文档库 最新最全的文档下载
当前位置:文档库 › 抽屉原理

抽屉原理

抽屉原理
抽屉原理

抽屉原理

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。

抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”

抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。

一.抽屉原理最常见的形式

原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.

原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.

原理1 2都是第一抽屉原理的表述

第二抽屉原理:

把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能

二.应用抽屉原理解题

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

例1:400人中至少有两个人的生日相同.

解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.

又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.

“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.

解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.

上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.)

抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。

(一)整除问题

把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。

例1 证明:任取8个自然数,必有两个数的差是7的倍数。

分析与解答在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m 的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。

例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除.

证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:

[0],[1],[2]

①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除.

②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数.

③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除.

例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.

证明:设这11个整数为:a1,a2,a3……a11 又6=2×3

①先考虑被3整除的情形

由例2知,在11个任意整数中,必存在:

3|a1+a2+a3,不妨设a1+a2+a3=b1;

同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2;

同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3

②再考虑b1、b2、b3被2整除.

依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2

则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6

∴任意11个整数,其中必有6个数的和是6的倍数.

例3:任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.

分析:注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.

(二)面积问题

例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点.

证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等,故它们的面积之比等于中位线长的比,即|MH|:|NH| 。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点.

(三)染色问题

例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.

证明:把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色.

例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?

解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。

例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。

解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。

若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。

若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。

三.制造抽屉是运用原则的一大关键

例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

分析与解答我们用题目中的15个偶数制造8个抽屉:

凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。

例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。

另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。

例3:从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

分析与解答根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):

{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。

从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。

例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。

分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,

那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。

在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。

抽屉原理

把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。

形式一:证明:设把n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于2(用反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有:

a1+a2+…+an≤1+1+…+1=n<n+1这与题设矛盾。所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。

形式二:设把n?m+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n

个集合里相应的元素个数,需要证明至少存在某个ai大于或等于m+1。用反证法)假设结论不成立,即对每一个ai都有ai<m+1,则因为ai是整数,应有ai≤m,于是有:

a1+a2+…+an≤m+m+…+m=n?m<n?m+1

n个m 这与题设相矛盾。所以,至少有存在一个ai≥m+1

高斯函数:对任意的实数x,[x]表示“不大于x的最大整数”.

例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1

形式三:证明:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k 个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:

a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=n

k个[n/k] ∴ a1+a2+…+ak<n 这与题设相矛盾。所以,必有一个集合中元素个数大于或等于[n/k]

形式四:证明:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。(用反证法)假设结论不成立,即对每一个ai都有ai<qi,因为ai为整数,应有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1这与题设矛盾。

所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi

形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。

例题1:400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同.

解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1可以得知:至少有两人的生日相同.

例题2:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.

证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况:1°.某一类至少包含三个数;2°.某两类各含两个数,第三类包含一个数.

若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除;若是第二种情况,在三类中各取一个数,其和也能被3整除..综上所述,原命题正确.

例题3:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同.

证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里.

(用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有:4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植树的株数相同.

练习:1.边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点.

2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于 .

3.求证:任意四个整数中,至少有两个整数的差能够被3整除.

4.某校高一某班有50名新生,试说明其中一定有二人的熟人一样多.

5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同.

“任意367个人中,必有生日相同的人。”

“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

... ...

大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:

“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”

在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。

抽屉原理的一种更一般的表述为:

“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”

利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。

如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:

“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”

抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。

1958年6/7月号的《美国数学月刊》上有这样一道题目:

“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”

这个问题可以用如下方法简单明了地证出:

在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。

六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

解读“抽屉原理”

当“抽屉原理”从少数精英学生学习的奥林匹克竞赛课堂走向全体学生学习的大众课堂的时候,无疑对教师和学生都构成了前所未有的挑战。为此,颇有必有对此展开学习和研讨。

一、抽屉原理简介

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

原理1:多于n个的元素,按任一确定方式分成n个集合,则至少有一个集合中含有至少二个元素。

原理2:np+1(n、p∈N*)分成n个集合,则至少有一个集合中含有至少p+1个元素。

原理3:无穷多个元素分成n个集合,则至少有一个集合中含有无穷多个元素。

现行的小学课本中只编排了抽屉原理1、2的教学。

二、运用抽屉原理解题的步骤

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

三、理解抽屉原理要注意几点

(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

四、抽屉原理的教材分析

“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉原理”,即把m个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。关于这类问题,学生在现实生活中已积累了一定的感性经验。教学时可以充分利用学生的生活经验,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚

举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。

五、抽屉原理的教学目标

1. 了解原理。通过操作、观察、比较、推理等活动,让学生经历“抽屉原理”的探究过程,并逐步理解和掌握“抽屉原理”。

2、简单运用。会用“抽屉原理”解决生活中简单的实际问题,培养学生有根据、有条理地进行思考和推理的能力。

3.学会建模。使学生经历将具体问题“数学化”的过程,培养学生的“模型”思想。

4、感受魅力。通过“抽屉原理”的灵活应用让学生感受到数学的魅力,并培养学生对数学的学习兴趣。

六、抽屉原理的教材解读

(一)例1和做一做

例1、把4枝铅笔放在3个文具盒里,不管怎么放,总有一个文具盒里至少放进2枝铅笔。

1、体验方法多样

(1)枚举法:(4、0、0),(3、1、0),(2、2、0),(2、1、1),

(2)假设法(用极端法做最坏的打算)

假设每个文具盒只放1枝铅笔,最多放3只。剩下的1枝还要放进1个文具盒。所以至少有2枝铅笔放进同一个文具盒。

(3)反证法

假设每个文具盒放进的铅笔枝数都少于2枝,那么最多只能放3枝铅笔,而把4枝铅笔放在3个文具盒里,所以假设不成立。因此,至少有2枝铅笔放进同一个文具盒。

2、体验结果存在

不管是哪个物体存在,因何种方式存在,只要存在即可。

3、体验数量积累

从量变到质变。

把4枝铅笔放在3个文具盒里

把5枝铅笔放在4个文具盒里

把6枝铅笔放在5个文具盒里

把10枝铅笔放在9个文具盒里

把100枝铅笔放在99个文具盒里

把8枝铅笔放在3个文具盒里

……

4、体验方法优劣

枚举法受到数量多少的局限

假设法能够解决一般的问题

反证法不利于小学生的接受

做一做:6只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

解答:假设每个鸽舍只飞进1只鸽子,最飞进5只鸽子。剩下的1只鸽子还要飞进同一个鸽舍里。所以至少有2只鸽子要飞进同一个鸽舍里。

5、体验语言严谨

要让学生逐步学会用简练、严谨的数学语言表达数学思维的过程和结果。

(二)例2和做一做

例2、把5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放进3本书。7本呢?9本呢?

1、关注学习过程:操作、观察、比较、合情推理、归纳。

2、注重方法多样:

枚举法:(5,0),(4,1),(3,2)三种情况,可知在任何一种结果中,总有一个数不小于3,故总有一个抽屉里至少有3本书;

假设法:先把每个抽屉各放1本,还剩下3本,再把每个抽屉各放1本,还剩1本,这样不管怎么放,总有一个抽屉至少放进3本书;也可能有学生说把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

3、借助算式思考。(注意用“商+1”就可以了,不是“商+余数”)

4、学会归纳总结。

5、沟通例1例2。

做一做:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

解答:假设每个鸽舍只飞进2只鸽子,最飞进6只鸽子。剩下的2只鸽子还要飞进鸽舍里。所以至少有3只鸽子要飞进同一个鸽舍里。

(三)例3和做一做

例3、盒子里同样大小的红球和篮球各4个,要想摸出的球一定有同色的,最少要摸几个球?

1、寻找与抽屉原理的本质联系

怎样把这一问题与抽屉原理挂钩?即是要把多少个物体放进多少个抽屉里?

要摸出多少个球就是物体的个数,即要所求。

两种颜色就是两个抽屉。

结果是摸出的球数比颜色数多1,即3个球。

2、注意突出对“至少”的理解

()÷2=() (1)

3、注重抽屉原理的变式训练

做一做:

1、向东小学六年级共有370名学生,其中六(2)班有49名学生。六年级里一定有两人的生日是同一天。六(2)班中至少有5人是一个月出生的。他们说得对吗?为什么?

解答:(1)把370个物体放进366个抽屉

370÷366=1 (4)

(2)把49个物体放进12个抽屉

49÷12=4 (1)

2、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取道两个颜色相同的球?

解答:要摸出多少个球就是物体的个数,即要所求。

4种颜色就是4个抽屉。

结果是摸出的球数比颜色数多1,即5个球。

(四)练习十二习题解答

1、从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,至少有2张氏同花色的。试一试,并说明理由。

解答:要摸出多少个球就是物体的个数,即要所求。

4种颜色就是4个抽屉。

结果是摸出的同花色的牌数比颜色数多1,即5张牌。

2、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有1镖不低于9环。为什么?

解答:41÷5=8 (1)

3、任意3个不同的自然数,其中一定有2个数的和是2的倍数。能说明其中的道理吗?

解答:物体数:3个(奇、奇),(奇、偶),(偶、偶),其和为2偶1奇。

抽屉数:2个(和的两种情况:奇数和偶数)

4、给一个正方体的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同。为什么?

解答:反证法说明。

5、把红、黄、蓝三种颜色的小棒各10根混在一起。如果让你闭上眼睛,每次最少拿出几根才能保证一定有两根向同色的小棒?保证有2对同色的小棒呢?

解答:(同上面的做一做,答案略)

7、任意给出5个非零的自然数。能找到3个数,让这3个数的和是3的倍数。说出其中的奥秘。

解答:所有的整数按照除以3的余数都可以分在三个集合里:{3k+1},{3k+2},{3k},其中k为整数。

对于任意取的5个整数,如果它们都分布在同一个集合里的话,那么显然任取三个数的和都能被3整除。

如果它们没有都分在一个集合里,而恰好只分在两个集合里的话,那么5个元素分布到两个集合中,至少有一个集合含有至少3个元素,那么可以发现这三个元素的和是可以被3整除的。

如果这5个整数分布在3个集合每个集合都有元素的话,那么显然,从每个集合中取出一个元素,它们的和就可以被3整除。

8、思考题:把1-8这8个数任意围成一个圆圈。在这个圈上,一定有3个相邻数的和大于13。你知道其中的奥秘吗?

解答:设a1,a2,a3,…,a7,a8分别代表不超过8的自然数,它们围成一个圈,三个相邻的数的组成共8组.现把它们看作8个抽屉,每个抽屉的物体数的和是:

3×(1+2+…+7+8)=108

108÷8=13 (4)

根据原则2,至少有三个相邻的数的和不小于13。

抽屉原理练习题

1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?

解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5)

由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。

6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。

解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人)

7、证明:从1,3,5,……,99中任选26个数,其中必有两个数的和是100。

解析:将这50个奇数按照和为100,放进25个抽屉:(1,99),(3,97),(5,95),……,(49 ,51)。根据抽屉原理,从中选出26个数,则必定有两个数来自同一个抽屉,那么这两个数的和即为100。

8. 某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有______人带苹果。

解析:由题意,不带苹果的乘客不多于一名,但又确实有不带苹果的乘客,所以不带苹果的乘客恰有一名,所以带苹果的就有46人。

9. 一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了_______堆。

解析:要求把其中两堆合并在一起后,苹果和梨的个数一定是偶数,那么这两堆水果中,苹果和梨的奇偶性必须相同。对于每一堆苹果和梨,奇偶可能性有4种:(奇,奇),(奇,偶),(偶,奇),(偶,偶),所以根据抽屉原理可知最少分了4+1=5筐。

10. 有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出_____只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。

解析:考虑最坏情况,假设拿了3只黑色、1只白色和1只蓝色,则只有一双同颜色的,但是再多拿一只,不论什么颜色,则一定会有两双同颜色的,所以至少要那6只。

11.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍.

证明:把前25个自然数分成下面6组:

1; ①

2,3; ②

4,5,6; ③

7,8,9,10; ④

11,12,13,14,15,16; ⑤

17,18,19,20,21,22,23, ⑥

因为从前25个自然数中任意取出7个数,所以至少有两个数取自上面第②组到第⑥组中的某同一组,这两个数中大数就不超过小数的1.5倍.

12.一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?

解析:根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。

13.从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?

【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

15.某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?

分析与解:将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

16.一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?

分析与解:将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

17.六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?

分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况。

订一种杂志有:订甲、订乙、订丙3种情况;

订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;

订三种杂志有:订甲乙丙1种情况。

总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。

18.篮子里有苹果、梨、桃和桔子,现有81个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友拿的水果是相同的?

分析与解:首先应弄清不同的水果搭配有多少种。两个水果是相同的有4种,两个水果不同有6种:苹果和梨、苹果和桃、苹果和桔子、梨和桃、梨和桔子、桃和桔子。所以不同的水果搭配共有4+6=10(种)。将这10种搭配作为10个“抽屉”。

81÷10=8……1(个)。

根据抽屉原理2,至少有8+1=9(个)小朋友拿的水果相同。

19.学校开办了语文、数学、美术三个课外学习班,每个学生最多可以参加两个(可以不参加)。问:至少有多少名学生,才能保证有不少于5名同学参加学习班的情况完全相同?

分析与解:首先要弄清参加学习班有多少种不同情况。不参加学习班有1种情况,只参加一个学习班有3种情况,参加两个学习班有语文和数学、语文和美术、数学和美术3种情况。共有1+3+3=7(种)情况。将这7种情况作为7个“抽屉”,根据抽屉原理2,要保证不少于5名同学参加学习班的情况相同,要有学生7×(5-1)+1=29(名)。

20. 在1,4,7,10,…,100中任选20个数,其中至少有不同的两对数,其和等于104。

分析:解这道题,可以考虑先将4与100,7与97,49与55……,这些和等于104的两个数组成一组,构成16个抽屉,剩下1和52再构成2个抽屉,这样,即使20个数中取到了1和52,剩下的18个数还必须至少有两个数取自前面16个抽屉中的两个抽屉,从而有不同的两组数,其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的数组将多于两组。

解:1,4,7,10,……,100中共有34个数,将其分成{4,100},{7,97},……,{49,55},{1},{52}共18个抽屉,从这18个抽屉中任取20个数,若取到1和52,则剩下的18个数取自前16个抽屉,至少有4个数取自某两个抽屉中,结论成立;若不全取1和52,则有多于18个数取自前16个抽屉,结论亦成立。

21. 任意5个自然数中,必可找出3个数,使这三个数的和能被3整除。

分析:解这个问题,注意到一个数被3除的余数只有0,1,2三个,可以用余数来构造抽屉。

解:以一个数被3除的余数0、1、2构造抽屉,共有3个抽屉。任意五个数放入这三个抽屉中,若每个抽屉内均有数,则各抽屉取一个数,这三个数的和是3的倍数,结论成立;若至少有一个抽屉内没有数,那么5个数中必有三个数在同一抽屉内,这三个数的和是3的倍数,结论亦成立。

22. 在边长为1的正方形内,任意放入9个点,证明在以这些点为顶点的三角形中,必有一个三角形的面积不超过1/8.

解:分别连结正方形两组对边的中点,将正方形分为四个全等的小正方形,则各个小正方形的面积均为1/4 。把这四个小正方形看作4个抽屉,将9个点随意放入4个抽屉中,据抽屉原理,至少有一个小正方形中有3个点。显然,以这三个点为顶点的三角形的面积不超过1/8 。

反思:将边长为1的正方形分成4个面积均为1/4 的小正方形,从而构造出4个抽屉,是解决本题的关键。我们知道。将正方形分成面积均为1/4 的图形的方法不只一种,如可连结两条对角线将正方形分成4个全等的直角三角形,这4个图形的面积也都是1/4 ,但这样构造抽屉不能证到结论。可见,如何构造抽屉是利用抽屉原理解决问题的关键。

23.班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

解:把50名学生看作50个抽屉,把书看成苹果 ,根据原理1,书的数目要比学生的人数多,即书至少需要50+1=51本.

24.在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

解:把这条小路分成每段1米长,共100段,每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果 ,于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果 ,即至少有一段有两棵或两棵以上的树 .

25.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜.试证明:一定有两个运动员积分相同

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能 ,以这49种可能得分的情况为49个抽屉 ,现有50名运动员得分则一定有两名运动员得分相同 .

26.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:

{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}

以这9种配组方式制造9个抽屉,将这50个同学看作苹果=5.5 (5)

由抽屉原理2k=〔〕+1可得,至少有6人,他们所拿的球类是完全一致的。

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

抽屉原理公式及例题精编版

抽屉原理公式及例题“至少……才能保证(一定)…最不利原则 抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同?A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1 个“抽屉”里有6张花色一样。答案选C. 例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人? 每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同? 用最不利原则解题。四个专业相当于4个抽屉,该题要有70名找到工作的人专业相同,那最倒霉的情况是每个专业只有69个人找到工作,值得注意的是人力专业一共才50个人,因此软件、市场、财务各有69个人找到工作,人力50个人找到工作才是本题中最不利的情形,最后再加1,就必定使得某专业有70个人找到工作。即答案为69×3+50+1=258。 例6:调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员需要从这些调查问卷中随机抽多少份,才能保证一定能找到两个手机号码后两位相同的被调查者? 答:在435份调查问卷中,没有填写手机号码的为435×(1-80%)=87份。要找到两个手机号码后两位相同的被调查者,首先要确定手机号码后两位有几种不同的排列方式。因为每一位

小学抽屉原理

《数学广角—抽屉原理》教学设计 【教学目标】 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2.通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重、难点】经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教学准备】 1、教学ppt课件 2、铅笔120支 (小棒代替) ,笔盒100个(杯子代替),每个小组3个杯子,5支小棒;扑克牌1副,凳子4把。 【教学流程】 一、问题引入。 师:在上课前,老师特别想和同学们做个游戏,谁愿来?老师准备了4把椅子,请5 位同学上来。

1.游戏要求:老师喊“准备”,你们5位同学围着椅子走动,等老师喊“开始”后请你们5个都坐在椅子上,每个人都必须坐下。 2.师:“准备”,“开始”,他们都坐好了吗?老师不用看就知道总有一把椅子上至少坐着两名同学,是这样的吗?如果反复再做,还会是这样的结果吗? (游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。) 3、引入:看来,不管怎么坐,总有一把椅子上至少坐两个同学。你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。 4、明确学习目标与任务: 师:看到这个课题,你能想到这节课我们将要学习哪些知识吗?(学生表达想法) 课件出示学习目标与要求 1)、了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2)通过实验操作、自主探究、小组合作发现抽屉原理。 3)感受数学文化的魅力,提高对数学的兴趣。 二、探究新知 (一)教学例1 为了研究这个原理,我们做一组实验。 1、观察猜测 课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放 进____支铅笔。 猜一猜:不管怎么放,总有一个文具盒至少放进 ____支铅笔。

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

抽屉原理的经典解题思路

抽屉原理的经典解题思路 抽屉原理在公务员考试中的数字运算部分时有出现。抽屉原理是用最朴素的思想解决组合数学问题的一个范例,我们可以从日常工作中的实例来体会抽屉原理的应用。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 先来看抽屉原理的一般叙述: 抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 抽屉原理(2):将多于件的物品任意放到抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。 掌握了抽屉原理解题的步骤就能思路清晰的对一些存在性问题、最小数目问题做出快速准确的解答。一般来讲,首先得分析题意,分清什么是“物品”,什么是“抽屉”,也就是什么作“物品”,什么可作“抽屉”。接着制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。最后运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 下面两个典型例题的解题过程充分展现了抽屉原理的解题过程,希望读者能有所体会。 例1:证明任取6个自然数,必有两个数的差是5的倍数。 证明:考虑每个自然数被5除所得的余数。即自然数可以作为物品,被5除所得余数可以作为抽屉。显然可知,任意一个自然数被5除所得的余数有5种情况:0,1,2,3,4。所以构造5个抽屉,每个抽屉中所装的物品就是被5除所得余数分别为0,1,2,3,4的自然数。运用抽屉原理,考虑“最坏” 的情况,先从每个抽屉中各取一个“物品”,共5个,则再取一个物品总能在先取的5个中找到和它出自于同一抽屉的“物品”,即它们被5除余数相同,所以它们的差能整除5。

抽屉原理优秀教案

《数学广角——抽屉原理》 实验小学 潘聪聪

《数学广角——抽屉原理》 【教学内容】: 我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的笔、铅笔盒、课件。 【教学过程】: 一、游戏激趣,初步体验 师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳

子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它? 【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】 二、操作探究,发现规律 1、小组合作,初步感知。 师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? (1)、学生动手操作,讨论交流,老师巡视,指导; (2)、全班交流。 师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。 师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。 师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1) 师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。

用抽屉原理解决问题

浙江省农村中小学现代远程教育工程资源建设多媒体教学课件 数学广角:用抽屉原理解决问题 使用范围:小学数学(人教版)六年级下册第五单元第72页 作者:高牡丹 单位:仙居县安洲小学 撰稿时间:2011年7月 ●教学目标: 1.进一步掌握抽屉原理,掌握抽屉原理的反向求法,会用“抽屉原理”解决简单的实际问题。 2.通过操作发展学生的类推能力,培养学生的发散性思维,形成比较抽象的数学思维。 3.通过“抽屉原理”的灵活应用感受数学的魅力,培学生大胆发表自己的见解和倾听他人意见,了解他人思维的好习惯。 ●教学重点: 用抽屉原理的逆向思维解决问题。 ●教学难点: 理解抽屉原理的反向求法并能灵活地运用抽屉原理解决问题。 ●教学准备: 多媒体课件、投影仪。 ●教学过程: 一、复习旧知 1、关于抽屉原理,我们已经知道了什么? 小结:把一些物体放进几个抽屉中,不管怎么放,有一个抽屉里至少有物体个数÷抽屉个数“所得的商+1”个物体。 2、抽屉原理中的抽屉一定是指真正的抽屉吗?还可以指什么?

3.增加复习题:如:13人中至少有2个人的生肖是相同的,为什么? 二、学习例3 1.出示例题,分析题意:盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,至少要摸出几个球? (1)通读题目,你知道了什么?和咱们前两节课学的抽屉原理一样吗?怎么不一样? 小结比较结果:已经知道了一个抽屉里至少有2个物体,求至少要摸出几个球。这节课我们是根据抽屉原理来解决问题的。板书课题:用抽屉原理解决问题。 (2)解决这个问题的关键是什么呢?是的,要先找到抽屉。抽屉是指什么?对啊,就是指红球和蓝球。 (3)有几个抽屉呢?你是怎么知道的? 预设1:4个,因为题目中说红球和蓝球各4个。 预设2:2个,因为就只有两种球,红球和蓝球。 师:到底谁的说法是对的呢?请大家先在小组里讨论一下。 反馈:红球4个,蓝球4个,有种颜色,所以应该是2个抽屉。 2.解决问题:要想摸出的球一定有2个同色的,最少要摸出几个球? (1)如果把这句话说完整:在2个抽屉里,最少摸出几个球就能保证一定有2个同色的?请大家思考一下。 (2)反馈: 生1:2个,摸两个球都是红色的,或者摸两个球都是蓝色的。 生2:不行,摸2个万一一个红球一个蓝球呢?应该是3个。 生3:摸出5个球,肯定有2个是同色的。因为红球和蓝球各4个。 (3)到底哪种说法是正确的呢?请大家在小组里讨论一下。 只摸2个球肯定是不行的,因为可能是一个红球、一个蓝球。 (有可能但不能保证) 根据5÷2=2……1,可以知道,摸出5个球时至少有3个球同色。因此,摸出5个球是没有必要的。(能保证但不是最少的) 得出结论:要想摸出的球一定有两个同色的,只要摸出的球比颜色种数多1,也就是比2多1,因此是3次。

抽屉原理及其简单应用

抽屉原理及其简单应用 一、知识要点 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确地提出来的,因此,也称为狄利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。原理2:把m个元素任意放入n(n≤m)个集合,则一定有一个集合至少要有k个元素。其中k=m/n(当n能整除m时)或k=〔m/n〕+1(当n不能整除m时),这里〔m/n〕表示不大于m/n的最大整数,即m/n的整数部分。 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。二、应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。 三、应用抽屉原理解题例举: 1.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?(教科书P73 T2) 解答:这道题物体个数和抽屉都比较明显。成绩41环看作个数,5镖看作抽屉,列式为:41÷5=8……1 8+1=9 2.有9支球队进行比赛,已经赛了10场,那么总有一支球队至少赛了几场? 解答:有些题目物体的个数没有直接告诉我们。根据问题至少赛了几场,那我们要知道已经赛过的总的场次。根据已经赛了10场,每场2支球队,总场次应该是20次。这就是物体的个数。9支球队可以看作抽屉。根据今天所教的知识(原理2)我们知道20÷9=2……2,2+1=3 3.有红、黄两种颜色在下面的长方形格子中随意涂色,每个格子涂一种颜色。青青发现无论怎样涂,至少有两列涂法完全相同。请你先试一试,再说明理由。(作业本P29 T4) 解答:根据至少有两列涂法完全相同。我们要知道总的列数。这道题已经知道物体的个数是5列。但抽屉的个数却掩藏起来,我们需要根据排列知识找出抽屉的个数。已知颜色有2种,在一列的排列组合中有这么4种情况。(红红、红黄、黄黄、黄红)所以可以做成4个抽屉。用算式5÷4=1……1,1+1=2就说明问题。 4.任意写出5个非零的自然数,我能找到两个数,让这两个数的差是4的倍数。(作业本P29 T5) 解答:这题已经告诉我们物体的个数是5。但什么做为抽屉?要做几个抽屉却需要我们去构建。根据条件4的倍数,我们知道一个数除以4没有余数那就是4的倍数,在这些数中除以4的过程中会出现这四种情况(整除、余数是1、2、3)那就可以根据这四种情况做成四个

抽屉原理带答案

抽屉原理(一) 抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。 理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。 (2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。 (3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。 (4)将a件物品放入n个抽屉中,如果a÷n=m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。 例1五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 分析与解:关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21=2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 例2夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。规定每人必须参加一项或两项活动。那么至少有几名营员参加的活动项目完全相同? 分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。营员数已经有了,现在的问题是应当搞清有多少个抽屉。 因为“每人必须参加一项或两项活动”,共有3项活动,所以只参加一项活动的有3种情况,参加两项活动的有爬山与参观、爬山与海滩游玩、参观与海滩游玩3种情况,所以共有3+3=6(个)抽屉。 2000÷6=333……2, 根据抽屉原理2,至少有一个抽屉中有333+1=334(件)物品,即至少有334名营员参加的活动项目是相同的。 例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人? 分析与解:这道题一下子不容易理解,我们将它变变形式。因为是把书分给学生,所以学生是抽屉,书是物品。本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。这个问题的条件与结论与抽屉原理2正好相反,所以反着

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 令狐采学 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。

一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D. 【例3】调研人员在一次市场调查活动中收回了435份调查试卷,其中80%的调查问卷上填写了被调查者的手机号码.那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?() A.101 B.175 C.188 D.200

行测抽屉原理

行测抽屉原理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

抽屉原理 在历年国家公务员考试以及地方公务员考试中,抽屉问题都是重要考点。 当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。 传统的解抽屉原理的方法是找两个关键词,“保证”和“最少”。 抽屉原理(1):讲多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于2。抽屉原理(1)可以进行推广,把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 抽屉原理(2):将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少m+1。也可以表述成如下语句:把m 个物品任意放入n(n≤m)个抽屉中,则一定有一个抽屉中至多要有k件物品。其中 k=〔m/n 〕,这里〔m/n 〕表示不大于m/n的最大整数,即m/n的整数部分。 例1:从1、2、3、…、12中,至少要选( )个数,才可以保证其中一定包括两个数的差是7? A. 7 B. 10 C. 9 D. 8 解析:在这12个数中,差是7的数有以下5对:(12,5)、(11,4)、(10,3)、(9,2)、(8,1)。另有两个数6、7肯定不能与其他数形成差为7的情况。由此构造7个抽屉,只要有2个数取自一个抽屉,那么他们的差就等于7。从这7个抽屉中能够取8个数,则必然有2个数取自同一个抽

屉。所以选择D选项。 例2:某班有37名同学,至少有几个同学在同一月过生日? 解析:根据抽屉原理,可以设3×12+1个物品,一共是12个抽屉,则至少有4个同学在同一个月过生日。 例3:一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 解析:每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 例4:一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球? 解析:从最“不利”的取出情况入手。 最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。 接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。 故总共至少应取出10+5=15个球,才能符合要求。

小学数学思维训练——抽屉原理练习题及答案

小学数学思维训练——抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 = 5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人)

抽屉原理及其应用

抽屉原理及其应用 许莉娟 (数学科学学院,2003 ( 4)班,03213123号) [摘要]抽屉原理是数学中的重要原理,在解决数学问题时有非常重要的作用.各种形式的抽屉原理在高等数学和初等数学中经常被采用.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指岀了它在 应用领域中的不足之处. [关键词]抽屉原理高等数学初等数学 抽屉原理也称为鸽笼原理或鞋箱原理,它是组合数学中的一个最基本的原理.抽屉原 理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等?抽屉原理的简 单形式可以描述为:“如果把n ? 1个球或者更多的球放进n个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果. 各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论,下面我们着重从抽屉的构造途径去介绍抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出它在应用领域中的不足之处? 一、抽屉原理 陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理I把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素? 原理U把m个元素任意放到n(m ? n)个集合里,则至少有一个集合里至少有 k个元素,其中 当n能整除m时, 当n不能整除m时. 原理川把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个

抽屉原理(一)

抽屉原理 抽屉原理(1) 把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 1.游泳队有13名队员,教练说你们当中至少有两个人在同一个月过生日,为什 么? 2.某校的小学生年龄最小的6岁,最大的13岁,从这个学校中至少任选几位同学 就一定保证其中有两位同学的年龄相同? 3.布袋中装有红、黄、蓝三色小木棒若干根,至少摸出多少根,就一定保证有两 根小木棒的颜色相同? 4.布袋中装有红、黄、蓝三色小木棒若干根,每次取出两根,至少摸出多少次, 就一定保证有两次摸出的两根小木棒的颜色组合相同? 5.布袋中装有红、黄、蓝三色小木棒若干根,每人取出三根,至少需要多少人, 就一定保证有两人摸出的小木棒的颜色组合相同? 6.为了欢迎来宾,学校准备了红、黄、蓝三色小旗,每个同学两手各拿一面小旗 列队欢迎,试证明:任意8名同学中,至少有两人不但所拿小旗的颜色一样,而且左右顺序也相同。 7.体育器材室里有许多足球、排球和篮球,体育课学生来拿球。如果每人至少拿 1个球,至多拿2个球,至少来多少名学生,就能保证一定有两名学生所拿的球种类完全一样。 8.学校食堂中午有6种不同的菜和5种不同的主食。每人只能买一种菜和一种主 食,请你证明32名同学中,一定至少有两名学生所买的菜和主食是一样的。 9.证明:任取7个自然数,必有两个数的差是6的倍数。 10.从2、4、6、8……、24、26这13个偶数中,任取8个数,证明其中一定有两个数 之和是28。 11.求证:任意互异的8个整数中,一定存在6个整数A 、A2、A3、A4、A5、A6,使 1 得(A1-A2)×(A3-A4)×(A5-A6)恰是105的倍数。 12.从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍 数。

_抽屉原理精华及习题(附答案)

第九讲抽屉原理 一、知识点: 1.把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几? 2.把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几? 上述两个结论你是如何计算出来的? ★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答案”为商。 ★抽屉原则一: 把n个以上的苹果放到n个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。 ★抽屉原则二: 把多于m×n个苹果放到n个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。 二、基础知识训练(再蓝皮书) 1、把98个苹果放到10个抽屉中,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少含有个苹果。 2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有只鸽子。 3、从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了个苹果。 4、从个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果。 三、思路与方法: 在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。

汇博教育五年级Top奥数班训练题 1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说的对吗?为什么? 2.从100 ,3,2,1 这100个数中任意挑选出51个数来,证明在这51个, 数中,一定: (1)有2个数互质;(2)有两个数的差为50; 3.圆周上有2000个点,在其上任意地标上1999 ,2,1,0 (每一点只标 , 一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的;两个点和这点上所标的三个数之和不小于2999。 4.有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.证明:在200个信号中至少有4个信号完全相同. 5.在3×7的方格表中,有11个白格,证明: (1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格; (2)只有一个白格的列至少有3列。 6.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这篛流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?

抽屉原理精华及习题(附答案)

第九讲 抽屉原理 一、 知识点: 1. 把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一 个抽屉中的苹果数大于等于几? 2. 把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一 个抽屉中的苹果数大于等于几? 上述两个结论你是如何计算出来的? ★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答 案”为商。 ★抽屉原则一: 把n 个以上的苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。 ★抽屉原则二: 把多于m ×n 个苹果放到n 个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m +1)个苹果。 二、 基础知识训练(再蓝皮书) 1、 把98个苹果放到10个抽屉中, 无论怎么放, 我们一定能找到一个含苹果最多的抽屉,它里面至少含有 个苹果。 2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢, 它里面至少含有 只鸽子。 3、从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的 抽屉,从它里面至少拿出了 个苹果。 4、从 个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉, 从它当中至少拿了7个苹果。 三、 思路与方法: 在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。 训 练 题 1. 六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86 分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说的对吗?为什么? 2. 从100,,3,2,1 这100个数中任意挑选出51个数来,证明在这51个数中,一定: (1)有2个数互质; (2)有两个数的差为50; 3. 圆周上有2000个点,在其上任意地标上1999,,2,1,0 (每一点只标一个数,不同的点

抽屉原理问题(公务员考试数学运算基础详解)

抽屉原理问题——基础学习 一、解答题 2、抽屉原理1例1:400人中至少有几个人的生日相同? 【解题关键点】将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同. 【结束】 3、抽屉原理1例2:五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。问:至少有几名学生的成绩相同? 【答案】至少有3名学生的成绩是相同的。

【解题关键点】关键是构造合适的抽屉。既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。 44÷21= 2……2, 根据抽屉原理2,至少有1个抽屉至少有3件物品,即这47名学生中至少有3名学生的成绩是相同的。 【结束】 5、抽屉原理2例1:某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具? 【答案】至少会有一个小朋友得到4件或4件以上的玩具。 【解题关键点】将40名小朋友看成40个抽屉。今有玩具122件,122=3×40+2。应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。也就是说,至少会有一个小朋友得到4件或4件以上的玩具。 【结束】 6、抽屉原理2例2:一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块? 【答案】一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【解题关键点】将1,2,3,4四种号码看成4个抽屉。要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。 【结束】 7、抽屉原理2例3:六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同? 【答案】至少有15人所订阅的报刊种类是相同的。 【解题关键点】首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况;

小学六年级奥数抽屉原理含答案

抽屉原理 知识要点 1.抽屉原理的一般表述 (1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。 (2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为: 第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。 2.构造抽屉的方法 常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。 例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点, (13) 点牌各一张),洗好后背面朝上放。一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。 点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。 解(1)13×2+1=27(张) (2)9×4+1=37(张) 例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内? 点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。 解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。 (2)要保证有5人的属相相同的最少人数为4×12+1=49(人) 不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有?点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。 解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张) 例 4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同? 点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况: 解借球有6种情况,看做6个抽屉, 所以至少要来7名学生借球,才能保证。 例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个数,其中较大的数是较小数的倍数?

相关文档