文档库 最新最全的文档下载
当前位置:文档库 › 第八章控制系统的状态空间分析

第八章控制系统的状态空间分析

第八章控制系统的状态空间分析
第八章控制系统的状态空间分析

第八章 控制系统的状态空间分析

一、状态空间的基本概念

1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。

2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻

这组变量的值())()()

(00201t x t x t x n 和0t t ≥时输入的时间函数)(t u ,则系

统在0t t ≥任何时刻())()()

(21t x t x t x n 的行为就可完全确定。

3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。

4. 状态空间 以状态变量())()()

(21t x t x t x n 为坐标的n 维空间。系统在某时

刻的状态,可用状态空间上的点来表示。

5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。

6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。

二、状态空间描述(状态空间表达式)

1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状

态空间描述一般用矩阵形式表示,对于线性定常连续系统有

?

?

?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x

(8-1)

对于线性定常离散系统有

??

?+=+=+)

()()()

()()1(k Du k Cx k y k Hu k Gx k x (8-2)

2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框

图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。

3. 状态空间描述的线性变换及规范化(标准型)

系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

三、传递函数矩阵及其实现

1. 传递矩阵)(s G :

多输入多输出系统的输出向量的拉氏变换与输入向量的拉氏变换之间的传递关系,称为传递矩阵)(s G ,即

)

()

()(s U s Y s G =

(8-3) 式中:)(s U ——系统的输入向量

)(s Y ——系统的输出向量

传递函数矩阵与多输入多输出系统状态空间描述的关系是:

D B A I C G +-=-1)()(s s

(8-4)

上式中的A ,B ,C ,D 即为状态空间描述{}D C,B,A,中的矩阵A,B,C,D 。

2. 传递矩阵)(s G 的实现:已知系统的传递函数矩阵)(s G ,寻找一个状态空间描述

{}D C,B,A,,并满足式(8-4),则称{}D C,B,A,为)(s G 的一个实现。当系统{}D C,B,A,的阶数等于传递函数矩阵)(s G 的阶数时,称该系统{}D C,B,A,为

)(s G 的最小实现。

传递函数矩阵的实现并不唯一。实现的常用标准形式有:可控标准形实现,可观标准形实现、对角型实现和约当型实现等。

四、线性定常连续系统状态方程的求解

1. 状态转移矩阵)(t φ(矩阵指数函数At e )及其性质。

2. 计算状态转移矩阵)(t φ的方法 1) 级数展开法

++++

+=n n At t A k t A At I e !

1

!2122

(8-5)

2) 拉氏变换法

[]1)()(--=A sI t -1L φ

(8-6)

3) 凯莱-哈密尔顿法(又称待定系统法)

∑-===1

)()(n k k k At

A t e

t βφ

(8-7)

当矩阵A 的特征值i s 互异时,)(t k β可由下式确定:

???????

?

??????????????????

??=????????????----t s t s t s n n n n n n n n e e e s s s s s s s s s t t t 211212

22211211110111)()()(βββ

(8-8)

当矩阵A 具有m 重特征值1s 时,待定系数)m-, ,, (i t i 13210 )( =β,由下式确定(其它相异特征值按式(8-8)处理)。

??????

??

?

???????????-???????????????

???

??---=?????

???????-----t s n t s t s t

s n n n n e n t e

t e t e s n n s n s t t t 1111)!1(!2!

11000!2)2)(1(110!1)1(101)()()(1231211

1

110

βββ (8-9)

4) 希尔维斯特(Sylvester )法

∏∑≠==--==n k

i i i

k i n

k t s At

s s I s A e e t k 11)(φ (8-10)

式中:矩阵的特征值-=),2,1(n k s k I —单位阵

当系统矩阵A 的n 个特征值互异时,用希尔维斯特方法求)(t φ最为简便。 1. 性定常连续系统状态方程求解

1) 齐次方程 )()(t Ax t x

= 的解 )0()()(x t t x φ=

(8-11)

2) 非齐次方程 )()()(t Bu t Ax t x

+= 的解 ?-+=t d Bu t x t t x 0

)()()0()()(τττφφ

(8-12)

4.线性定常连续系统的离散化

对式(8-1)表示的系统进行离散化,可导出如式(8-2)所表示的离散化状态空

间描述。其中,

?===T

T t Bd H t G 0)()(τ

τφφ (8-13)

5.离散系统状态方程求解 1) 递推法

),, (k i Hu G x G k x k i i k k

21 )()0()(1

1

1=+=∑-=--

(8-14)

2) Z 变换法

)()()0()()(11z HU G zI zX G zI z X ---+-=

(8-15)

五、线性定常连续系统的可控性与可观测性

1. 线性定常连续系统的可控性判断

[

]

n B A B A AB

B

rank n =-12

(8-16)

1) 当系统Bu AX X

+= 中的A 矩阵为对角阵且特征根互异时,输入矩阵B 中无全零行。

2) 当A 为约当阵且相同特征根分布在一个约当块内时,输入矩阵B 中约当块最

后一行对应的行中不全为零,且输入矩阵中与相异特征根对应的行不全为零。

3) B A sI 1)(--的行向量线性无关。 4) 单输入系统{}B A ,为可控标准型。

5) 单输入/单输出系统,当状态空间描述导出的传递函数没有零、极点对消时,

系统可控,可观测。 2.输出可控型判据

[

]

阵的行数)(C 1q D B

CA CAB CB rank n =-

(8-17)

1) 状态可控性与输出可控性是两个不同的概念,其间没有必然的联系。单输入/

单输出系统若输出不可控,则系统或不可控或不可观测。 3.线性定常连续系统的可观测型判据

[

]

n C A C A C rank T n T T

T T

=-1)(

(8-18)

1) 当系统的A 阵为对角阵且特征根互异时,输出矩阵C 无全零列。

2) 当系统的A 阵为约当阵且相同的特征值分布在一个约当块内时,输出矩阵中

与约当块最前一列对应的列不全为零,输出矩阵中与相异特征值对应的列不全为零。

3)

1)(--A sI C 的列向量线性无关。

4) 单输出系统{}C A ,为可观测标准型。

六、线性定常离散系统的可控性和可观测型判据

1. 可控性判据

[

]

n H G GH

H

rank n =-1

(8-19)

2. 可观测性判据

[

]

n C G C G C rank T n T T T T

=-1)(

(8-20)

七、线性定常系统的状态反馈与状态观测器

1. 状态反馈与状态反馈控制系统的极点配置 1) 状态反馈

状态反馈是将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入比较后形成控制率,作为受控系统的控制输入,即

)()()(t KX t r t u -=

(8-21)

式中:

参考输入-)(t r

控制输入

状态向量反馈系数向量

---)()(t u t X K

若受控系统的状态空间描述为

)

()()()()()(t Du t CX t y t Bu t AX t X

+=+= (8-22)

将式(8-21)代入式(8-22)可得

??

?+-=+-=)

()()()()()()()(t Dr t X DK C t y t Br t X BK A t X

(8-23)

上式的简化写法为{}D DK C B BK A ,,,--

2) 状态反馈控制系统的极点配置

极点配置是通过计算选择状态反馈阵K ,使得闭环控制系统

{}D DK C B BK A ,,,--的极点(即{}BK A -的特征值)正好处于所希望的

一组极点的位置上。即令

[]∏=-=--n

i i s BK A sI 1

)()(det λ

(8-24)

式中:),2,1(n i i =λ为希望的一组闭环极点。

a) 用状态反馈实现闭环极点任意配置的充分必要条件是受控系统的状态要

完全可控。状态反馈不改变系统的零点,只改变系统的极点。 b) 在引入状态反馈后,系统的可控性不会改变,但可观测性不一定与原系统

一致。

c) 对于单输入系统,只要系统可控,则必能通过状态反馈实现闭环极点的任

意配置,而且不影响系统零点的分布。 2.状态观测器及其设计

1) 状态观测器:应用状态反馈涉及状态反馈控制系统,除了受控系统的状态要完

全可控外,还要求所有的状态变量是可以量测的。当系统的状态变量不能全部量测到时,实现完全状态反馈就会遇到困难,因此提出了用状态观测器来重构系统的全部状态。故状态观测器又称状态估计器。 2) 状态观测器的设计

设计状态观测器的方框图如图1.8-1的虚框所示。

从图1.8-1可以求出状态观测器的状态方程和输出方程

图1.8-1

X C y

Gy Bu X GC A Bu X C y G X

A Bu y y G X A X

???)( )?(? )?(??=++-=+-+=+-+=

状态观测器的反馈矩阵G 可由下式求出

[]∏=-=--n

i i s GC A sI 1

)()(det λ

(8-26)

式中:),2,1(n i i =λ为一组希望的,可任意配置的极点,它决定了状态误差衰减的速率。

3) 状态观测器存在的基本条件 a) 原系统{}C B A ,,完全可观测。

b) 观测器状态方程所对应的状态矩阵)(GC A -的所有特征根具有负实部。

分离定理:若原系统{}C B A ,,可控可观测,当用状态观测器估计全部状态再形成全状态反馈时,系统的极点配置和观测器设计可分别独立进行。观测器的设计不影响配置好的系统极

点,状态反馈也不影响观测器的收敛性。

(8-24) (8-25)

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合 第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。 随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。 (1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。 (2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。 本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。 8.1 控制系统的状态空间描述 8.1.1 系统数学描述的两种基本方法 统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

线性系统状态空间分析报告与运动解

【实验地点】课外(宿舍) 【实验目的】 1、学会利用MATLAB 实现离散系统传递函数模型的生成 2、学会利用MATLAB 将连续系统离散化 【实验设备与软件】 1、MATLAB/Simulink 数值分析软件 2、计算机一台 【实验原理】 1、求矩阵特征值和特征向量命令格式[V J]=eig (A ) Cv=eig(A) 说明:V 特征向量,J 是Jordan 型,cv 是特征值列向量 2、求运动的方法 (1)利用Laplace 逆变换----适合于连续/离散线性系统 采用ilaplace/iztrans 对传递函数求逆,这种方法一般是零输入情况下求响应。 (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统 对连续定常系统有: 假设初始时刻为零,LTI 系统的解析解为dt Bu e e x e t x t At At At ??+=0 )()0()(τ。若u (t )是单 位阶跃输入,则上述解可写成dtBu e e x e t x t At At At ? ?+=0 )()0()(τ。进一步简化为: Bu A Bu A x e t x At 11))0(()(---+= 对离散线性定常系统有: ∑---+ =1 1 )()0()(k i k k i Hu G x G k x

(3)状态方程的数值分析方法----适合于连续线性系统和非线性系统 采用直接数值积分很容易的处理各种定常/时变和线性/非线性系统。有很多数值积分方法,其中有一类预测-修正数值积分方法+自适应步长调整的算法比较有效。在MATLAB/Simulink 中包含的多种有效的、适用于不同类型的ODE 求解算法,典型的是Runge-Ktuta 算法,其通常使用如下的函数格式: [t,x]=ode45(odefun,[ti,tf],x0,options)----采用四阶、五阶Runge-Ktuta 算法 [t,x]=ode23(odefun,[ti,tf],x0,options)----采用二阶、三阶Runge-Ktuta 算法 说明:a.这两个函数是求解非刚性常微分方程的函数。 b.参数options 为积分的误差设置,取值为相对误差‘reltol ’和绝对误差‘abstol ’;[ti,tf]求解的时间围;x0是初值是初值向量;[t,x]是解。 (4)利用CotrolToolBox 的离散化求解函数----适合于TLI 系统 用step ()/impulse()函数求取阶跃输入/冲激输入时系统的状态响应: 当系统G 是连续的情况下: 调用[y,t,x]=step/impulse(G )会自动对连续系统G 选取采样时间围和周期; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)由用户自己定义对连续系统G 的样时间围和周期; 当系统G 是离散的情况下: 调用[y,t,x]=step/impulse(G )会按离散系统G 给出的采样周期计算; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)是Ts 必须与离散系统G 的采样时间围和周期一致。 另外lsim()函数调用格式:[y,x,t]=lsim(G,u,ti,TS,tf,x0) 零输入响应调用函数initial (),格式:[y,x,t]=(G,x0) (5)利用simulink 环境求取响应----适用于所有系统求取响应 使用simulink 求取线性或非线性系统的响应,调用格式如下: [t,x,y]=sim(‘XX.mdl ’,ti:Ts:tf,options,u) 【实验容】 已知线性系统:]) (201)() (2 10)(404040202119201921)(t x t y t u t x t x +-----? 已知线性系统 1、利用Matlab 求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

答案 控制系统的状态空间描述 习题解答

第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 3 x 2 x 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α& ②: 3222x x x +=α&③:u x x +=333α& 输出y 为1y x du =+,得 1112223331000100 1x a x x a x u x a x ?? ?????? ????????=+???????????????????????? &&& []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++&&&&&& ;(2) u u y y -=+&&&&&&32; (3) u u y y y y 75532+=+++&&&&&&&&& 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =&,3y x =&&,则有:

1223 31231 543x x x x x x x x u y x =??=?? =---+??=?&&& 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? &&& (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 3222332()3()()() 11()12 23()232 s Y s sY s s U s U s s Y s s U s s s s s +=---==++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????-?? ?? &&& 123110 2 2x y x x ?????? =- ?????????? (3) 解 采用拉氏变换法求取状态空间表达式。对微分方程(3)在零初试条件 下取拉氏变换得: 323()2()3()5()5()7()s Y s s Y s sY s Y s s U s U s +++=+

实验25线性系统状态空间分析和运动解

广西大学实验报告纸 【实验时间】2014年06月15日 【实验地点】(课外) 【实验目的】 1、掌握线性系统状态空间的标准型、解及其模型转换。 【实验设备与软件】 1、MATLAB数值分析软件 【实验原理】 Matlab提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有 ①、阶跃响应函数step()可用于计算在单位阶跃输入和零初始状态(条件)下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 step(sys,t) [y,t] = step(sys,t) [y,t,x] = step(sys,t) ②、脉冲激励下的仿真函数impulse()可用于计算在脉冲刺激输入下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 impulse(sys,t) [y,t] = impulse(sys,t) [y,t,x] = impulse(sys,t) ③、任意输入激励下的仿真函数lsim()可用于计算在给定的输入信号序列(输入信号函数的采样值)下传递函数模型的输出响应,其主要调用格式为 lsim(sys,u,t,x0) [y,t,x] = lsim(sys,u,t,x0) 【实验内容、方法、过程与分析】 已知线性系统 1、利用Matlab求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。 状态响应曲线: A=[-21 19 -20;19 -21 20;40 -40 -40]; B=[0;1;2]; C=[1 0 2]; D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵 X0=[0;0;0]; % 输入初始状态 sys=ss(A,B,C,D); %构造传递函数 [y,x,t]=step(sys); % 绘以时间为横坐标的状态响应曲线图 plot(t,x); grid;

(整理)控制系统的状态空间模型

第一章控制系统的状态空间模型 1.1 引言 工程系统正朝着更加复杂的方向发展,这主要是由于复杂的任务和高精度的要求所引起的。一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合,可能是时变的。由于需要满足控制系统性能提出的日益严格的要求,系统的复杂程度越来越大,为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算,并且要求能够方便地用大型计算机对系统进行处理。从这个观点来看,状态空间法对于系统分析是最适宜的。大约从1960年升始发展起来。这种新方法是建立在状态概念之上的。状态本身并不是一个新概念,在很长一段时间内,它已经存在于古典动力学和其他一些领域中。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。 本课程将主要涉及控制系统的基于状态空间的描述、分析与设计。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用MA TLAB进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的分析方法。第三章将给出系统的稳定性分析。第四章将给出几种主要的设计方法。 本章1.1节为控制系统状态空间分析的引言。1.2节介绍状态空间描述1.3节讨论动态系统的状态空间表达式。1.4状态空间表达式的标准形式。1.5 介绍系统矩阵的特征值基本性质.1.6讨论用MATLAB进行系统模型的转换问题。 1.2控制系统的状态空间描述 状态空间描述是60年代初,将力学中的相空间法引入到控制系统的研究中而形成的描述系统的方法,它是时域中最详细的描述方法。 特点:1.给出了系统的内部结构信息. 2.形式上简洁,便于用数字计算机计算. 1.2.1 状态的基本概念 在介绍现代控制理论之前,我们需要定义状态、状态变量、状态向量和状态空间。

控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n 和0t t ≥时输入的时间函数)(t u , 则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。 4. 状态空间 以状态变量())()() (21t x t x t x n 为坐标的n 维空间。 系统在某时刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

线性系统的状态空间分析与综合

第九章线性系统的状态空间分析与综合 一、教学目的与要求: 通过本章内容的学习,使学生建立起状态变量和状态空间的概念,掌握线性定常系统状态空间模型的建立方法,状态空间表达式的线性变换,状态完全能控或状态完全能观测的定义,及其多种判据方法,状态转移矩阵的求法,传递函数矩阵与状态空间表达式的关系。 二、授课主要内容: 1.线性系统的状态空间描述 2.线性系统的可控性与可观测性 3.线性定常系统的状态反馈与状态观测器 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学) 1.重点掌握线性定常系统状态空间模型的建立方法与其他数学描述(微分方程、 传递函数矩阵)之间的关系。 2.掌握采用状态空间表述的系统运动分析方法,状态转移矩阵的概念和求解。 3.掌握系统基本性质——能控性和能观测性的定义、有关判据及两种性质之间 的对偶性。 4.理解状态空间表达式在线性变换下的性质,对于完全能控或能观测系统,构 造能控、能观测标准形的线性变换方法,对于不完全能控或不完全能观测系统,基于能控性或能观测性的结构分解方法。 5.掌握单变量系统的状态反馈极点配置和全维状态观测器设计方法,理解分离 定理,带状态观测器的状态反馈控制系统的设计。 重点掌握线性系统的状态空间描述和求解,线性系统的可控性与可观测性及状态反馈与状态观测器。 四、主要外语词汇 线性系统 linear system 状态空间 state space 状态方程 state equation

状态向量 state vector 传递函数矩阵 translation function matrix 状态转换矩阵 state-transition matrix 可观测标准形 observational standard model 可控标准形 manipulative standard model 李亚普诺夫方程Lyaponov equation 状态观测器 state observation machine 对偶原理 principle of duality 五、辅助教学情况(见课件) 六、复习思考题 1.什么是系统的状态空间模型?状态空间模型中的状态变量、输入变量、输出变量各指什么? 2.通过机理分析法建立系统状态空间模型的主要步骤有哪些? 3.何为多变量系统?如何用传递矩阵来描述多变量系统的动态特性? 在多变量系统中,环节串联、并联、反馈连接时,如何求取总的传递矩阵?4.试简述数学模型各种表达式之间的对应关系。 5.用非奇异矩阵P对状态方程式进行线性状态变换后,与原状态方程式之间存在什么关系? 6.试简述系统能控性与能观性两个概念的含义及意义。 7.试述能控性和能观性定义。 8.试述系统能控性和能观性常用判据。 9.何谓对偶系统和对偶原理? 10.什么是状态方程的线性变换? 11.试述系统状态方程规范型变换的条件、特点及变换的基本方法。 12.试述状态能控性与能观性和系统传递函数(阵)的关系。 七、参考教材(资料) 1.《自动控制原理与系统》上、下册清华大学吴麒等国防工业出版社

第八章 应力状态和强度理论

第八章 应力状态和强度理论 8.1 图示矩形截面简支梁中的1、2、3、4、5、6点所对应的单元体。 1: ;2: ;3: ; 4: ;5: ;6: 。 图8.1 ( C ) 8.2由A3钢制成的圆杆受力如图所示。与危险截面A 上a 、b 、c 、d 点分别对应的单元体应是a : ;b : ;c : ;d : 。 ( D ) ( C ) ( B ) ( A ) 8.3分别写出与图示平面应力状态单元体上1、2、3、4斜截面对应的方位角:1α: ;2α: ;3α: ;4α: 。 8.4在图示四个切应力中,切应力为负的是( )。 图8.4 ( D ) ( C ) ( B ) ( A ) x

8.5在图示单元体中,x σ: ;y σ: ;x τ: ;y τ: 。 8.6图示平面应力状态的单元体及其应力圆如图所示。在图(b )所示的应力圆上与ab 斜截面对应的点是 ,在图(c )所示的应力圆上与ac 斜截面对应的点是 。 ( c ) ( b ) x ( a ) 图8.6 8.7单元体及其应力圆分别如图(a )、(b )所示,试在应力圆上标出与ab 、bc 斜截面所对应的点。 ( a ) 图8.7 x 8.8平面应力状态的单元体及其应力圆如图所示。ef 斜截面上的正应力和切应力应是( )。 (A )与1D α对应,15MPa ασ=-,8.66MPa ατ= (B )与2D α对应,25MPa ασ=-,8.66MPa ατ= (C )与3D α对应,25MPa ασ=-,8.66MPa ατ=- (D )与4D α对应,15MPa ασ=-,8.66MPa ατ=- 8.9作出图示单向应力状态单元体的应力圆。利用应力圆得出图示α斜截面的应力为ασ= ,ατ= ,以及max τ= ,max τ的作用面和x x

控制系统状态空间分析的 MATLAB 设计

《控制系统状态空间分析的MATLAB 设计》 摘要 线性系统理论主要研究线性系统状态的运动规律和改变这些规律的可能性与实施方法;它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。本文说明,线性变换不改变系统的传递函数,基于状态空间的极点配置不需要附加矫正装置,是改变系统指标的简单可行的重要技术措施;全维状态观测器与降维观测器不影响系统的输出响应。 关键词:状态反馈、极点配置、全维状态观测器、降维观测器 前言 线性系统理论是现代控制理论的基础,主要研究线性系统状态的运动规律 和改变这些规律的可能性与实施方法;建立和揭示系统结构、参数、行为和性能之间的关系。它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。 该报告结合以线性定常系统作为研究对象,分析控制系统动态方程,系统 可控标准型,线性变换传递函数及其不变性,系统可控性与可观测性。系统状态观测器及降维观测器对系统的阶跃响应的影响,并分别绘制模型,及其系统阶跃响应的仿真。 正文 1. 已知系统动态方程: x?=[?0.40?0.01100?1.49.8?0.02]x +[6.309.8]u y =[0 1]x 2. 设计内容及要求:

验证线性变换传递函数不变性,适当配置闭环适当配置系统闭环极点,使 σ%<15%、t s <4s ,以及当系统闭环极点为λ1,2=-3±j4时设计系统的降维状态观测器也使σ%<15%、t s <4s ,并绘制带反馈增益矩阵K 的降维状态观测器及其系统仿真。 3. 系统设计: 1)求系统可控标准型动态方程; >> A1=[-0.4 0 -0.01;1 0 0;-1.4 9.8 -0.02]; >> B1=[6.3;0;9.8]; >> C1=[0 0 1]; >> D1=0; >> G1=ss(A1,B1,C1,D1); >> n=size(G1.a); >> Qc=ctrb(A1,B1); >> pc1=[0 0 1]*inv(Qc); >> Pc=inv([pc1;pc1*A1;pc1*A1*A1]); >> G2 = ss2ss(G1,inv(Pc)); >> Gtf=tf(G2); 程序运行结果知n=3,原系统是可控的且可控标准型为: x?=[0 1 00 01?0.0980.006 ?0.42]x?+[001 ]u y ?=[61.74 ?4.99.8]x? 传递函数为: G (s )=9.8s 2?4.9s+61074 s 3+0.42s 2?0.006s+0.098 2)计算系统的单位阶跃响应 >> hold on >> grid on;hold on; >> step(G1,t,'b-.') >> step(Gtf,t,'r--')

第九章 线性系统的状态空间分析与综合习题

第九章 线性系统的状态空间分析与综合 9-1 已知电枢控制的直流司服电机的微分方程组及传递函数为 b a a a a a E t d di L i R u ++=,t d d K E m b b θ=,a m m i C M =,t d d f t d d J M m m m m m θθ+=2 2; )] ()([)()(2 m b m a a m m a m a m a m C K f R s R J f L s J L s C s U s ++++=Θ。 ⑴ 设状态变量m x θ=1,m x θ&=2,m x θ&&=3,输出量m y θ=,试建立其动态方程; ⑵ 设状态变量a i x =1,m x θ=2,m x θ&=3,输出量m y θ=,试建立其动态方程; ⑶ 设x T x =,确定两组状态变量间的变换矩阵T 。 解:⑴ 由传递函数得 a m a m m a m b m a m a u C x R J f L x C K f R x J L ++-+-=323)()(&,动态方程为 []x y u x x x x x x 001100010001032121321=??????????+????????????????????--=??????????αα&&&,其中)/()()/()()/(21m a a m m a m a m b m a m a a m J L R J f L J L C K f R J L u C u +=+==αα; ⑵ 由微分方程得 3 133 2311x f x C x J x x u x K x R x L m m m a b a a -==---=&&&,即 []x y u x x x a a a a x x x a 0200010100032133311311321=???? ? ?????+?????????????????? ??=??????????&&&,其中 m m m m a b a a J f a J C a L K a L R a ////33311311-==-=-=; ⑶ 由两组状态变量的定义,直接得到???? ? ???????????????=??????????3213331 321010001 0x x x a a x x x 。 9-2 设系统的微分方程为 u x x x =++23&&& 其中u 为输入量,x 为输出量。 ⑴ 设状态变量x x =1,x x &=2,试列写动态方程; ⑵ 设状态变换211x x x +=,2122x x x --=,试确定变换矩阵T 及变换后的动态方程。 解:⑴ u x x x x ??????+????????????--=??????1032102121&&,[]?? ????=2101x x y ; ⑵ ??????=??????2121x x T x x ,??????--=2111T ;?? ????--=-11121 T ;AT T A 1-=,B T B 1-=,CT C =; 得,? ?????--=2111T ;u x x x x ?? ????-+????????????-=??????1110012121&&,[]??????=2111x x y 。 9-3 设系统的微分方程为 u y y y y 66116=+++&&&&&& 其中u 、y 分别系统为输入、输出量。试列写可控标准型(即A 为友矩阵)及可观标准型(即A 为友矩 阵转置)状态空间表达式,并画出状态变量图。

线性系统的状态空间描述

第一章线性系统的状态空间描述 1.内容 系统的状态空间描述 化输入—输出描述为状态空间描述 由状态空间描述导出传递函数矩阵 线性系统的坐标转换 组合系统的状态空间方程与传递函数矩阵 2.基本概念 系统的状态和状态变量 状态:完全描述系统时域行为的一个最小变量组 状态变量:构成系统状态的变量 状态向量 设系统状态变量为X i(t),X2(t)厂,X n(t)写成向量形式称为状态向量,记为 _X i (t) x(t)= _X n(t) 状态空间 状态空间:以状态变量为坐标轴构成的n维空间 状态轨迹:状态变量随时间推移而变化,在状态空间中形成的一条

轨迹。

3. 状态空间表达式 设系统r 个输入变量:U i (t ),u 2(t )^ ,u r (t ) m 个输出:yQM), ,y m (t) n 个状态变量:X i (t),X 2(t), ,X n (t) 例:图示RLC 电路,建立状态空间描述 i L C 电容C 和电感L 两个独立储能元件,有两个状态变量, 方程为 如图中所注, L di L (t) dt Ri L (t) U c (t) =u(t) C 沁 “L (t) dt X i (t)二 L(t), X 2(t)二 U c (t) 二 LX i (t) RX i (t) X 2(t)二 u(t) Cx (t)二 X (t) N(t) - R/L 殳⑴门1/C 0 匚X 2(— O u(t) U c

输出方程 一般定义 状态方程:状态变量与输入变量之间的关系 dX i (t) dt = X i (t)二 f i 〔X i (t),X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);tl dX 2(t) dt = X 2(t)二 f 2'X i (t),X 2(t)^ ,X n (t);U i (t),U 2(t), ,U r (t);t 】 dX n (t) dt 二 X n (t)二 f n 〔X i (t),X 2(t), ^⑴小⑴心⑴,,U 「(t);t 】 用向量表示,得到一阶的向量微分方程 x(t)二 f 'X(t),u(t), t 1 其中 X i (t) U ](t) fQ) “、 X 2(t) - U 2(t) . f 2(?)?Qn X(t) - c R ,u(t)戶;c R , f (?) ^^ : c R N(t) 一 JU r (t) 一 -f n (叽 输出方程:系统输出变量与状态变量、输入变量之间的关系,即 %(t)二 g i X i (t),X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);t ] y 2(t)二 g 2 X i (t), X 2(t), ,X n (t);U i (t),U 2(t), ,U r (t);t 〔 y(t)二 %(t)二 1 01 X i (t) 殳(t).

《自动控制原理》第九章 线性系统的状态空间分析与综合

第九章 线性系统的状态空间分析与综合 在第一章至第七章中,我们曾详细讲解了经典线性系统理论以及用其设计控制系统的方法。可以看到,经典线性理论的数学基础是拉普拉斯变换和z 变换,系统的基本数学模型是线性定常高阶微分方程、线性常系数差分方程、传递函数和脉冲传递函数,主要的分析和综合方法是时域法、根轨迹法和频域法,分析的主要内容是系统运动的稳定性。经典线性系统理论对于单输入-单输出线性定常系统的分析和综合是比较有效的,但其显著的缺点是只能揭示输入-输出间的外部特性,难以揭示系统内部的结构特性,也难以有效处理多输入-多输出系统。 在50年代蓬勃兴起的航天技术的推动下,在1960年前后开始了从经典控制理论到现代控制理论的过渡,其中一个重要标志就是卡尔曼系统地将状态空间概念引入到控制理论中来。现代控制理论正是在引入状态和状态空间概念的基础上发展起来的。 在现代控制理论的发展中,线性系统理论首先得到研究和发展,已形成较为完整成熟的理论。现代控制理论中的许多分支,如最优控制、最优估计与滤波、系统辨识、随机控制、自适应控制等,均以线性系统理论为基础;非线性系统理论、大系统理论等,也都不同程度地受到了线性系统理论的概念、方法和结果的影响和推动。 现代控制理论中的线性系统理论运用状态空间法描述输入-状态-输出诸变量间的因果关系,不但反映了系统的输入—输出外部特性,而且揭示了系统内部的结构特性,是一种既适用于单输入--单输出系统又适用于多输入—多输出系统,既可用于线性定常系统又可用于线性时变系统的有效分析和综合方法。 在线性系统理论中,根据所采用的数学工具及系统描述方法的不同,又出现了一些平行的分支,目前主要有线性系统的状态空间法、线性系统的几何理论、线性系统的代数理论、线性系统的多变量频域方法等。由于状态空间法是线性系统理论中最重要和影响最广的分支,加之受篇幅限制,所以本章只介绍线性系统的状态空间法。 9-1 线性系统的状态空间描述 1. 系统数学描述的两种基本类型 这里所谓的系统是指由一些相互制约的部分构成的整体,它可能是一个由反馈闭合的整体,也可能是某一控制装置或受控对象。本章中所研究的系统均假定具有若干输入端和输出端,如图9-1所示。图中方块以外的部分为系统环境,环境对系统的作用为系统输入,系统对环境的作用为系统输出;二者分别用向量12[,,...,] T p u u u u =和 12[,,...,] T q y y y y =表示,它们均为系统的外部变量。描述系统内部每个时刻所处状况的

第八章 应力状态和强度理论

建 筑 力 学 刘国华 阚小妹主编 电子工业出版社

第八章应力状态和强度理论 【知识目标】 ●了解平面及空间应力状态的概念 ●熟悉平面应力状态的分析方法 ●熟悉空间应力状态最大剪应力的大小及分布 ●掌握强度理论的概念及其适用范围 【能力目标】 ●能熟练运用解析法和应力圆法求解一点处的应力状态 ●能求解空间应力状态下一点处的最大剪应力 ●能写出四个强度理论的相当应力及强度条件 ●能正确选择强度理论对构件危险点处进行强度校核 第一节平面应力状态下的应力分析 一、平面应力状态的概念 由构件的应力分析可知,在受力构件的同一截面上不同点的应力是不同的,一般都既有正应力,又有切应力(如对称弯曲中,构件横截面上距中性轴为某一距离的任一点处)。受力构件内一点处不同方位截面上应力的集合,称为一点处的应力状态。 为了研究受力构件内某一点处的应力状态,可以围绕该点取出一个单元体。例如,研究图8—1(a)所示矩形截面悬臂梁内A点处的应力状态,可用三对相互垂直的平面,围绕 图8—1 若单元体有一对平面上的应力等于零,即不等于零的应力分量均处于同一坐标平面内,则称为二向或平面应力状态。如受扭圆轴除轴线以外各点处及横力弯曲梁上下边缘以外各点

处均为平面应力状态。平面应力状态的普遍形式如图8—2(a)所示,即在其它两对平面上分别有正应力和切应力(σσxx,ττxx和σσyy,ττyy)。现研究在普遍形式的平面应力状态下,根据单元体各面上已知的应力分量来确定其任一斜截面上的未知应力分量,并从而确定该点处的最大正应力及其所在截面的方位。 二、解析法 (一)斜截面上的应力 已知一平面应力状态单元体上的应力为σσxx,ττxx和σσyy,ττyy,如图8—2(a)所示。如前所述,由于其前、后两平面上没有应力,可将该单元体用平面图形来表示(图8—2(b))。为求该单元体与前、后两平面垂直的任一斜截面上的应力,可应用截面法。设斜截面eeee的外法线nn与xx轴间的夹角(方位角)为α(图8—2(b)),简称为α截面,并规定从xx轴到外法线nn逆时针转向的方位角α为正值。截面上的应力分量用σσαα和τταα表示。 图8—2 利用截面法,沿斜截面eeee将单元体切成两部分,并取其左半部分eeeeee为研究对象。设斜截面eeee的面积为dA,则截面eeee和eeee的面积分别为ddddddddddαα和ddddddss nnαα。这样,微体eeeeee的受力如图8—2(c)所示,由该微体沿斜截面法向和切向的平衡方程,即∑FF nn=0和∑FF tt=0可得 σσααdddd+(ττxx ddddddddddαα)ddss nnαα?(σσxx ddddddddddαα)ddddddαα+ ?ττyy ddddddss nnαα?ddddddαα??σσyy ddddddss nnαα?ddss nnαα=0 ττααdddd?(ττxx ddddddddddαα)ddddddαα?(σσxx ddddddddddαα)ddss nnαα+ ?ττyy ddddddss nnαα?ddss nnαα+?σσyy ddddddss nnαα?ddddddαα=0 由切应力互等定理可知,ττxx和ττyy的数值相等(其指向已表示在图8—2(c)中)。由此可得任一斜截面(α截面)上的应力分量为 σσαα=σσxx+σσyy2+σσxx?σσyy2dddddd2αα?ττxx ddss nn2αα (8—1)

材料力学第八章复习题

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b ) 所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。 2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下 列四种答案: (A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ; (D )2/ττ-=AC ,2/3τσ=AC ; 正确答案是 。 3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分 必要条件,有下列四种答案: (A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ; (C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。 C τ (a) (b)

4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结 论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,() 3 /16d m πσα-=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确; 正确答案是 。 6.广义虎克定律适用范围,有下列四种答案: (A )脆性材料; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。 τ (a) (b) (c) m A C

第八章应力状态强度理论

第八章 应力状态 强度理论 1 基本概念及知识要点 1.1 基本概念 点的应力状态、 应力圆、 主平面、 主应力、 主方向、 最大剪应力。 以上概念是进行应力应变分析以及强度计算的基础,应准确掌握和理解这些基本概念。 1.2 二向应力状态的解析法与图解法 实际工程中的许多问题,可以简化成二向应力状态问题,建议熟练掌握二向应力状态解析法和图解法。在学习该知识点时,应注意以下几点: (1) 单元体平衡,则单元体中任取出的一部分在所有力的作用下也平衡; (2) 过一点相互垂直两平面上有 y x σσσσαα+=90++ 90+ααττ-= 主应力和最大剪应力间 2 min max min max σστ-± = 01045±αα= 请注意理解以上各式所代表的物理意义。 (3) 主要公式:任意斜截面应力、主应力、主平面、最大剪应力及其作用平面,详见教材。上述公式建议熟记。 (4) 应用图解法时注意以下对应关系 应力:圆上一点,体上一面;直径两端,垂直两面。 夹角:圆上半径,体上法线;转向一致,转角两倍。 1.3 三向应力状态的最大剪应力 无论是三向应力状态,还是做为特例的二向应力状态或单向应力状态,都是用如下公式计算最大剪应力 2 3 1max σστ-= 在二向应力状态下,垂直于主应力为零的主平面的那一组平面中,剪应力的最大值,称为面内最大剪应力。可用公式 2 2 min max 2xy y x τσστ+??? ? ? ?-±=计算。 1.4 广义胡克定律 在比例极限范围内,变形非常小。线应变只与正应力有关,与剪应力无关;剪应变只与剪应力有关,与正应力无关。换言之,正应力与剪应力、线应变与剪应变,彼此间互不影响。 1.5 常用的四种强度理论及其应用

自动控制原理第八章 线性系统的状态空间分析与综合习题及解答

第八章 线性系统的状态空间分析与综合 习题及解答 8-1 已知电枢控制的直流伺服电机的微分方程组及传递函数 b a a a a a E dt di L i R U ++=+ dt d K E m b b θ= a m m i C M = dt d f dt d J M m m m m m θθ+=22 ) ()([)()(2m b m a a m m a m a m a m C K f R s R J f L s J L s C s U s ++++=Θ ⑴设状态变量m m x θ=1,m x θ&=2,θ&&=3 x 及输出量m y θ=,试建立其动态方程; ⑵设状态变量m m a x x i x θθ&===321,,及 m y θ=,试建立其动态方程。 解: (1)由题意可知: ??? ????=======123121x y x x x x x m m m m θθθθ&&&&&, 由已知 ??? ????+===++=m m m m m a m m m b b a a a a a f J M i C M K E E i L i R U θθθ&&&&&& 可推导出 ?????????=++-+-===1 2333221x y U J L C x J L C K f R x J L R J L f x x x x x a m a m m a m b m a m a a m a m &&& 由上式,可列动态方程如下

=??????????321x x x &&&????????????? ?+-+-m a a m m a m a m b m a J L R J f L J L C K f R 0100010??????????321x x x +????????????????m a m J L C 00a U y =[]001??????????321x x x (2)由题意可知:,1a i x =m m m y x x θθθ===,,32& 可推导出 ???????????==-=-====+--=+--==2 3133231111x y x J f x J C J f i J C x x x U L x L K x L R U L L K i L R i x m m m m m m m m a m m m m a a a b a a a a m a b a a a a θθθθθ&&&&&&&&& 可列动态方程如下 []???? ??????=321010x x x y 由 ?? ???===m m m x x x θθθ&&&321和 ?????===m m a x x i x θθ&&321 得 ???? ?????-=-======3133221x J f x J C J f i J C x x x x x m m m m m m m a m m m m m θθθθ&&&& 由上式可得变换矩阵为 ?????? ????????-=m m m m J f J C T 0100010 8-2 设系统微分方程为 u y y y y 66116=+++&&&&&& 。式中,u 和y 分别为系统输入和输出量。试列写可控标准型(即矩阵A 为友矩阵)及可观测标准型(即矩阵A 为友矩阵转置)状态空间表达式,并画出状态变量图。 解: 由题意可得: 10110 010220330R K a b x L L L x a a a x x U a C f x x m m J J m m ????--??????????? ?????????=+??????????????????????-????????&&&

实验八 线性系统的状态空间分析

实验八 线性系统的状态空间分析 §8.1 用MATLAB 分析状态空间模型 1、状态空间模型的输入 线性定常系统状态空间模型 x Ax Bu y Cx Du =+=+& 将各系数矩阵按常规矩阵形式描述。 [][][]11 121120 10 1;;;n n n nn n n A a a a a a a B b b b C c c c D d ====?L L L ?L ?L ? 在MA TLAB 里,用函数SS()来建立状态空间模型 (,,,)sys ss A B C D =? 例8.1 已知某系统微分方程 22d d 375d d y y y u t t ++= 求该系统的状态空间模型。 解:将上述微分方程写成状态空间形式 0173A ??=??--??,01B ??=???? []50C =,0D = 调用MATLAB 函数SS(),执行如下程序 % MATLAB Program example 6.1.m A=[0 1;-7 -3]; B=[0;1]; C=[5 0]; D=0; sys=ss(A,B,C,D) 运行后得到如下结果 a = x1 x2 x1 0 1

x2 -7 -3 b = u1 x1 0 x2 1 c = x1 x2 y1 5 0 d = u1 y1 0 Continuous-time model. 2、状态空间模型与传递函数模型转换 状态空间模型用sys 表示,传递函数模型用G 表示。 G=tf(sys) sys=ss(G) 状态空间表达式向传递函数形式的转换 G=tf(sys) Or [num,den]=ss2tf(A,B,C,D) 多项式模型参数 [num,den]=ss2tf(A,B,C,D,iu) [z,p,k]=ss2zp(A,B,C,D,iu) 零、极点模型参数 iu 用于指定变换所需的输入量,iu 默认为单输入情况。 传递函数向状态空间表达式形式的转换 sys=ss(G) or [A,B,C,D]=tf2ss(num,den) [A,B,C,D]=zp2ss(z,p,k) 例 8.2 11122211220.560.050.03 1.140.2500.1101001x x u x x u y x y x -??????????=+??????????-????????????????=??????? ?????&& 试用矩阵组[a ,b ,c ,d]表示系统,并求出传递函数。

相关文档
相关文档 最新文档