的图像进行有关处理,其中用到的常用算法就有基于人眼视觉特性的阈值算法、具有去噪功能的图像增强算法等。第三就是在进行了一些技术性的处理,然后获取图像信息。通过中国知网、万方数据库等平台所查阅到的图像类型相关资料可知,图像的类型主要可以分为两大类,一类是数字化图像,另一类是模拟图像。前者不仅处理便捷,而且精度较高,能够适应现代社会的发展要求,后者在现实生活中的应用更为常见,比如在相机图片中的应用。模拟图像输出较为简单,灵活性和精度不太高,因此其使用的限制性较大[2]。 2 图像处理技术原理在生活中的应用探讨 2.1 图像处理技术原理在安全防范中的应用 在安全防范监控系统不断发展的过程中,系统从模拟向数字的方向发展,这跟人们要求图像的精准度越来越高有关。在安防领域,图像处理技术如果能够得到很好的利用,那么就可以实现对图像的去噪声处理,对失真的图像进行矫正处理。在公安部门破案的过程中,有时会根据犯罪现场的指纹特征来对视频采集参数进行调节,比如色彩补偿就是一种很好的调節方法,这样方便公安部门更快地破案。尽管现在的监控系统越来越完善,但是如果遇到暴风暴雨和雾霾或者光线较弱的天气,那么监控得到的视频图像往往还是比较模糊的,对于这些模糊的图像,可以通过图像增强技术进行一些处理,从而为后续的公安部门调查和取证提供便利,模糊图像处理技术这时就排上了用场[3]。 2.2 图像处理技术原理在娱乐休闲领域的应用 在娱乐休闲领域,图像处理技术原理主要的应用场合就是平时我们利用手机或数码相机摄影以及电影特效制作等场合。在数码相机出现以前,图像只能使用传统相机通过胶片的形式保存。在数码相机出现之后,人们就可以短时间内对相

图像处理技术及其应用

图像处理技术及其应用 姓名: (班级:学号:) 【摘要】图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 【关键字】图像处理;发展;技术应用 1 引言 计算机图像处理技术是在20世纪80年代后期,随着计算机技术的发展应运而生的一门综合技术。图像处理就是利用计算机、摄像机及其它有关数字技术,对图像施加某种运算和处理,使图像更加清晰,以提取某些特定的信息,从而达到特定目的的技术。随着多媒体技术和网络技术的快速发展,数字图像处理已经广泛应用到了人类社会生活的各个方面,如:遥感,工业检测,医学,气象,通信,侦查,智能机器人等。无论在哪个领域中,人们喜欢采用图像的方式来描述和表达事物的特性与逻辑关系,因此,数字图像处理技术的发展及对其的要求就越来显得重要。 2 图像处理技术发展现况 进入21世纪,随着计算机技术的迅猛发展和相关理论的不断完善,数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就。随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。 从图像变换方面来讲,目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用;而图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等,目前主要在指纹图像增强处理技术,医学影像学方面有显著的成果。这项技术使得各自图像的空间分辨率和对比度有了更大的提高,而最新的医学图像融合则是指对医学影像信息如CT、MRI、SPECT和PET所得的图像,利用计算机技术将它们综合在一起,实现多信息的同步可视化,对多种医学影像起到互补的作用。图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。 图像描述图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法;图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。 3 图像处理技术应用现状 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 3.1航天和航空技术方面的应用 数字图像处理技术在航天和航空技术方面的应用,许多国家每天派出很多侦察飞

遗传算法经典MATLAB代码

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法 % % 求下列函数的最大值 % % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] % % 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01。 % % 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其 中 b 是 [0,1023] 中的一个二值数。 % % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗传算法

遗传算法的基本理论 一、起源: 早在20世纪50年代和60年代,就有少数人几个计算机科学家独立地进行了所谓的“人工进化系统”研究,其出发点是进化的思想可以发展成为许多工程问题的优化工具。早期的研究形成了遗传算法的雏形,如大多数系统都遵循“适者生存”的仿自然法则,有些系统采用了基于群体(population)的设计方案,并且加入了自然选择与变异操作,还有一些系统对生物染色体编码进行了抽象处理,应用二进制编码。由于缺乏一种通用的编码方案,人们只能依赖变异而非交叉来产生新的基因结构,早期的算法收敛甚微。20世纪60年代中期,美国Michigan大学的John Holland在A.S.Fraser和H.J.Bremermann等人工作的基础上提出了位串编码技术。这种编码既适用于变异操作,又适用于交叉(即杂交)操作。并且强调将交叉作为主要的遗传操作。随后,Holland将该算法用于自然和人工系统的自适应行为的研究中,并于1975年出版了其开创性著作“Adaption in Natural and Artificial System”。以后,Holland等人将该算法加以推广,应用到优化及机器学习等问题中,并正式定名为遗传算法。遗传算法的通用编码技术和简单有效的遗传操作作为其广泛、成功地应用奠定了基础。Holland早期有关遗传算法的许多概念一直沿用至今,可见Holland对遗传算法的贡献之大。他认为遗传算法本质上是适应算法,应用最多的是系统最优化的研究。 二、发展: 年份贡献者内容 1962Holland程序漫游元胞计算机自适应系统框架 1968Holland模式定理的建立 1971Hollstein具有交配和选择规则的二维函数优化 1972Bosworth、Foo、Zeigler提出具有复杂变异、类似于遗传算法的基因操作1972Frantz位置非线性和倒位操作研究 1973Holland遗传算法中试验的最优配置和双臂强盗问题 1973Martin类似遗传真法的概率算法理论 1975De Jong用于5个测试函数的研究基本遗传算法基准参数 1975Holland 出版了开创性著作《Adaptation in Natural and Artificial System》 1981Bethke应用Walsh函数分析模式 1981Brindle研究遗传算法中的选择和支配问题 1983Pettit、Swigger遗传算法应用于非稳定问题的粗略研究1983Wetzel用遗传算法解决旅行商问题(TSP) 1984Mauldin基本遗传算法小用启发知识维持遗传多样性1985Baker试验基于排序的选择方法 1985Booker建议采用部分匹配计分、分享操作和交配限制法1985Goldberg、Lingle TSP问题个采用部分匹配交叉 1985Grefenstette、Fitzpattrick对含噪声的函数进行测试 1985Schaffer多种群遗传算法解决多目标优化问题1986Goldberg最优种群大小估计 1986Grefenstette元级遗传算法控制的遗传算法 1987Baker选择中随机误差的减少方法 1987Goldberg复制和交叉时最小欺骗问题(MDP) 1987Goldberg、Richardson借助分享函数的小生境和物种归纳法

图像处理技术的应用论文

图像处理技术的应用先展示一下自己用Photoshop处理的图片(做的不好望见谅)

摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.应用领域 2.1图像技术应用领域

遗传算法的应用研究_赵夫群

2016年第17期 科技创新科技创新与应用 遗传算法的应用研究 赵夫群 (咸阳师范学院,陕西咸阳712000) 1概述 遗传算法(Genetic Algorithms,GA)一词源于人们对自然进化系统所进行的计算机仿生模拟研究,是以达尔文的“进化论”和孟德尔的“遗传学原理”为基础的,是最早开发出来的模拟遗传系统的算法模型。遗传算法最早是由Fraser提出来的,后来Holland对其进行了推广,故认为遗传算法的奠基人是Holland。 随着遗传算法的不断完善和成熟,其应用范围也在不断扩大,应用领域非常广泛,主要包括工业控制、网络通讯、故障诊断、路径规划、最优控制等。近几年,出现了很多改进的遗传算法,改进方法主要包括:应用不同的交叉和变异算子;引入特殊算子;改进选择和复制方法等。但是,万变不离其宗,都是基于自然界生物进化,提出的这些改进方法。 2遗传算法的原理 遗传算法是从某一个初始种群开始,首先计算个体的适应度,然后通过选择、交叉、变异等基本操作,产生新一代的种群,重复这个过程,直到得到满足条件的种群或达到迭代次数后终止。通过这个过程,后代种群会更加适应环境,而末代种群中的最优个体,在经过解码之后,就可以作为问题的近似最优解了。 2.1遗传算法的四个组成部分 遗传算法主要由四个部分组成[1]:参数编码和初始群体、适应度函数、遗传操作和控制参数。编码方法中,最常用的是二进制编码,该方法操作简单、便于用模式定理分析。适应度函数是由目标函数变换而成的,主要用于评价个体适应环境的能力,是选择操作的依据。遗传操作主要包括了选择、交叉、变异等三种基本操作。控制参数主要有:串长Z,群体大小size,交叉概率Pc,变异概率Pm等。目前对遗传算法的研究主要集中在参数的调整中,很多文献建议的参数取值范围一般是:size取20~200之间,Pc取0.5~1.0之间,Pm取0~0.05之间。 2.2遗传算法的基本操作步骤 遗传算法的基本操作步骤为: (1)首先,对种群进行初始化;(2)对种群里的每个个体计算其适应度值;(3)根据(2)计算的适应度,按照规则,选择进入下一代的个体;(4)根据交叉概率Pc,进行交叉操作;(5)以Pm为概率,进行变异操作;(6)判断是否满足停止条件,若没有,则转第(2)步,否则进入(7);(7)得到适应度值最优的染色体,并将其作为问题的满意解或最优解输出。 3遗传算法的应用 遗传算法的应用领域非常广泛,下面主要就遗传算法在优化问题、生产调度、自动控制、机器学习、图像处理、人工生命和数据挖掘等方面的应用进行介绍。 3.1优化问题 优化问题包括函数优化和组合优化两种。很多情况下,组合优化的搜索空间受问题规模的制约,因此很难寻找满意解。但是,遗传算法对于组合优化中的NP完全问题非常有效。朱莹等[2]提出了一种结合启发式算法和遗传算法的混合遗传算法来解决杂货船装载的优化问题中。潘欣等[3]在化工多目标优化问题中应用了并行遗传算法,实验结果表明该方法效果良好。王大东等[4]将遗传算法应用到了清运车辆路径的优化问题求解中,而且仿真结果表明算法可行有效。 3.2生产调度 在复杂生产调度方面,遗传算法也发挥了很大的作用。韦勇福等[5]将遗传算法应用到了车间生产调度系统的开发中,并建立了最小化完工时间目标模型,成功开发了车间生产调度系统模块,并用实例和仿真验证了该方法的可行性。张美凤等[6]将遗传算法和模拟退火算法相结合,提出了解决车间调度问题的混合遗传算法,并给出了一种编码方法以及建立了相应的解码规则。 3.3自动控制 在自动控制领域中,遗传算法主要用于求解的大多也是与优化相关的问题。其应用主要分为为两类,即离线设计分析和在线自适应调节。GA可为传统的综合设计方法提供优化参数。 3.4机器学习 目前,遗传算法已经在机器学习领域得到了较为广泛的应用。邢晓敏等[7]提出了将遗传算子与Michigan方法和基于Pitt法的两个机器学习方法相结合的机器学习方法。蒋培等[8]提出了一种基于共同进化遗传算法的机器学习方法,该方法克服了学习系统过分依赖于问题的背景知识的缺陷,使得学习者逐步探索新的知识。 3.5图像处理 图像处理是一个重要的研究领域。在图像处理过程中产生的误差会影响图像的效果,因此我们要尽可能地减小误差。目前,遗传算法已经在图像增强、图像恢复、图像重建、图像分形压缩、图像分割、图像匹配等方面应用广泛,详见参考文献[9]。 4结束语 遗传算法作为一种模拟自然演化的学习过程,原理简单,应用广泛,已经在许多领域解决了很多问题。但是,它在数学基础方面相对不够完善,还有待进一步研究和探讨。目前,针对遗传算法的众多缺点,也相继出现了许多改进的算法,并取得了一定的成果。可以预期,未来伴随着生物技术和计算机技术的进一步发展,遗传算法会在操作技术等方面更加有效,其发展前景一片光明。 参考文献 [1]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1999,6. [2]朱莹,向先波,杨运桃.基于混合遗传算法的杂货船装载优化问题[J].中国船舰研究,2015:10(6):126-132. [3]潘欣,等.种群分布式并行遗传算法解化工多目标优化问题[J].化工进展,2015:34(5):1236-1240. [4]王大东,刘竞遥,王洪军.遗传算法求解清运车辆路径优化问题[J].吉林师范大学学报(自然科学版),2015(3):132-134. [5]韦勇福,曾盛绰.基于遗传算法的车间生产调度系统研究[J].装备制造技术,2014(11):205-207. [6]黄巍,张美凤.基于混合遗传算法的车间生产调度问题研究[J].计算机仿真,2009,26(10):307-310. [7]邢晓敏.基于遗传算法的机器学习方法赋值理论研究[J].软件导刊[J].2009,8(11):80-81. [8]蒋培.基于共同进化遗传算法的机器学习[J].湖南师范大学自然科学学报,2004,27(3):33-38. [9]田莹,苑玮琦.遗传算法在图像处理中的应用[J].中国图象图形学报,2007,12(3):389-396. [10]周剑利,马壮,陈贵清.基于遗传算法的人工生命演示系统的研究与实现[J].制造业自动化,2009,31(9):38-40. [11]刘晓莉,戎海武.基于遗传算法与神经网络混合算法的数据挖掘技术综述[J].软件导刊,2013,12(12):129-130. 作者简介:赵夫群(1982,8-),女,汉族,籍贯:山东临沂,咸阳师范学院讲师,西北大学在读博士,工作单位:咸阳师范学院教育科学学院,研究方向:三维模型安全技术。 摘要:遗传算法是一种非常重要的搜索算法,特别是在解决优化问题上,效果非常好。文章首先介绍了遗传算法的四个组成部分,以及算法的基本操作步骤,接着探讨了遗传算法的几个主要应用领域,包括优化、生产调度、机器学习、图像处理、人工生命和数据挖掘等。目前遗传算法以及在很多方面的应用中取得了较大的成功,但是它在数学基础方面相对还不够完善,因而需要进一步研究和完善。 关键词:遗传算法;优化问题;数据挖掘 67 --

遗传算法的C语言程序案例

遗传算法的C语言程序案例 一、说明 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.举个例子,输入初始变量后,用y= (x1*x1)+(x2*x2),其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 4.程序流程图

5.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 6.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个

遗传算法及其在TSP问题中的应用

遗传算法及其在TSP问题中的应用 摘要:本文首先介绍了遗传算法的基本理论与方法,从应用的角度对遗传算法做了认真的分析和研究,总结了用遗传算法提出求解组合优化问题中的典型问题——TSP问题的最优近似解的算法。其次,本文在深入分析和研究了遗传算法基本理论与方法的基础上,针对旅行商问题的具体问题,设计了基于TSP的遗传算法的选择、交叉和变异算子等遗传算子,提出了求解旅行商问题的一种遗传算法,并用Matlab语言编程实现其算法,最后绘出算法的仿真结果,并对不同结果作出相应的分析。然后,本文还针对遗传算法求解TSP时存在的一些问题对该算法进行了适当的改进。如针对初始群体、遗传算子作出适当改进,或者将遗传算法与其他方法相结合,以及在编程过程中对算法流程的改进。本人在用计算机模拟遗传算法求解TSP问题时,首先分析了用Matlab语言设计遗传算法程序的优越性,接着以遗传算法求解TSP问题为例,深入讨论了各个遗传算子的程序实现,并通过分析实验数据,得到各个遗传算子在搜索寻优过程中所起的作用,最后指出了用Matlab语言编程同用其它高级程序语言编程的差异所在,以及运用Matlab编写遗传算法程序的一些注意事项。最后,本文提出将遗传算法与其它算法相结合来求解一般问题的想法;并将遗传算法的应用范围扩展,提出可以运用遗传算法求解由TSP衍生出的各类TSP扩展问题,如求解配送/收集旅行商问题的遗传算法(TSPD)、遗传算法在货物配送问题中的应用(ST-TSP)、多旅行商问题(MTSP)等。 引言:优化问题可以自然地分为两类:一类是连续变量的优化问题;另一类是离散变量的优化问题,即所谓组合优化问题。对于连续变量的优化问题,一般是求一组实数或一个函数;而在组合优化问题中,一般是从一个无限集或有限的几个无限集中寻找一个对象——它可以是一个整数,一个集合,一个排列或者一个图,也即是从可行解中求出最优解的问题。TSP问题就是其中的典型例子,就本质上而言它可抽象为数学上的组合优化,它描述的是旅行商经N个城市的最短路径问题,因而对TSP问题的求解是数学上,同时也是优化问题中普遍关注的。旅行商问题(Traveling Salesman Problem,简称TSP)也称为货担郎问题,是一个较古的问题,最早可以追溯到1759年Euler提出的骑士旅行问题[9]。旅行商问题可以解释为,一位推销员从自己所在城市出发,必须邀访所有城市且每个城市只能访问一次之后又返回到原来的城市,求使其旅行费用最小(和旅行距离最短)的路径。 TSP是一个典型的组合优化问题,并且是一个NP难题,所以一般很难精确地求出其最优解,因而寻找出其有效的近似求解算法就具有重要的理论意义。另一方面,很多实际应用问题,如公安执勤人员的最优巡回路线、流水作业生产线的顺序问题、车辆调度问题、网络问题、切割问题以至机组人员的轮班安排、教师任课班级负荷分配等问题,经过简化处理后,都可建模为TSP问题,因而对旅行商问题求解方法的研究也具有重要的应用价值。再者,在各种遗传算法应用实例中,其个体编码方法大多都是采用二进制编码方法或浮点数编码方法,而TSP问题是一种典型的需要使用符号编码方法的实际问题,所以,研究求解TSP问题的遗传算法,对促进遗传算法本身的发展也具有重要意义。在过去的20年里,在求解旅行商问题的最优解方面取得了极大的进展。尽管有这些成就,但旅行商问题还远未解决,问题的许多方面还要研究,很多问题还在期待满意的回答。 另外,遗传算法就其本质来说,主要是解决复杂问题的一种鲁棒性强的启发式随机

遗传算法应用论文

论文 题目:遗传应用算法 院系:计算机工程系 专业:网络工程 班级学号: 学生姓名: 2014年10月23日

摘要: 遗传算法是基于自然界生物进化基本法则而发展起来的一类新算法。本文在简要介绍遗传算法的起源与发展、算法原理的基础上,对算法在优化、拟合与校正、结构分析与图谱解析、变量选择、与其他算法的联用等方面的应用进行了综述。该算法由于无需体系的先验知识,是一种全局最优化方法,能有效地处理复杂的非线性问题,因此有着广阔的应用前景。 关键词: 遗传算法; 化学计量学; 优化 THEORY AND APPL ICATION OF GENETIC AL GORITHM ABSTRACT: Genetic Algo rithm( GA) is a kind of recursive computational procedure based on the simulation of principle principles of evaluati on of living organisms in nature1Based on brief int roduction of the principle ,the beginning and development of the algorithms ,the pape r reviewed its applications in the fields of optimization ,fitting an d calibration,structure analysis and spectra interpretation variable selection ,and it s usage in combination with othersThe application o f GA needs no initiating knowledge of the system ,and therefore is a comprehensive optimization method with extensive application in terms of processing complex nonlinear problems。 KEY WORDS : Genetic Algorithm( GA) Chemometrics Optimization 遗传算法是在模拟自然界生物遗传进化过程中形成的一种自适应优化的概率搜索算法,它于1962年被提出,直到1989年才最终形成基本框架。遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索算法, 由美国J. H. Ho llad教授提出, 其主要特点是群体搜索策略和群体中个体之间的信息交换。该算法尤其适用于处理传统搜索方法难以解决的复杂和非线性问题, 可广泛用于组合优化、机器学习、自适应控制、规划设计和人工生命等领域。 顾名思义,遗传算法(Genetic Algorithm ,GA)是模拟自然界生物进化机制的一种算法 ,即遵循适者生存、优胜劣汰的法则 ,也就是寻优过程中有用的保留 ,无用的则去除。在科学和生产实践中表现为 ,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法 ,即找出一个最优解。这种算法是 1960 年由

matlab基本遗传算法应用实例

基本遗传算法应用实例。用基本遗传算法求下面函数的最大值 10090060)(23++-=x x x x f 300≤≤x 个体数目取50,最大进化代数取100,离散精度取0.001,杂交概率取0.9,变异概率取0.004 1、在editor 中建立基本遗传算法函数:GA 程序如下: function[xv,fv]=GA(fitness,a,b,NP,NG,pc,pm,eps) %待优化的目标函数:fitness %自变量下界:a %自变量上界:b %种群个体数:NP %最大进化代数:NG %杂交概率:pc %自变量概率:pm %自变量离散精度:eps %目标函数取最小值时的自变量值:xm %目标函数的最小值:fv L=ceil(log2((b-a)/eps+1)); %根据离散精度,确定二进制编码需要的码长 x=zeros(NP,L); for i=1:NP x(i,:)=Initial(L);%种群初始化 fx(i)=fitness(Dec(a,b,x(i,:),L)); %个体适应值 end for k=1:NG sumfx=sum(fx); %所有个体适应值之和 px=fx/sumfx; %所有个体适应值的平均值 ppx=0; ppx(1)=px(1); for i=2:NP %用于轮盘赌策略的累加 ppx(i)=ppx(i-1)+px(i); end for i=1:NP sita=rand(); for n=1:NP if sita<=ppx(n) SelFather=n; %根据轮盘赌策略确定的父亲 break; end end Selmother=floor(rand()*(NP-1))+1; %随机选择母亲 posCut=floor(rand()*(L-2))+1; %随机选择交叉点 r1=rand(); if r1<=pc %交叉

数字图像处理的应用

数字图像处理技术的应用研究 图像处理也就是按照人们视觉、心理或实际应用的需要,对 图像信息进行加工修改的过程,在不同的时期、不同的领域往往 会采用不同的图像处理技巧。数字图像处理技术是伴随着计算机 信息功能的日益强大以及人们对高精度图像的需求而产生的,随 着社会的发展,尤其是计算机信息技术的进步,数字图像处理技 术被广泛应用于各个领域,其重要性变得日益突出。 一、数字图像处理技术的概念内涵 当前,我国通常采用的图像处理技术主要有两种,即光学处 理法和数字(电子)处理法。前者产生的时间较早,从最开始的 光学滤波技术到现在的激光全息技术,无论是理论研究,还是应 用技巧,光学图像处理法已日臻完善。但其图像处理精度低、稳 定性差以及操作不便的特点极大地限制了其应用领域拓展,在这 种情况下,数字图像处理技术便应运而生。 数字图像处理,也即是Digital Image Processing,产生于 20世纪50年代,是指人们采用计算机及其它数字硬件设备,对图 像信息转换而来的电信号根据数学运算的方式,进行增强、提取、复原、分割以及去除噪音等处理的方法和技术,以此提高图像的实用性,因此,该技术的产生与发展建立在计算机运用、离算数学理论的产生与完善以及社会诸多领域的需求之上的。其最大特点是不仅图像处理精度高,而且可以通过改进硬件系统配置和优化软件系统功能的方式来提高图像处理效果,一切以计算机运行为基础,操作极为方便。最初,由于数字图像处理技术的数据需求量大,处理速度慢,极大地限制了其应用领域,但随着计算机技术的快速发展,尤其是运算速度的提升,这一瓶颈早已被突破。 二、数字图像处理技术的功能内容分析 (一)增强图像的视觉效果。在某些特殊领域,图像在传输与 转换的过程中容易造成信息的丢失,从而形成失真现象,比如航天拍摄的图片在传回地球的过程中,由于光学系统、大气流、空气介质等原因造成图像模糊;在图像扫描、采样、量化的过程中,所形成的噪音污染等等。我们可以采用数字图像处理技术,一方面突出重要信息而衰减次要信息;另一方面根据失真原因,补偿丢失的信息因素,从而使改善后的图像效果尽可能的接近原始图像。 (二)图像的重建功能。随着电子计算机体层摄影技术的发 展,图像的重建成为一种新兴的数字图像处理技术,它主要是对 目标对象进行观察和测量,重新构建出图像中的大量信息的直观 显示,从而在计算机模拟系统中进行二维或者三维的图像处理, 这也是对特殊实体进行图像回归的过程。 (三)模式识别功能。模式识别也是数字图像处理技术的一

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

相关文档