文档库 最新最全的文档下载
当前位置:文档库 › 易拉罐工艺与模具

易拉罐工艺与模具

易拉罐工艺与模具
易拉罐工艺与模具

铝质易拉罐成形工艺及模具

铝质易拉罐成形工艺及模具

摘要:对罐体拉伸工序、变薄拉伸工序和底部成形工序进行了分析,并对与这些工序相关的模具在设计和制造中存在的若干关键性技术进行了研究。关键词:易拉罐;成形工艺;

模具;变薄拉伸

1 引言

铝质易拉罐在饮料包装容器中占有相当大的比重。易拉罐的制造融合了冶金、化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对众多制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化(light-weighting)为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。

2 罐体制造工艺和技术

2.1罐体制造工艺流程 CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。

在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最为关键,其工艺水平及模具设计制造水平的高低,

直接影响易拉罐的质量和生产成本。

2.2罐体制造工艺分析

(1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。

基于以上分析,确定拉伸工序选择的拉伸比m=36.55%,坯料直径Dp=140.20±0.0lmm,

杯直径Dc=88.95mm。

(2)罐体成形工序。

变薄拉伸工艺分析。典型的铝罐拉伸、变薄拉伸过程如图2所示,变薄拉伸过程中受力状况如图3所示。在拉伸过程中,集中在凹模口内锥形部分的金属是变形区,而传力区则为通过凹模后的筒壁及壳体底部。在变形区,材料处于轴向受拉、切向受压、径向受压的三向应力状态,金属在三向应力的作用下,晶粒细化,强度增加,伴有加工硬化的产生。在传力区,各部分材料受力状况是不相同的,其中位于凸模圆角区域的金属受力情况最为恶劣,其在轴向、切向两向受拉,径向受压,因而材料的减薄趋势严重,金属易从此处发生断裂,从而导致拉伸失败。比较变形区和传力区金属的应力状态可知:变薄拉伸工艺能否顺利进行主要取决于拉伸凸模圆角部位的金属所受拉应力的大小,当拉应力超过材料强度极限时就会引起断裂,否则拉伸工艺可以顺利进行。因此,减小拉伸过程中的拉应力成为保证拉伸顺利进行的

关键。

变薄拉伸拉伸比的选择为:再拉伸:25.7%,第1次变薄拉伸:20%~25%,第2次变薄拉伸:23%~28%,第3次变薄拉伸:35%~40%。

在成形过程中,影响金属内部所受拉应力大小的因素很多,其中凹模锥角。的取值直接关系到变形区金属的流动特性,进而影响拉伸所需成形力的大小,所以,其数值合理与否对工艺的实施有着重要影响。当α较小时,变形区的范围比较大,金属易于流动,网格的畸变小。随着α的增大,变形区的范围减小,金属的变形集中,流动阻力增大,网格歧变严重。而且,随着凹模锥角的增大,变形区材料的应变相应增加,这说明凹模锥角较大时,不仅金属的变形范围集中,而且变形量迅速上升,因而使得变形区金属的加工硬化现象加剧,导致金属内部的应力上升,从而对拉伸产生不利影响。另一方面,在α过于大或过小时都会引起拉伸力的增加,其原因在于:当α过大时,金属流动急剧,材料的加工硬化效应显著,并且随着锥角的增大,凹模锥面部分产生的阻碍金属流动的分力加大,因而所需拉伸力增加;当。过小时,虽然金属流动的转折小,但由于变形区金属与凹面的接触锥面长,锥面上总摩擦阻力大,因此网格畸变虽小,总拉伸力却增大。

由此可见,凹模锥角的合理确定应同时考虑变形区材料的变形特点以及模具与工件间的摩擦状况,凹模锥角合理范围的确定对拉伸工艺有着直接的影响。工艺试验表明,对于CCB-1A 型罐用铝材3104H19,其凹模锥角合理取值在α=5°~8°为宜。

底部成形工艺分析。罐底部成形发生在凸模行程的终点,采用的是反向再拉伸工艺。图4为罐底成形受力状况示意图,底部成形力主要取决于摩擦力的性质以及压边力的大小。通常,材料的厚度和强度是一对矛盾,材料愈薄,强度愈低,因此轻量化技术要求减少罐底直径及设计特殊的罐底形状。工艺试验表明,罐底沟外壁夹角若α1大于40°,将大大减小罐底耐压。考虑到金属的成形性,凸模圆弧R不能小于3倍的料厚。但R太大,将会减小强度。球面和罐底沟内壁圆弧R1,至少为3倍料厚,通常R1取4~5倍料厚。减小罐底沟内壁夹角α2,将增加强度,生产中大多数采用10°以下。

罐底部有两处失效点:一为底部球面;二为连接球面和侧壁的罐底部圆弧R。罐底球面的强度取决于以下几个因素:材料的弹性模量、底部直径、材料的强度、球面半径以及在底部成形时金属的变薄程度。罐底球面半径常用公式R球=d1/0.77确定,实际取R球=45.72mm

3模具设计与制造

3.1罐体拉伸模

罐体拉伸过程实际上是筒形件的拉伸过程,拉伸过程中,其材料的凸缘部分在压应力作用下易失稳,导致起皱,因此必须考虑设置防止起皱的压边装置。当材料通过凹模时,凹模圆角部分是一个过渡区,其变形较复杂,除了径向拉伸与切向压缩外,还受弯曲作用,因此凹模圆角选择尤为重要。材料通过凹模圆角后,处于拉伸状态,由于拉伸力来自凸模压力,是经过凸模圆角处传递的,凸模圆角处的材料变薄最严重,此处成为最易破裂的危险断面。

落料一拉伸组合模结构如图5所示。

(1)模具材料:凸、凹模均选择镶硬质合金的材料。

(2)变形量:在易拉罐行业内,一般采用拉伸比δ表示变形量,δn=(dn-1—dn)/

dn-1×100%,按此公式,计算如下:

首次拉伸取δ1=(d0—d1)/d0×100%=(140.2001—88.951)/140.2004×100%=36.6%。

再拉伸取δ2=(d1—d2)/d1×100%=(88.951—66.015)/88.951×100%=25.8%。一般要求2次总拉伸比δ≤64%,δ1≥δ2≥……≥δn,δ1≤40%。

(3)压边装置:采用波形压边圈,0.2—0.3MPa压缩空气作为动力源。

(4)拉伸模工作部参数:

圆角半径:拉伸凹模圆角半径rA取3.556mm,再拉伸凹模圆角半径rA取1.78mm。

拉伸凸模圆角半径rB取2.921mm,再拉伸凸模圆角半径取rB2.286mm。

间隙:

拉伸模凸、凹模单边间隙Z/2大,则摩擦小,能减少拉伸力,但间隙大,精度不易控制;

拉伸模凸、凹模单边间隙Z/2小,则摩擦大,增加拉伸力。

单边间隙Z/2可按以下公式计算:

Z/2=tmax+Kt

式中 tmax——最大料厚,取0.285+0.005mm

t——公称料厚,取0.285mm

K——系数,当t<0.4mm时,取0.08

则Z/2=0.290+0.08×0.285=0.313mm。

3.2变薄拉伸模易拉罐罐体成形实际上是将再拉伸和3道变薄拉伸组合在一起的组合

工序。现将变薄拉伸模的设计介绍如下:

(1)模具材料。凸模:基体材料为合金工具钢,凸模材料为M2,热处理硬度60~62HRC,

镀TiN。凹模(变薄拉伸环):基体材料为合金工具钢,模口材料为硬质合金(牌号为

VALENITEVCID-H.L.D或KE-84KENNAMETAL)。

(2)变形量。变薄拉伸比方的计算公式为:δ=(tn-tn-1)/tn×100%,其中tn、tn-1分别为n次及n—1次变薄拉伸后的零件侧面壁厚,计算得:δ1=(0.285—0.225)/0.285× 100%=21.05%;δ2=(0.225—0.170)/0.225×100%=24.44%;δ3=(0.170—0.106)/

0.170×100%=37.65%。

制罐工厂常常根据给定的材料厚度、罐体厚、薄壁要求、拉伸环和凸模尺寸、拉伸机精度等条件,编制拉伸环和凸模的匹配表供技术人员、模具维修人员和操作人员选配凸模和拉环。

(3)模具的工作部分参数。凸模:凸模圆弧R1.016±0.025mm,再拉伸凸模圆弧R2.286mm,罐底沟外侧壁圆弧R10.478±0.013mm。变薄拉伸环:凹模锥角α=5°,工作带宽度

h=0.38+0.25mm。

3.3罐底成形模

罐底成形模结构如图6所示。

罐底凸模材料选用合金工具钢Crl2MoV,热处理硬度60~64HRC,其轮廓形状应与罐型设计一致。底压边模材料选用合金工具钢Cr5MoV,热处理硬度58~60HRC,其轮廓形状应与凸

模相匹配。

4 结束语

(1)拉伸工序考虑的重要因素有:拉伸比、凸、凹模圆弧半径、凸、凹模间隙、铝材机械性能、润滑、作业参数。

(2)变薄拉伸工序中凹模锥角。的大小关系到变形区金属的流动性质、应力大小以及模具的受力情况,合理的取值范围为α=5°—8°。

(3)合适的罐型设计是轻量化技术能否实施的关键。研究表明,对于CCB-1A型罐,设计参数选择:底沟外壁夹角α1=32°,罐底沟内壁夹角α2=5°,凸模圆弧R=1.016mm,球面和罐底沟内壁圆弧R1=1.524mm,罐底球面半径R球=45.72mm,可以大大增加罐体强度。

<FONT color=#2c2cb1>不错,奖励金钱30.希望楼主再接再厉</FONT>

铝制易拉罐的发展

铝制易拉罐的发展 金属包装罐迄今已有70多年的历史。20世纪30年代初,美国就已经开始生产啤酒金属罐了,这种三片罐是用马口铁皮制作的,罐体上部呈圆锥状,最上面是冕状罐盖。其大体外形与玻璃瓶相差不太大,所以最初也是用玻璃瓶灌装线灌装的,直到上世纪50年代才有了专用灌装线。罐盖在50年代中期演变成平面形状,上世纪60年代又改进为铝制环形盖。 铝制饮料罐最早是在上世纪50年代末出现的,上世纪60年代初期二片DWI 罐正式问世。铝制易拉罐发展非常迅速,到本世纪末每年的消费量已有 1800多亿只,在世界金属罐总量(约4000亿只)上是数量最大的一类。用于制造铝罐的铝材消费量同样快速增长,1963年还近于零,1997年已达 360万吨,相当于全球各种铝材总用量的15%。 美国是世界铝饮料罐的最大生产国和消费国。美国铝罐使用数量1984年超过620亿只,1987年超过700亿只,1988年超过800亿只,1990年超过900亿只,1994年超过1000亿只。美国铝易拉罐主要用于包装饮料,如1992年饮料铝罐量为928亿只,占当年饮料罐总量 957亿只的97%,铁皮罐仅为29亿只、占3%。2001年美国啤酒和软饮料铝罐用量为近1000亿只,其中软饮料罐640亿只,啤酒罐330亿只。日本铝罐的产量已经连续多年增长,从1985年的30亿只分别增加到1987年的55亿只、1989年的81亿只、1991年的102亿只、1993年的 118亿只、1995年的159亿只和1997年的166亿只,铝罐的大部分是啤酒罐,如1997年为95亿只、占57%,碳酸饮料罐有35亿只、占 21%,其他饮料罐30亿只、占18%。从上世纪80年代中期以来,欧洲饮料罐市场一直呈现稳定增长之势。1990年,欧洲饮料罐消费量第一次超过200 亿只,1993年达250亿只,1995 年突破300亿只。1996年下降了2%,由上年的322亿只减为316亿只。1997年,欧洲饮料罐市场重又恢复了平稳增长,年增幅为5%,总消费量上升到335亿只,为历史最高水平。其中,清凉饮料罐185亿只、比上年增长5.1%,啤酒罐150亿只、比上年增长7%。欧洲饮料罐中铁皮罐和铝罐各约占一半。中南美洲的铝罐消费量也比较大,每年近200亿只。亚洲(日本除外)的铝罐年消费量也不下200亿只。中国铝易拉罐消费量现在每年有80多亿只。 数十年来,铝易拉罐的制造技术在不断改进。铝罐重量已经大为减少,上世纪60年代初期,每千只铝罐(包括罐身和罐盖)的重量达55镑(约合 25千克),上世纪70年代中期降至44.8镑(25千克),上世纪90年代后期又减到33镑(15千克),现已减为30镑以下,比40年前减少了近一半。1975年~1995年的20年间,1磅铝材制作的铝罐(容量为12盎司)的数量增加了35%。另据美国ALCOA公司的统计,每千只铝罐罐身所需要的铝材由1988年的25.8磅减少到1998年的22.5磅和2000年再减为22.3磅。美国制罐企业封缝机械和其他技

易拉罐的设计

易拉罐形状和尺寸的最优设计 一.问题重述 我们只要稍加留意就会发现销量很大的饮料 (例如饮料量为355毫升的可口可乐、青岛啤酒等)的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务: 1.取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。 2.设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 3.设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸 4.利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。 二、问题分析 在易拉罐设计的实际情况中,问题分析 在易拉罐设计的实际情况中,我们必须保证罐内的体积大于饮料的净含量(我们通常饮料的净含量为355ml而它实际的体积大约为365ml),同时考虑饮料对罐体各部分的应力,需确定罐盖、罐底和罐壁的厚度,在此情况下的最优是使得容积一定时,所用的材料最省(我们用所用材料的体积来衡量)。

在问题一中对于各个部分的数据可以直接测量测量如下数据如下表: 罐高123.7 罐柱内径61.29 上圆台高13.5 下圆台高7.7 罐盖内径58.17 罐底厚度0.29 罐盖厚度0.29 罐底拱高10.11 圆柱体高102.5 罐壁厚度0.135 问题二是对正圆柱体的易拉罐在容积一定时,以半径和高之比为衡量最优设计的标准; 问题三中,对比问题一中所测的数据,发现易拉罐罐盖、罐底的厚度是罐壁的2倍,因此我们在解决此问题是可以假设罐盖、罐底的两倍,再利用规划方法所求得的数据与测量数据进行比较,以及观察市场上正规厂家生产的碳酸和非碳酸饮料易拉罐的异同之处,做出关于易拉罐形状和尺寸的最优模型。 三、模型假设 (1)、根据薄壁圆筒的应力分析,假设易拉罐罐盖﹑罐底的厚度是罐壁的两倍; (2)、易拉罐的各接口处的材料忽略不计; (3)、易拉罐各部分所用的材料相同; (4)、单位体积材料的价格一定;

45钢力学性能

45钢: 特性 用中碳调质结构钢。该钢冷塑性一般,退火、正火比调质时要稍好,具有较高的强度和较好的切削加工性,经适当的热处理以后可获得一定的韧性、塑性和耐磨性,材料来源方便。适合于氢焊和氩弧焊,不太适合于气焊。焊前需预热,焊后应进行去应力退火。 正火可改善硬度小于160HBS毛坯的切削性能。该钢经调质处理后,其综合力学性能要优化于其他中碳结构钢,但该钢淬透性较低,水中临界淬透直径为12~17mm,水淬时有开裂倾向。当直径大于 80mm时,经调质或正火后,其力学性能相近,对中、小型模具零件进行调质处理后可获得较高的强度和韧性,而大型零件,则以正火处理为宜,所以,此钢通常在调质或正火状态下使用。 力学性能 正火:850 ;淬火:840 ;回火:600 ;抗拉强度:不小于600Mpa ;屈服强度:不小于355Mpa ;伸长率: 16[1] % ;收缩率:40% ;冲击功:39J ;钢材交货状态硬度[1]:热轧钢:≤229HB退火钢:≤197HB 成分 主要成分为Fe(铁元素),且含有以下少量元素:

C:0.42~0.50% Si:0.17~0.37% Mn:0.50~0.80% P:≤0.035% S:≤0.035% Cr:≤0.25% Ni:≤0.25% Cu:≤0.25%[1] 密度7.85g/cm3,弹性模量210GPa,泊松比0.269。 处理方法 热处理 推荐热处理温度:正火850,淬火840,回火600。 1. 45号钢淬火后没有回火之前,硬度大于HRC55(最高可达HRC62)为合格。 实际应用的最高硬度为HRC55(高频淬火HRC58)。 2.45号钢不要采用渗碳淬火的热处理工艺。 渗碳处理 一般用于表面耐磨、芯部耐冲击的重载零件,其耐磨性比调质+表面淬火高。其表面含碳量0.8--1.2%,芯部一般在0.1--0.25%(特殊情况下采用0.35%)。经热处理后,表面可以获得很高的硬度(HRC58--62),芯部硬度低,耐冲击。

铝质易拉罐成形工艺

铝质易拉罐成形工艺 铝质易拉罐在饮料包装中占有非常大的比重。但是,小小的一个易拉罐的制造却融合了冶金、化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对于众多地制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。 首先来说说罐体制造的工艺流程。CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。 在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最为关键,其工艺水平及模具设计制造水平的高低,将直接影响易拉罐的质量和生产成本。 然后进行罐体制造工艺分析。 (1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉 伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。基于以上分析,确定拉伸工序选择的拉伸比m=36.55%,坯料直径Dp=140.20±0.0lmm,杯直径Dc=88.95mm。 (2)罐体成形工序。变薄拉伸工艺分析。典型的铝罐拉伸、变薄拉伸过程如图2所示,在拉伸过程中,集中在凹模口内锥形部分的金属是变形区,而传力区则为通过凹模后的筒壁及壳体底部。在变形区,材料处于轴向受拉、切向受压、径向受压的三向应力状态,金属在三向应力的作用下,晶粒细化,强度增加,伴有加工硬化的产生。在传力区,各部分材料受力状况是不相同的,其中位于凸模圆角区域的金属受力情况最为恶劣,其在轴向、切向两向受拉,径向受压,因而材料的减薄趋势严重,金属易从此处发生断裂,从而导致拉伸失败。为防止拉伸时筒壁变薄破裂,所以在拉伸是选择分次拉伸,即第1次变薄拉伸:20%~25%,第2次变薄拉伸:23%~28%,第3次变薄拉伸:35%~40%。

全国数学建模竞赛易拉罐形状和尺寸的最优设计模型全国一等奖

易拉罐形状和尺寸的最优设计模型 (2006年获全国一等奖) 摘 要:本文主要考虑当容积一定时,如何设计易拉罐的形状和尺寸,使得所用材料最 省。首先对易拉罐进行测量,对问题二、问题三、问题四建立数学模型,并利用LINGO 软件结合所测的数据进行计算,得出最优易拉罐模型的设计。 模型一,对正圆柱体形状的易拉罐,当容积一定时,以材料体积最小为目标,建立 材料体积的函数关系式,并通过求二元函数条件极值得知,当圆柱高为直径两倍时,最 经济,并用容积为360 ml 进行验算,算得mm H 63.122=,mm R 58.30=与市场上净含量 为355ml 的测得的数据基本接近。 模型二,对上面部分为正圆台、下面部分为正圆柱的易拉罐同样在容积量一定时, 考虑所用材料最省,建立优化模型,并通过LINGO 软件仍用容积为360 ml 进行验算,算 得mm R 58.30=,mm r 33.291=,mm h 94.81=,mm h 8.1112=,高之和约为直径的两倍。 模型三,考虑到罐底承受的压力,根据力学上横梁支点的受力与拱桥设计的原理, 设计底部支架(环形)与一定弧度的拱面,同时利用黄金分割,将直径与高之比设为, 建立容积量一定时材料最省的优化模型,再将有关数据代入计算,得到结论,现行易拉 罐的设计从某种意义上不乏是最优设计。 关键词:优化模型 易拉罐 非线性规划 正圆柱 正圆台 一、问题重述 销量很大的饮料容器(即易拉罐)的形状和尺寸几乎都是一样的。这应该是某种意义 下的最优设计,而不是偶然。当然,对于单个的易拉罐来说,这种最优设计可以节省的 钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就 很可观了。 现针对以下问题,研究易拉罐的形状和尺寸的最优设计问题。 问题一:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验 证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说 明;如果数据不是测量得到的,那么必须注明出处。 问题二:设易拉罐是一个正圆柱体。什么是它的最优设计其结果是否可以合理地说明所 测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。 问题三:设易拉罐的中心纵断面如图1所示,即上面部分是一个正圆 台,下面部分是一个正圆柱。什么是它的最优设计其结果是否可以合理 地说明你们所测量的易拉罐的形状和尺寸。 问题四:利用所测量的易拉罐的洞察和想象力,做出关于易拉罐形状和 尺寸的最优设计。 同时,以做本题以及以前学习和实践数学建模的亲身体验,写一篇 短文(不超过1000字,论文中必须包括这篇短文),阐述什么图1 是数学建模、它的关键步骤,以及难点。 二、问题分析

模具的力学性能要求

1.1模具的力学性能要求 1.1.1.1编辑: 上传时间:2006-6-29 10:45:13 模具的力学性能要求--常规力学性能 模具材料的性能是由模具材料的成分和热处理后的组织所决定的。模具钢的基本组织是由马氏体基体以及在基体上分布着的碳化物和金属间化合物等构成。 模具钢的性能应该满足某种模具完成额定工作量所具备的性能,但因各类模具使用条件及所完成的额定工作量指标均不相同,故对模具性能要求也不同。又因为不同钢的化学成分和组织对各种性能的影响不同,即使同一牌号的钢也不可能同时获得各种性能的最佳值,一般某些性能的改善会损失其他的性能。因而,模具工作者常根据模具工作条件及工作定额要求选用模具钢及最佳处理工艺,使之达到主要性能最优,而其他性能损失最小的目的。 对各类模具钢提出的性能要求主要包括:硬度、强度、塑性和韧性等。 模具的力学性能要求--硬度 硬度表征了钢对变形和接触应力的抗力。测硬度的试样易于制备,车间、试验室一般都配备有硬度计,因此,硬度是很容易测定的一种性能,而且硬度与强度也有一定关系,可通过硬度强度换算关系得到材料硬度值。按硬度范围划定的模具类别,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于热作模具。

钢的硬度与成分和组织均有密切关系,通过热处理,可以获得很宽的硬度变化范围。如新型模具钢012Al和CG-2可分别采用低温回火处理后硬度为60~62HRC,采用高温回火处理后硬度为50~52HRC,因此可用来制作硬度要求不同的冷、热作模具。因而这类模具钢可称为冷作、热作兼用型模具钢。 模具钢中除马氏体基体外,还存在更高硬度的其他相,如碳化物、金属间化合物等。表l为常见碳化物及合金相的硬度值。 表1 各种相的硬度值 相硬度HV 铁素体约100 马氏体:ωC0.2% 约530 马氏体:ωC0.4% 约560 马氏体:ωC0.6% 约920 马氏体:ωC0.8% 约980 渗碳体(Fe 3C) 850~1100 氮化物1000~3000 金属间化合物500 模具钢的硬度主要取决于马氏体中溶解的碳量(或含氮量),马氏体中的含碳量 I I

易拉罐简略教程

易拉罐简略教程 在匆忙中写了此教程,可能会有些地方没有写得很细,请多谅解。此教程根据多数同学的要求,着重写了易拉罐拉环部分的制作过程,而对于易拉罐环口部分则没有写的太细致。在这里请允许我再啰嗦一下:PS只是一门工具请大家还是把学习的重点放在,光影、明暗、质感上。 导图片 步骤一: 1、新建一个A4大小分辨率为72像素的工作区域。 2、将图片直接拖放进工作区如:图1 1 步骤二:由于图片的分辨率比我们所建的工作区域要大,所以我们要将图片自由缩放。选择图层1,按住Shift+Alt不放再拖动鼠标实现等比缩放,调整其大小到合适的位置如:图2、图3

2

3 调明暗关系 步骤一: 按住Ctrl不放在图层1的缩略图中点一下鼠标左键,这样我们就把图层1中图片选中了(此方法也适用于复杂的多边形),点击新建图层。如:图4 4 步骤二: 点选渐变工具,在属性条中编辑渐变色(这里我们只用黑白两色来控制明暗关系),渐变色条如:图5 5 注释:如要减去一个色标,只需将色标往下拖放;增加色标,只需在渐变条的下方点击鼠标左键。 步骤三: 在图层2中的选框内从左到右的给矩形上渐变,如:图6

6 步骤四: 此时我们的渐变明暗与图片是相互分离的,如果我们要让渐变明暗赋予到图片上的话,我们还需要利用图层与图层之间的相互融合模式方法如:图7,将正常改为叠加,效果如:图 8。 7

8 步骤五: 为使图片的质感看上去更像金属色,我们将图层2再复制成2个图层(在图层2中鼠标右键点击,在所弹出的对话框中有复制图层选项,点击后即可复制所选图层),分别给图层做强光,不透明度为50和亮光,不透明度为30的图层融合。如:图9效果如:图10 9

最新易拉罐的优化设计知识分享

易拉罐形状和尺寸的最优设计 组员:邢登峰,张娜,刘梦云 摘要 研究易拉罐形状和尺寸的最优设计可以节约的资源是很可观的。 问题一,我们通过实际测量得出(355ml )易拉罐各部分的数据。 问题二,在假设易拉罐盖口厚度与其他部分厚度之比为3:1的条件下,建立易拉罐用料模型2()2(2)v s r rd r r ππ=+,由微积分方法求最优解, 结论:易拉罐高与直径之比2:1,用料最省; 在假定易拉罐高与直径2:1的条件下,将易拉罐材料设想为外体积减内体积,得用料模型: 2min (,) (,)0.0 0s r h g r h r h v s t r h π?=-=?>??>? 用微积分方法得最优解:易拉罐盖子厚度与其他部分厚度为3:1。

问题三,在易拉罐基本尺寸,高与直径之比2:1的条件下,将上面为正圆台的易拉罐用料优化设计,转化为正圆柱部分一定而研究此正圆台的用料优化设计。 模型 圆台面积 2 ()(s r r R r ππ=++用数学软件求得最优解r=1.467, h=1.93时,s=45.07最小。 结论:易拉罐总高:底直径=2:1,上下底之比=1:2,与实际比较分析了各种原因。 问题四,从重视外观美学要求(黄金分割),认为高与直径之比1:0.4更别致、美观。对这种比例的正圆柱体易拉罐作了实际优化分析。 另从美学及经济学的角度提出正四面柱体易拉罐的创新设想,分析了这样易拉罐的优缺点和尺寸优化设计。 最后写出了我们对数学建模的体会文章。

关键词:易拉罐最优设计数学建模 问题重述 在生活中我们会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等) 的饮料罐(即易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。 现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务: 1.取一个净含量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们认为验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。

模具技术要求

外发模具技术要求 为更好地满足模具使用厂家对模具制作技术方面的要求,进一步提高模具质量,规范生产节约质量成本,特制定本技术要求。质量部负责外发模具的质量检验,制造部协助质量部做好外发模具的质量控制。 一、模具外观要求 模具表面无油污、灰尘、无裂纹,无夹砂,模具外部标识牌齐全,并装在明显处。模具的固、移模气室壁应有加力筋。模具压边尺寸(宽不低于20mm,厚不低于22mm) 二、模具尺寸要求 整体模具外形尺寸:K1214尺寸1490*1300mm,后窗尺寸1400*1200mm; K1418尺寸1890*1500mm,后窗尺寸1780*1380mm。 后封板使用材质:铝合金型材(国标6061)。凸模厚度不低于12mm,凹模厚度不低于16mm。紧固后封板的螺丝,螺丝位置最大中心距为120-130mm。 三、模具吊环、外接口要求 模具使用吊环规格为M20,K1214整体模具要求4个,K1418整体模具要求4个。每个吊环必须用M20螺母锁紧,然后将吊环和螺母用焊机焊死。 蒸汽、水冷、排水口的数量及规格(固、移模分半)。1寸和1.5寸管古要求全丝或者两头带丝。 水冷管数量固模和移模为各2个,尺寸为1寸; 蒸汽管数量为:K1214固模和移模1.5寸各4个;K1418固模和移模1.5寸各6个。进气口必须装制不锈钢防护网进行防护。 排水口数量为:K1214固模和移模1.5寸各4个;K1418固模和移模1.5寸各6个。四、模具顶针筒、料枪口要求 K1214/K1418料枪为50*30“德式”料枪,料枪限位厚度20mm。法兰螺栓M8X60,布置为三角型,配备螺母(国标M8)。标准顶针盘为ф40X5或ф30X5,顶针杆径为ф12。黄铜棒采用ф22*ф12规格,预留可调长度合理(不低于15mm),筒套完好无缺。 顶杆和料枪之间无干涉,螺栓孔与料枪法兰孔完全吻合,安装畅顺。螺栓从背板内部往外安装,模具压板与模具接管无干涉。 五、模具密封要求 固移模合模处采用Φ8圆形空芯硅胶条,斜面对接,高出平板1-1.5mm(安装时硅胶条自然伸展,不能有拉伸安装),模具四边各处转角为圆角过渡,整条密封槽的起点与结束点不允许定在模具外部,密封槽深6.5mm,槽口部宽7.5mm,槽底宽8mm;

铝质易拉罐成形工艺及模具

摘要:对罐体拉伸工序、变薄拉伸工序和底部成形工序进行了分析,并对与这些工序相关的模具在设计和制造中存在的若干关键性技术进行了研究。 关键词:易拉罐;成形工艺;模具;变薄拉伸 1 引言 铝质易拉罐在饮料包装容器中占有相当大的比重。易拉罐的制造融合了冶金、化工、机械、电子、食品等诸多行业的先进技术,成为铝深加工的一个缩影。随着饮料包装市场竞争的不断加剧,对众多制罐企业而言,如何在易拉罐生产中最大限度地减少板料厚度,减轻单罐质量,提高材料利用率,降低生产成本,是企业追求的重要目标。为此,以轻量化(light-weighting)为特征的技术改造和技术创新正在悄然兴起。易拉罐轻量化涉及到许多关键性技术,其中罐体成形工艺和模具技术是十分重要的方面。 2 罐体制造工艺和技术 罐体制造工艺流程 CCB-1A型罐罐体的主要制造工艺流程如下:卷料输送→卷料润滑→落料、拉伸→罐体成形→修边→清洗/烘干→堆垛/卸→涂底色→烘干→彩印→底涂→烘干→内喷涂→内烘干→罐口润滑→缩颈→旋压缩颈。 在工艺流程中,落料、拉伸、罐体成形、修边、缩径、旋压缩径/翻边工序需要模具加工,其中以落料、拉伸和罐体成形工序与模具最为关键,其工艺水平及模具设计制造水平的高低,直接影响易拉罐的质量和生产成本。 罐体制造工艺分析 (1)落料一拉伸复合工序。拉伸时,坯料边缘的材料沿着径向形成杯,因此在塑性流动区域的单元体为双向受压,单向受拉的三向应力状态,如图1所示。由于受凸模圆弧和拉伸凹模圆弧的作用,杯下部壁厚约减薄10%,而杯口增厚约25%。杯转角处的圆弧大小对后续工序(罐体成形)有较大的影响,若控制不好,易产生断罐。因此落料拉伸工序必须考虑以下因素:杯的直径和拉伸比、凸模圆弧、拉伸凹模圆弧、凸、凹模间隙、铝材的机械性能、模具表面的摩擦性能、材料表面的润滑、拉伸速度、突耳率等。突耳的产生主要由2个因素确定:一是金属材料的性能,二是拉伸模具的设计。突耳出现在杯的最高点同时也是最薄点,将会对罐体成形带来影响,造成修边不全,废品率增高。

创新设计方案

创新设计方案 一、设计名称:可以关闭的易拉罐 二、设计目的(设计背景): 大多数人们在外面玩的时候口渴了都会想到要买水喝,但很多又不愿意一瓶喝完,就出现了易拉罐比较少量的瓶子,但易拉罐有一个最不方便的地方就是喝不完也关不上,很多人不喜欢手上拿着就喜欢放在包里方便,渴的时候再拿出来,然后我们就想到为了大家方便,想要设计出可以打开后还可以关闭的易拉罐瓶子。 三、设计原理: 现在的大多数人追求的生活品质越来越高,人们对这些消费品的要求也越来越多样化。易拉罐在人们的生活中随处可见,最初的易拉罐设计是将一个拉环固定在事先划好的开盖带上,利用杠杆作用和刻划痕迹,罐头先在开口上方打开,进一步拉开的动作将金属片拉离罐头顶部,铝片沿着刻划的痕迹撕开,留下来的开口从罐子边缘延伸到(或超过)罐子中心,这样在打开罐子饮用或倾倒饮料时,空气能由开口进入罐内,让饮料轻松地流出。易拉罐拉环独特的设计一方面结束了钥匙型开罐器的时代,另一方面也将在罐顶上打两个不同三角形切口的开罐动作减少为一个拉的轻松动作。半开半闭式的易拉罐更容易引进市场,通过在罐顶下安装旋转装置,让喝不完的水放在任何一个地方不易溢出,会给更多的人带来方便。四、作用与功能: 方便人们的生活,受各大消费群众的需求,方便携带和饮用。拉环式易盖有两种形式:一种是小口式,拉环拉起时罐盖开启一小口,由此小口可以吸出或倒也流体内装物,比如汽水类易拉罐就属于小口式;另一种是大口式,拉环拉起时几乎整个罐盖都被揭开,以便取出固体 五、设计结构与简图:

设计结构:采用普通的易拉罐瓶子,在开口处设计可以旋转开关的开口。 六、设计说明: 这次我们设计的是一个可开关的易拉罐,这个易拉罐跟平时我们看到的普通易拉罐没有什么区别,只是在拉罐开口处做了一些轻微的调整,普通的拉罐拉开过后就不可以再关闭,使消费者买了打开了以后就必须要喝完,然而一些消费者一次喝不完这么多放在那里就只有浪费。我们这次设计的这个易拉罐开口就设计成为了可开关的,当消费者打开后喝不完还可以将瓶口关上,这样方便了二次饮用,不会造成了浪费,也方便携带。做成这个易拉罐的技术条件也非常简单,只需要在现有的易拉罐制作工艺上,将易拉罐瓶口配上一个可旋转的开关,开关可以由简单的铝片制成,在消费者第一次将易拉罐打开后,旋转铝片就可将开口处密封。 七、制造用料: 普通的易拉罐一个,少许铝片 八、可行性分析: 在该易拉鑵项目可行性研究中,从节约资源和保护环境的角度出发,遵循“创新、先进、可靠、实用、效益”的指导方针,严格按照技术先进、低能耗、 低污染、控制投资的要求,确保该易拉鑵项目技术先进、质量优良、保证进度、

模具技术的详细要求

模具技术的具体要求 一.模具材料及热处理要求 1.拉延、成形类模具 ●外板件拉延序凸模、凹模及压边圈使用GGG70L铸铁,淬火硬度HRC50-55;内板件凸模、 凹摸及压边圈使用MoCr铸铁,淬火硬度HRC50-55。特殊情况下须渗氮或TD处理(模具图纸会签时确认)。 ●变形剧烈及高强度钢板(抗拉强度≥350MPa)的制件应采用整体镶Cr12MoV;淬火硬度要 达到HRC58—62。 ●基体采用HT300。采用键槽与螺栓链接。 ●GGG70L铸件厂:天津虹岗或长城精工或经甲方认可的同等铸造品质铸造厂。 2.冲裁类模具 ●普通板料零件料厚小于或等于1.2mm的刃口镶块可采用空冷钢(7CrSiMnMoV 或ICD-5), 淬火硬度HRC55-60;料厚大于1.2mm的采用Cr12MoV材料,淬火硬度为HRC58~62。料厚大于等于1.4mm的镶块采用波浪刃口。 ●高强度板的制件采用Cr12MoV材料,淬火硬度为HRC58~62。 ●所有凹模镶块、废料刀均采用背托,凹模采用镶块结构,凸模可采用整体结构。 ●模具基体采用HT300。 3.翻边、整形类模具 ●中大型模具凹模镶块原则上应采用侧面固定式以便于调整;小型模具可采用整体式结构, 料厚大于1.4mm的凹模采用镶块式。 ●零件料厚小于或等于1.2mm,材料可选用MoCr/7CrSiMnMoV;零件料厚大于1.2mm 的采用 Cr12MoV或与之相当的材料(应取得甲方工艺认可,具体以会签为准)。 ●普通板料的制件凸模可采用合金铸铁,表面淬火硬度不低于HRC50;高强度板的制件采用 Cr12MoV材料,淬火硬度为HRC58-62;如采用分体或镶块式基座(底板)可采用HT300的材料。 ●对于部分易拉毛部位,必要时需进行TD处理。 4.压料(退料)顶出器可采用铸造结构,但应根据其强度要求,决定用铸铁或球铁或铸钢材料(工艺会签时,甲方根据具体结构决定)。 5.其它部件材质及热处理按国家标准执行。

铝罐生产技术和市场发展趋势

一、我国铝罐装发展现状 近年来,我国易拉罐市场年需求量达到 60 亿只到 70 亿只。具有其他金属材质易拉罐以及塑料等包装容器不可比拟的优势,即质轻、保质期长、防假冒性强、携带方便、可回收性好等。自80 年代以来,其消费量一直呈增长趋势。随着我国人民生活水平的提高,近年来易拉罐消费以 20%以上的速度持续增长,啤酒和碳酸饮料一直是易拉罐的使用大户。据包装协会介绍,我国啤酒产量居世界第二位,目前年产量在 1800 万吨以上,其中用易拉罐包装的产量超过 5%,易拉罐使用数量在 15 亿只~20 亿只。 经过20年来的快速发展,我国的铝加工业取得了举世瞩目的成就,铝轧制材、压延材的产量迅速提高,2004年铝轧制材产量达到了150万吨左右。但是在一些高精度铝板带产品方面,如铝罐料、高档PS版基、磁盘基片、汽车车身用铝板、镜面铝带等产品尚不具备大规模工业化生产能力,致使相关行业在原材料采购上只能依赖进口。由于易拉罐用铝带材对材质和内部组织等有严格要求,而我国现阶段的技术和设备水平无法满足,所以除一小部分国内自给外,绝大部分靠进口来满足。1991~1996年共进口易拉罐用铝带材34.78万吨,1996年达到12万吨。1998~2004年,我国高精度铝板带材的进口量和净进口量仍然呈上升趋势,其中相当部分为易拉罐用铝带材,年进口量在10万吨以上。 目前国内只有西南铝业有限公司可生产易拉罐铝带材(此前东北轻合金有限公司曾经生产过),其他大型厂商都没有涉足。西南铝也是历尽艰辛,才掌握了易拉罐用铝带材的工艺和生产技术。该公司在整个易拉罐用铝带材工艺的开发过程当中,走了很多弯路,损失也很大,1996年前后,因为工艺技术不过关,造成3000多吨成品退货和库房料不能发货,整个现场积压3000多吨,然后全部回炉,重新生产。尽管西南铝最终研制出了3004H19易拉罐用铝带材,但也付出了数千万资金和5年的代价。2000年前后,这一产品产量约10000吨。2004年9月,西南铝成功开发出了0.28mm、0.285mm厚的易拉罐用铝带材,为国内同类产品中厚度最薄,大受市场欢迎,填补了国内空白。2005年上半年,西南铝易拉罐用铝带材产量同比增长了432.61%。但与国外先进铝材相比,其在深冲性(延伸率、制耳率等)方面尚有一定差距,内在冶金质量仍有待提高,2005年6月“1+4”热连轧的成功投产将进一步提高其易拉罐用铝带材的产量和质量。 目前,我国使用铝罐盖的马口铁罐头盒数量不大,只有少数几种产品如八宝粥、核桃仁、花生露等。预计,今后每年将以5%的速度增加,据中国饮料协会预测,到2010年碳酸饮料产量将达到800万吨,如果罐装率按20%计算,易拉罐用量将达到124亿只。 二、世界铝罐装市场进展 当前全球的年需求量在2100亿只左右,占全球金属容器产量的一半还多。全球主要地区铝易拉罐的消费比例:北美53%,欧洲(包括澳大利亚、新西兰)19%,南美14%,亚洲14%。 北美市场以美国为主,其是铝易拉罐的发源地,同时也是全球铝易拉罐的最大生产国和消费国。进入90年代后,北美易拉罐供求市场不断扩大,到90年代末供需趋向稳定,增长幅度较缓。2001年,美国啤酒和软饮料铝罐用量近1000亿只,其中软饮料罐640亿只,啤酒罐330亿只。目前,北美地区的易拉罐生产线共有169条,生产线平均速度为1522

易拉罐设计数学模型

2006高教社杯全国大学生数学建模竞赛山西赛区吕梁高等专科学校 第五队 参赛队员:1. 张晶晶 2. 刘美琴 3. 王超鹏 指导教师:王亮亮 2006 年 9 月 18 日

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):吕梁高等专科学校 参赛队员(打印并签名) :1. 张晶晶 2. 刘美琴 3. 王超鹏 指导教师或指导教师组负责人(打印并签名):王亮亮 日期: 2006 年 9 月 18 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

易拉罐形状和尺寸的设计 摘要 本文研究易拉罐的形状和尺寸的设计问题。 体积给定的圆柱体,其表面积最小的尺寸(半径和高)为多少?从纯数学的观念出发,这个尺寸(半径和高)为1:2。也就是说,对于易拉罐而言,当高是半径的2倍时,其表面积最小。即易拉罐设计成等边圆柱时,消耗的材料较少,生产成本较低。但在实际生活中,我们所看到的易拉罐不是等边圆柱的,有的长些,有的短些,生活中(市场上)的易拉罐为什么会是这样呢? 经过我们调查测量,也发现销量很大的饮料的饮料罐(即易拉罐)的形状和尺寸几乎是一样的。经过测量生活中(市场上)饮料罐胖的部分的直径和高的比为6.4/10.3=0.621,非常接近黄金分割比0.618。这是巧合,还是这样的比例看起来最舒服,最美?看来,这样并非偶然,这应该是某种意义下的最优设计。 事实上,体积一定的易拉罐的形状和尺寸的设计问题,不仅与表面积的大小有关,而且还与易拉罐的上、下底面和侧面所用材料的价格有关,也与制造过程中焊接口的工作量的多少和焊缝长短有关。此时,易拉罐就不再是等边圆柱了。 在本文讨论中,我们假设1、不考虑制造过程中焊接口的工作量的多少和焊缝长短问题,只考虑了表面积和所用材料的问题;2、不考虑易拉罐底部上拱问题,模型中模型的底部以平底处理;3、不考虑易拉罐的拉环。在以上假设的基础之上我们以355ml 的可口可乐饮料罐的形状和尺寸为例进行讨论,应用层次分析法逐步建立了四个模型。应用初等数学的知识算出了各个模型中的高和半径的比值、表面积和成本,最终讨论计算结果认为当高与半径之比4.68827时,模型基本上与市场上的易拉罐形状和尺寸相同。然后我们对生活中355ml的可口可乐饮料罐给出了我们自己的关于易拉罐的形状和尺寸的设计。 关键词:等边圆柱易拉罐 注:本文中提到的等边圆柱是指:圆柱的高与圆柱的底面直径之比为1:1的圆柱体。

铝制易拉罐项目申请报告

铝制易拉罐项目 申请报告 泓域咨询规划设计/投资分析/产业运营

铝制易拉罐项目申请报告 铝制易拉罐主要用于碳酸饮料和啤酒等具有内压的液体包装。从1985 年重庆长江电工厂全铝易拉罐生产线投产,打开中国生产此类产品的先河。在这二十多年中铝加工业尽最大努力研发与生产铝罐体带材(3104合金),特别是西南铝业做了许多工作,前前后后生产了约18万吨3104带材,终 因受装备制约未能形成批量生产,直到2005年2000mm(1+40)式热轧线投产中国才开始罐体料的批量生产。 该铝制易拉罐项目计划总投资14201.45万元,其中:固定资产投资10637.74万元,占项目总投资的74.91%;流动资金3563.71万元,占项目 总投资的25.09%。 达产年营业收入26480.00万元,总成本费用20713.50万元,税金及 附加244.13万元,利润总额5766.50万元,利税总额6806.01万元,税后 净利润4324.88万元,达产年纳税总额2481.14万元;达产年投资利润率40.61%,投资利税率47.92%,投资回报率30.45%,全部投资回收期4.78年,提供就业职位578个。 重视施工设计工作的原则。严格执行国家相关法律、法规、规范,做 好节能、环境保护、卫生、消防、安全等设计工作。同时,认真贯彻“安

全生产,预防为主”的方针,确保投资项目建成后符合国家职业安全卫生的要求,保障职工的安全和健康。 ...... 在有色金属行业中,铝,无论在储量、产量、用量等方面均属前位。铝,从矿石到金属,再到制成品成本极高,耗能巨大。而由废弃金属铝再回收利用,无论从节约资源、缩短生产流程周期,还是从环境保护、改善环境等方面都具有重大意义。

自制无线网卡天线(一)易拉罐和漏斗篇

一、易拉罐天线: 需要准备得工具和原料如下: 1、剪子一把 2、靓工刀一把 3、普通电工胶带适量 4、空易拉罐一只(铁壳铝壳均可,可乐雪碧都可以) 这几样工具都是通常家庭得常备工具 啥?你找不到易拉罐? FT,马上给我到楼下去买一罐雪碧上来,一口气喝完它。 工具和原料备齐以后,咱们就要吧。 首先把易拉罐清洗干净,把里头得水倒掉。接着用靓工刀沿着易拉罐接缝得地儿慢慢切开,参考图片 接下来找到和这条接缝180度相对得还有一点一边,也用靓工刀慢慢切开 接着用剪子慢慢地沿着底边剪半个圆过去,另一头则剪还有一点半个圆,参考图片: 做好以后自己处理一下,主要是清理一下边缘(易拉罐非常锋利)预防日后得使用中弄伤了手。 在罐子底部和顶部开两个孔,和你原来得AP天线非常一下,直径大小可能大于天线一点就行了,套到AP天线上去试一下,必须可以自如地套进去,自然此时候没办法固定,罐子这原因是孔比天线大,只能松松地靠在天线上。:) 将贴不错得半个罐子套到原来得AP天线上试一下松紧程度,可能以能够套进天线而且保持必须得固定能力为准。如果太松得话就再贴部分胶带上去。再试一下旋转这半个罐子,要做到能够旋转自如。象下面相片中是可以得松紧程度: OK 成功 成效大伙尝试一下就了解了,信号有特明显得提升 二、奶粉罐天线: DIY精神是利用手头得资源,发挥第一得做用,咱们身边非常多得金属罐子,奶粉罐是最常见得了。 下面介绍下DIY 奶粉罐天线得过程: 根据测试,首先确定自己DIY得数据: 各数据如下: 中心频点=2.445G 圆筒直径=127mm 圆筒长度=111mm 振子长度=31mm 振子距圆筒底部边距=37mm 你必须能问这数值是哪里来得?微波天线得制做精度很高,起码要达到毫米级,要不非常容易以至天线不可用,由于每个人获得得圆筒不一样,这有一个圆筒天线得通用计算器,可以精确得计算各参数,以此使这款天正在制做上达到实用化! 通用计算器:/antenna2calc.php 从图片可以看出,馈线得屏蔽网连接金属圆筒,信号通过圆筒反射到振子上,自然振子是馈线得芯线了,芯线与金属筒是绝缘得,这点必须得要小心! 非常多爱好者都Like在圆筒加装N座或BNC座,接着在馈线得连接处做对应得N头或BNC 头,用在连接。可mr7感到虽说该办法对使用十分便利,可同时也对信号造成了损耗(估计1-2DBI),特别在2.4G得频段愈加明显!正是这个原因,mr7决定把屏蔽网直接焊在

浅谈易拉罐的发展历史

浅谈易拉罐的发展历史 在美国增强了经常性、技术性选择以后,最近十余年来饮料行业发生了急剧的变化。制罐公司、原材料供应公司和商业客户三方之间的组织结构发生了几次整合,产生了不少新的创举和革新。由于这些创举和革新,饮料罐渐渐形成了多样化的制品,许多企业生产出了新的生产品种。目前,饮料罐业界有一个共识,就是下一个技术挑战是饮料罐的轻量化发展,十分需要合作研究,因此业界进一步发展的新举措必须依赖于业界的合作。 早在上世纪30 年代,最早的啤酒饮料罐就在美国研发成功并生产出来了。这就是马口铁材料制成的三片罐——由罐身、顶盖和底罐三片马口铁材料制成的啤酒饮料三片罐,是在圆锥形上部的开口部上用王冠盖密闭的三片罐。开始时,这种罐在玻璃瓶生产线上灌装,直到上世纪50年代才有了啤酒饮料专用的灌装生产线。不久,又研究开发了在啤酒饮料罐的一侧组配三角形(业内称之为“教堂钥匙”,Church Key)工具开启不锈钢制平面盖的新形式,上世纪60 年代才出现了铝制的圆环状拉开式新型罐盖。 上世纪60 年代的早期,人们创造了二片罐——只有罐身片材和罐盖片材组成的深冲拉罐(称为DWI 罐),使饮料罐技术取得实质性进展,现在全世界每年生产制造1800 亿个二片DWI 罐。据推测,现在世界罐头市场(包括一般食用罐头和汽溶胶罐头在内)总共有4000 亿罐,其中铝制二片罐DWI 饮料罐最多。 铝制罐已支配世界罐头市场长达35 年以上的时间,目前从商品货架寿命周

期(Life Cycle)来看它已经有进入市场衰退期的迹象。以前,大部分积累了许多开发经验和研究经费的企业大多数投入了DWI 饮料罐的生产。但是,近年来继续投入DWI 饮料罐生产的公司就少得多了,近年来业界的资产积累收缩已经处于警戒线范围。 在研究制罐技术发展史的过程中我们可以看到一个饮料罐的轻量化发展的历史过程,铝制DWI 罐平均每1000 罐重量在上世纪60 年代早期为是55 磅(25kg),到上世纪70 年代中期缩减到44.8 磅(20.3kg),现如今已减轻到33.0 磅(15.0kg),轻量化变革使平均每1000 罐的重量减少了大约40%。饮料罐的轻量化发展不仅是罐身/罐盖制造公司之间协作的研究成果,而且也是铝材和涂料以及制造装置生产公司之间紧密合作的研究成果。 由大陆制罐公司(Conti-nental Can CO.)于1960 年代制造的最早的铝材盖是由硬度18、板厚0.39mm 的5086 铝合金板材制成的,被叫做211(mm)直径的U-Tub 盖。这种设计被Dyson 公司引进使用。此外,拉环(Ring Pull)是采用刮脸刀那样用手拉动开启的易开方式(Rogor Tab),用硬度19,板厚 0.355mm 的5182 号合金钢制,开启时大多是用手指拉压的方法即能方便容易地拉开,它是利用铆钉铆接拉环开启(Rivet)技术的先驱者。这次技术的创新得益于涂料生产公司和铝材料生产公司以及工具装备生产供应公司等多方面协作,他们成功地开发了防止易拉罐的刻痕划线拉开(Score)和铆钉铆接面积部分金属露出的新技术。

数学建模 易拉罐的设计问题

易拉罐的形状和尺寸的最优设计 一旅五队赵久国(3782011040)摘要 现实生活中,我们会发现销售量很大的易拉罐饮料(例如:体积为355毫升的可乐,啤酒,雪碧,七喜等)的形状和尺寸几乎都一样,联系利润问题,我们可能会猜想同样是355毫升的容量,设计成那样的形状可能会节约易拉罐的制造成本。带着这样的猜想,我通过数学建模的方法去寻找原因。 本文就是通过建立简化的数学模型,找到在易拉罐体积一定(355毫升)的条件下,使得易拉罐材料最省(通过计算易拉罐的表面积来表示用料)的外形及尺寸。我第一步是实际调查研究(发现:实际生活中没有把易拉罐设计成长方体的形状的,都是接近圆柱体的,可以断定长方体没有圆柱体节省材料,于是对于后面的模型只考虑圆柱体的情况);第二步是通过简化建模所需的条件(假定易拉罐的侧面和底面用的材料都一样且厚度都一样(注:现实生活中肯定不一样,这需要前面模型的优化));第三步是建立的简单模型,并且进行求解;第四步是对模型所得的数据进行分析,和与实际生活中所测的易拉罐的数据进行对比;第五步是得出基本的结论和对模型进行改进,粗略确定易拉罐外形和尺寸的最佳设计方案。 关键词:355毫升易拉罐简化条件模型设计导数求极值 对比分析优化设计

第一步: 对于体积恒定的355毫升的易拉罐,在保证体积不变的情况下设计他的形状,尺寸,要求是表面积最小。 第二步: 假设: 1.易拉罐设计的形状为圆柱体,侧面和底面用的材料都一样且厚度都一样. 2.易拉罐的体积一定. 3.确定变量和参数:设易拉罐内半径为r,高度为h ,厚度为a ,体积为v ,表面积为s 。其中r 和h 是自变量,易拉罐面积s 是因变量,而体积v 是固定参数,则s 和v 分别为: 2222233 222()()2422,s r a a r a h r h ar a r a hra ha v v r h h r ππππππππππ=+?++?-=++++== 第三步: 根据前两步建立模型: 2g(,)min (,) 0,0,(,)0r h r h v s r h r h g r h π=-=>>=设目标函数其中且 V 是已知的,g(r,h)是约束条件,目标函数s 就是要求在体积V 一定的条件下求S 的最小值,此时r 和s 的比值。

相关文档
相关文档 最新文档