文档库 最新最全的文档下载
当前位置:文档库 › 武大电气继电保护实验报告(90分精品)

武大电气继电保护实验报告(90分精品)

武大电气继电保护实验报告(90分精品)
武大电气继电保护实验报告(90分精品)

线路距离保护I 段数字仿真实验

一. 仿真实验

1. 实验预习

电力系统线路距离保护的工作原理,接地距离保护与相间距离保护的区别,距离保护的整定。 2. 实验目的

仿真电力系统线路故障和距离保护动作。 3. 实验步骤

(1) 点击桌面PSCAD 快捷方式或开始菜单的PSCAD 命令进入仿真工作界面; (2) Load 拷给同学们的Relay Pro experiments\ dist_protection ; (3) 打开dist_protection; (4) 认识各个模块作用;

a. 双端电源系统

如下图:

图1

线路LINE1和LINE2是被保护线路,点击可看到LINE1线路长度是90km , LINE2长度是10km ,被保护线路的总长度是100km 。断路器B1、B2的控制命令是B1、B2,为0时断路器是合上,为1时是断开。B1的左侧是测量表,可测三相电压和电流瞬时值、三相有功和无功、电压有效值和相位,如下图

图2

电压、电流命名如下

RLC

RLC

图3

b. 故障发生器

图4

点击’Timed Fault Logic ’, 可设置故障开始时间和故障持续时间;

将鼠标放在’Fault Type ’ Control

Fault Type 是Control

Panel 元件(右侧有)和

的滑动杆上可

设置故障类型。 c. B2断路器的控制

本仿真例子中未对B2设置保护控制,而是直接‘close ’(鼠标放到旋钮上,光标会变成手型,打到open 就是断开了),如下图,

Timed Fault Logic

图5

d. B1断路器的控制

对B1设置的保护如下图

图6

Vs 、Is 输入到电压、电流计算模块(将鼠标放在左一模块上,会自动显示模块名称:process_signals ),输出依次是各相电压模值VM 、各相电压相位VP 、各相电流模值IM 、各相电流相位IP 、电流各序分量模值IseqM 、电流各序分量相位IseqP 、电压各序分量模值VseqM 、电压各序分量相位VseqP 。

电压、电流计算模块的输出作为距离保护I 段(将鼠标放在左二模块上,会自动显示模块名称:dist_relay1)的输入,输出经或门再经自保持后是距离I 段的输出。

断路器B1是继电保护控制还是固定合闸由选择器(Selector )控制:Ctrl 端是1(B1旋钮打到Closed ),选择器的刀打到A 端,B1=0; Ctrl 端是0(B1旋钮打到Relay ),选择器的刀打到B 端,B1等于继电保护程序的输出。

e. 电压、电流计算模块

双击电压、电流计算模块,有下图,

图7

从左向右依次是计算:

各相电压基波模值vam 、vbm 、vcm ,各相电压基波相位vap 、vbp 、vcp ;电压正序分量模值及相位vpm 与vpp ,负序分量模值及相位vnm 与vnp ,零序分量模值及相位vzm 与vzp ;

将vam 、vbm 、vcm 放到一个数组vm 中,将vap 、vbp 、vcp 放到一个数组vp 中;

V I M

P M

P M P M P

Vphase

Iphase

Vseq

Iseq

Vs Is

VM VP IM IP VseqM VseqP

IseqM

IseqP

M P

M P

M P

A

B

C

V I

Iseq

|A|/_A

|B|/_B |C|/_C

|P|/_P

|N|/_N

|Z|/_Z

A B C +-0

vam vbm vcm

vap

vbp

vcp

vpm

vnm

vzm

vpp

vnp

vzp

将vpm、vnm、vzm放到一个数组vseqm中,将vpp、vnp、vzp放到一个

数组vseqp中。

下面对电流的计算分析有类似过程。

f.双击距离I段计算模块

图8

将数字改为2就是第二项,依次类推;

是接地距离保护测量阻抗的计算元件,输入是A 相电压的模值和

相位、A 相电流的模值和相位、零序电流的模值和相位,所以算出来是A 相接地距离保护的测量电阻和测量电抗,命名为Ra 、Xa ; 相间距离保护阻抗计算元件类似分析;

是阻抗继电器,距离I 段是方向圆特性,该特性的半径和圆心坐标见内部

设置;

坐标(命名为Rcicle )、纵坐标(命名为Xcicle )随运行时间的变化,将两者的输出数据存储到Output channel ;

将阻抗测量元件的输出存储到Output channel 中;

VM IM I0M VP IP I0P

R X V a I a

+ kI

Ra Xa

R X

21

Ra Xa Rb

Xb Rc Xc

Rab Xab Rbc

Xbc Rca Xca

设置a相接地故障在I段范围内,点运行,测量阻抗在发生故障后切除故障前会掉进圆特性内。

(5)认识线路参数。被保护线路由LINE1和LINE2共同构成,计算线路参数时记得将两者相加。之所以分作两段,是便于设置故障点。改变故障点时,如

LINE1线路长度减小,LINE2则增加,使两者加起来的总长度不变。

将鼠标置于线路模型上面,点右键,有图9。选择Edit Properties 可读取线路

长度等参数。选择Edit Definition,可读取线路电阻、电抗等参数(点击运行

后,依据Properties中的参数和Definition界面的物理参数自动算出)。

图9

(6)如何画出整定阻抗圆和测量阻抗的运行轨迹;

a.如图10找到XY Plot元件

图10

b.如图11在Rcircle的Output Channel上点右键,选择Add as curve;

图11

c.如图12,在X Coordinate 上点右键选择Paste Curve。对Xcircle类似操

作,放在Y Coordinate处运行,有图13;

图12

图13

d.拨动上图右侧滑竿可选择关注部分,或者用鼠标左键框图;

e.测量阻抗可类似画出。

(7)设置距离保护I段保护范围内A相接地故障(LINE1长度缩短到小于(LINE1+LINE2)长度乘可靠系数,那LINE2就要相应增加),运行;

(8)设置距离保护I段保护范围外正向A相接地故障,运行;

(9)设置距离保护I段保护范围内BC相短路故障,运行;

(10)设置距离保护I段正向保护范围外BC相短路故障,运行;

4.实验记录与分析

(1)保护范围内A相接地故障

(a)记录B1处距离保护的三相测量电压(Vs)、电流(Is)变化波形(关注故障瞬间及断路器断开瞬间的);由电压电流波形分析A相接地故障的

特征;断路器是否断开故障线路?

A相直接接地故障时,A相的电压大大降低,基本接近于0,由于是中性点直接接地系统,非故障相的电压仍为相电压,A相产生很大的故障电流;由图中可以看出,在故障过程中,B、C相电压基本保持相电压不变,A相电流大大升高;A相产生很大的电流,断路器断开故障线路。

(b)各个接地距离、相间距离保护测量阻抗的变化

插入显示测量阻抗变化和整定特性圆的两张XYPlot;从XYPlot分析说

明接地距离保护测量阻抗的变化特点,相间距离保护测量阻抗的变化特

点:

由上图可以看出,在保护范围内发生A 相接地故障时,测量阻抗进入接地距离保护整定特性圆范围内,接地距离保护动作;测量阻抗在相间距离保护整定特性圆范围外,相间距离保护不动作。

(2) 正向保护范围外A 相接地故障

插入显示测量阻抗变化和整定特性圆的两张XYPlot ;从XYPlot 分析说明接地距离保护测量阻抗的变化特点,相间距离保护测量阻抗的变化特点:

由上图可以看出,在保护范围外发生A 相接地故障时,测量阻抗在接地距离保护整定特性圆范围外,接地距离保护不动作;在保护范围外发生A 相接地故障时,测量阻抗在相间距离保护整定特性圆范围外,相间距离保护不动作。

(3) 保护范围内BC 相短路故障

(a )记录B1处距离保护的三相测量电压(Vs )、电流(Is )变化波形(关注

故障瞬间及断路器断开瞬间的);由电压电流波形分析BC 相短路故障的特征;断路器是否断开故障线路? :

发生BC 相间短路故障时,BC 相电压降低,由于是中性点直接接地系统,A 相电压保持相电压不变,A 相电流也保持不变,BC 相电流大大增加,引起继电保护动作。

由图中可以看出,故障过程中BC相电压不再是正弦波,当继电保护动作切除线路后,BC相电压回升,此时产生较大谐波,此后线路不流过电流。

(b)各个接地距离、相间距离保护测量阻抗的变化

插入显示测量阻抗变化和整定特性圆的两张XYPlot;从XYPlot分析说

明接地距离保护测量阻抗的变化特点,相间距离保护测量阻抗的变化特

点:

由上图可以看出,在保护范围内发生BC相间故障时,测量阻抗在接地距离保护整定特性圆范围外,接地距离保护不动作;在保护范围内发生BC相间故障时,测量阻抗在相间距离保护整定特性圆范围内,相间距离保护动作。

(4)正向保护范围外BC相短路故障

插入显示测量阻抗变化和整定特性圆的两张XYPlot;从XYPlot分析说明接

地距离保护测量阻抗的变化特点,相间距离保护测量阻抗的变化特点:

由上图可以看出,在保护范围外发生BC相间故障时,测量阻抗在接地距离保护整定特性圆范围外,接地距离保护不动作;在保护范围外发生BC相间故障时,测量阻抗在相间距离保护整定特性圆范围外,相间距离保护不动作。

二.实验总结

请就实验自己所做的工作、遇到的问题及收获做个总结。一方面是对老师教学工作的促进,有利于下一级同学学习;另一方面理清思路,对仿真软件使用和教材所学内容加深印象。

1.自己所做的工作:

在本次线路距离保护I段数字仿真实验中,我首先根据上节课所学到的PSCAD的操作技巧,熟悉了本次距离保护的接线方式,每个元件的的作用,元件的放置位置等。然后根据继电保护课程中学到的接地距离保护和相间距离保护的原理,理清了断路器B1的动作逻辑,为后面的仿真运行打下基础。

紧接着,我根据本实验报告的步骤,从头到尾将整个线路距离保护I段仿真模型的搭建过程看了一遍,熟悉了模型的原理和工作状态。然后根据实验记录与分析里面的问题一步一步地进行仿真实验,并且记录数据和图形,将图形复制到本实验报告中,并回答了相关的问题。在回答问题的过程中,我查阅了相关的资料,进一步加深了对接地距离保护和相间距离保护的理解,将课堂所学到的知识运用到实际中,得到了充分的锻炼。

2.遇到的问题,如何解决的:

在进行试验的过程中,我遇到了不少问题。

首先,在本实验指导书中存在一些看不懂的地方,在和同学进行讨论后,解决了不少问题,还有一些不能解决的,用过询问老师,也得到了正确的回答。

其次,对于接地距离保护和相间距离保护的特点并不是很清楚,虽然上课的时候老师讲过,但是过了一段时间有些东西已经忘记了。所以在回答实验记录与分析中的问题时有些力不从心。通过查看继电保护的教材和上网查阅相关资料,逐渐将之前老师教授的知识回忆起来,加深了对两种保护方式的理解。

在本次实验中,PSCAD的有些操作忘记了,不能得到实验报告所要求的结果。我通过回看之前的PSCAD的指导书和当场举手询问老师,再次熟悉了相关的操作,得到了正确的实验结果。

3.实验收获:

通过本次实验,我得到了充分的锻炼。

在实验指导书的详细的说明下,我能够熟练的在PSCAD中进行各种操作,熟悉了PSCAD的操作界面,工作方式以及如何进行仿真模型的搭建。在此基础上,我进行了线路距离保护I段数字仿真实验,这次不仅仅是关于PSCAD的相关操作,而是对于继电保护里所学到的知识应用于实践当中,将课本理论应用于仿真实验里,加深了对课本知识的理解。

其次,本次实验锻炼了我面对困难、解决困难的能力。当遇到不会的问题时,要懂得积极寻找帮助,解决困难。例如,老师就是很好的资源,遇到不懂得问题及时向老师询问,这样才能得到充分锻炼,正确快速的得到实验结果。

通过多次探索和克服诸多困难,再加上同学和老师的帮助,我成功的做出了线路距离保护I段数字仿真实验的内容;与此同时,更加深了对激励保护的理解,熟悉了PSCAD 的使用方法,受益匪浅。

变压器纵差动保护数字仿真实验

二. 仿真实验

1. 实验预习

变压器纵差动保护的基本原理和接线方式,按躲过最大外部短路电流整定原则,习题6.5求解(见指导书附)。 2. 实验目的

清楚(1)双绕组Yd11接线三相变压器模拟式纵差动保护原理接线,(2)如何根据采用的差动保护继电器、电流互感器变比整定动作电流。参见《电力系统继电保护习题集》习题6.5。 3. 实验步骤

(1) 进入PSCAD 工作界面;

(2) 打开Transformer_protection; (3) 认识各个模块作用,

a.

图1

b. 由三相电流提取出各相电流、一次电流经电流互感器变换为二次电流、

变压器星形侧互感器三角形联接(用差计算实现);

图2

c. 计算流入继电器的电流,也就是差动电流;

图3

d. 继电器动作电流的整定;

Timed Fault Logic

Ir

Is

Isa Isb Isc Ira Irb

Irc D

+

F

-

D +F

-D

+

F

-Isaa

Isbb

Iscc

Isaa Isbb

Isat

Isbb Iscc

Iscc Isaa

Isbt

Isct

Irat

Irbt

Irct

D +F

+

Isat

Irat RMS

Irea

D +F

+

Isbt

Irbt RMS

Ireb

D +F

+

Isct

Irct RMS

Irec

图4

e. 变压器纵差动保护是否动作的判断。

图5

4. 实验记录和分析

(1) 3.(3)b 电流互感器(Current Transformer (CT))两侧的单位各是什么?(请

看元件help ) :

CT 的输入(左侧)电流是kA ,输出(右侧)电流单位是A 。

(2) 变压器两侧电流互感器的变比各是多少?是否与题6.5一致?

变压器左侧的电流互感器的变比是600/5=120,变压器右侧的电流互感器的变比是1500/5=300;与题6.5一致。

(3) 3.(3)c 求差动电流为什么是求和而不是求差?RMS 的作用是什么?

在变压器外部故障和正常运行时,两个电流的相位相反,求和就相当于作差;在变压器内部故障时,两个电流的相位相同,此时求和得到的是故障电流。

RMS 的作用是求电流、电压的有效值。

(4) 3.(3)d 动作电流的整定中各个数字量是什么物理含义?(请参照附题)

0.22:由于电流互感器计算变比和实际变比不一致引起的相对误差;0.05:由变压器分接头改变引起的相对误差;0.1:电流互感器的可能最大误差;1.3:可靠系数的取值;9420:最大运行方式下,6.6kV 线路上三相短路电流;300:变压器右侧的电流互感器的变比。

(5) 3.(3)d 中9420A并不对应本一次模型变压器外部故障实际的三相最大短路电流。移动模型中故障设置模块与一次系统的连接线,将故障设置在外部

(差动保护范围之外,即两侧电流互感器以外)。

模型参数不变,分别给出发生在星形侧和三角形侧的外部故障的三相短路电

流波形,并求出工频有效值,再取其中的最大值;或者由6.5知基准侧,可

直接确定在哪一侧设置外部故障。

图:

由6.5知基准侧是6.6kV侧(三角形侧),外部故障的三相短路电流波形如下:

利用RMS元件求工频有效值为:7.35kA,此即为外部最大三相短路电流。

(6)将3.(3)d 中9420A改为实际外部最大三相短路电流,设置变压器外部A 相接地故障,运行。记录,两侧A相电流互感器二次侧的电流及流入A相

差动继电器的电流(将三个电流放在一张图上),并且分析变压器外部短路

时纵差动保护不动作的原因;

图:

利用RMS元件求流入差动继电器的三相电流:A相为1.43A,B相为0.64A,C相为0.80A;将3.3(d)中的9420A改为实际外部最大三相短路电流7350A后,最大不平衡电流的整定值1.3*(0.22+0.05+0.1)*7350/300=11.78A,由于A、B、C相的差动电流都小于最大不平衡电流的整定值,故差动继电器不动作。

(7)将3.(3)d 中9420A改为实际外部最大三相短路电流,设置变压器内部A

相接地故障(将连接线放在两侧CT之间,也就是变压器与左侧CT之间或

变压器与右侧CT之间),运行。记录,两侧A相电流互感器二次侧的电流

及流入A相差动继电器的电流(将三个电流放在一张图上),变压器内部A

相接地故障时A相纵差动保护动作吗?为什么?

图:

利用RMS元件求流入差动继电器的三相电流:A相为9.66A,B相为0.64A,C相为0.80A,由第(6)问的结果知,最大不平衡电流的整定值为11.78A,由于A 相的差动电流小于最大不平衡电流的整定值,故变压器内部A相接地故障时A相纵差动保护不动作。

(8)将3.(3)d 中9420A改为实际外部最大三相短路电流,设置变压器外部BC 相短路故障,运行。记录,两侧B相电流互感器二次侧的电流及流入B相差

动继电器的电流(将三个电流放在一张图上),并且分析变压器外部短路时

纵差动保护不动作的原因;

图:

利用RMS元件求流入差动继电器的三相电流:A相0.12A,B相4.62A,C 相4.56A,由第(6)问知,最大不平衡电流的整定值为11.78A,由于A、B、C相的差动电流都小于最大不平衡电流的整定值,故变压器外部短路时纵差动保护不动作。

(9)将3.(3)d 中9420A改为实际外部最大三相短路电流,设置变压器内部BC 相短路故障,运行。记录,两侧B相电流互感器二次侧的电流及流入B相差

动继电器的电流(将三个电流放在一张图上),变压器内部BC相短路故障时

B、C相纵差动保护动作吗?为什么?

图:

利用RMS元件求流入差动继电器的三相电流:A相0.12A,B相14.88A,C 相14.96A,由第(6)知,最大不平衡电流的整定值为11.78A,由于BC相的差动电流都大于最大不平衡电流的整定值,故变压器内部BC相短路故障时,B、C相纵差动保护动作。

三.实验总结

请就实验自己所做的工作、遇到的问题及收获做个总结。一方面是对老师教学工作的促进,有利于下一级同学学习;另一方面理清思路,对仿真软件使用和教材所学内容加深印象。

4.自己所做的工作:

在本次变压器纵差动保护数字仿真实验中,我首先根据实验指导书的内容,熟悉了本次纵差动保护的接线方式,每个元件的的作用,元件的放置位置等。然后根据继电保护课程中学到的变压器纵差动保护的原理,理解了变压器纵差动保护的整定原则,本实验中整定原则是按躲过最大不平衡电流来整定。

紧接着,我按照实验报告的问题要求,一个一个问题地回答了实验指导书中的问题,在回答问题的过程中,时常要查看某一个电流的波形,这让我熟练的掌握了PSCAD绘图的要求。最后,在老师的指导和查阅的相关资料的帮助下,我顺利地完成了本次实验的实验报告。

5.遇到的问题,如何解决的:

在本次变压器差动保护的电流互感器的接线方式中,我遇到了一些问题:由于变压器星形侧的电流互感器要接成三角形,而在PSCAD的模型中电流互感器没有接线方式,所以我产生了疑问。后来,在和同学的交流讨论中,我得到了想要的答案,就是电流互感器的接线方式默认是星形的,所以还需要将电流互感器二次测的三相电流作差,得到三角形接线方式的三相电流。

另外,我在本次实验的整定电流的大小计算也出现了问题,我在判断差动继电器是否动作时,采用了两个不同侧的电流进行比较,一个一次侧,一个二次测,一个单位是kA,一个单位是A,故不能比较得到正确的结果;然后我举手询问老师,在老师的耐心指导下,我发现了我的错误,然后得到了正确的电流判据,完成了实验报告。

6.实验收获:

这次实验是第二个与继电保护原理相关的实验,而且难度也较上一个距离保护的

仿真要大;难度加大了,收获自然也会多了。首先是进一步熟悉了PSCAD的各种元件,例如就有之前从来没见过的RMS元件,RMS元件的作用是求取电流或电压的有效值,在各种保护的判据中都需要用到这种元件。

本次仿真实验只按照躲过最大不平衡电流的原则来整定,而在实际变压器纵差动保护的整定原则不仅仅要按照躲过最大不平衡电流,还要考虑励磁涌流和电流互感器二次测断线引起的差电流。实验中虽然没有给出其他两种的整定计算,但是在这个基础上,同样可以搭建这两种电流的整定结果,然后比较大小,取其中最大值,当做整定电流。

所以本次实验给我打下了纵差动保护仿真的基础,加强了实验仿真的能力。

附6.5习题及答案:

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

武汉大学计算机学院 嵌入式实验报告

武汉大学计算机学院 课程实验(设计)报告 课程名称:嵌入式实验 专业、班: 08级 姓名: 学号: 学期:2010-2011第1学期 成绩(教师填写) 实 一二三四五六七八九总评验 分数 分数 (百分制)

实验一80C51单片机P1口演示实验 实验目的: (1)掌握P1口作为I/O口时的使用方法。 (2)理解读引脚和读锁存器的区别。 实验内容: 用P1.3脚的状态来控制P1.2的LED亮灭。 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台 (3)连线若干根 (4)计算机1台 实验步骤: (1)编写程序实现当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)修改程序在执行读P1.3之前,先执行CLR P1.3,观察结果是否正确,分析在第二种情况下程序为什 么不能正确执行,理解读引脚和读锁存器区别。 实验结果: (1)当P1.3为低电平时,发光管亮;P1.3为高电平时,发光管灭。 (2)不正确。因为先执行CLR P1.3之后,当读P1.3的时候它的值就一直是0,所以发光管会一直亮而不 会灭。单片机在执行从端口的单个位输入数据的指令(例如MOV C,P1.0)时,它需要读取引脚上的数据。此时,端口锁存器必须置为‘1’,否则,输出场效应管导通,回拉低引脚上的高输出电平。 系统复位时,会把所有锁存器置‘1’,然后可以直接使用端口引脚作为输入而无需再明确设置端口锁存器。但是,如果端口锁存器被清零(如CLR P1.0),就不能再把该端口直接作为输入口使用,除非先把对应的锁存器置为‘1’(如 SETB P1.0)。 (3)而在引脚负载很大的情况(如驱动晶体管)下,在执行“读——改——写”一类的指令(如CPL P1.0) 时,需要从锁存器中读取数据,以免错误地判断引脚电平。 实验二 80C51单片机RAM存储器扩展实验 实验目的: 学习RAM6264的扩展 实验内容: 往RAM中写入一串数据,然后读出,进行比较 实验设备: (1)超想-3000TB综合实验仪 1 台 (2)超想3000仿真器 1 台

《电力系统继电保护》 实验报告要点

网络高等教育《电力系统继电保护》实验报告 学习中心:山西临汾奥鹏学习中心 层次:专升本 专业:电气工程及其自动化 年级:2013年春季 学号:131326309943 学生姓名:李建明

实验一电磁型电流继电器和电压继电器实验 一、实验目的 1. 熟悉DL型电流继电器和DY型电压继电器的实际结构、工作原理、基本特性; 2. 学习动作电流、动作电压参数的整定方法; 3. 总结实验的体会和心得。 二、实验电路 1.过流继电器实验接线图 2.低压继电器实验接线图

三、预习题 1.过流继电器线圈采用并联接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用串联接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。(串联,并联) 2. 动作电流(压),返回电流(压)和返回系数的定义是什么? 动作电流:由于产生动作电位的结果而流动的微弱电流。 返回电流:电流低于那个值时电流继电器就不再吸合了。 返回系数:对于继电保护定值整定的保护,例如按最大负荷电流整定的过电流保护和最低运行电压整定的低电压保护,在受到故障量的作用时,当故障消失后保护不能返回到正常位置将发生误动。因此,整定公式中引入返回系数,返回系数用Kf表示。对于按故障量值和按自起动量值整定的保护,则可不考虑返回系数。 四、实验内容 1.电流继电器的动作电流和返回电流测试 表一过流继电器实验结果记录表 2.低压继电器的动作电压和返回电压测试 表二低压继电器实验结果记录表

五、实验仪器设备 六、问题与思考 1.电流继电器的返回系数为什么恒小于1? 电流继电器是过流动作,小于整定值后返回;为了避免电流在整定值附近时导致继电器频繁启动返回,一般要设一个返回值,例如0.97,电流小于0.97才返回。因此返回值要小于1 。 2.返回系数在设计继电保护装置中有何重要用途? 确保保护选择性的重要指标,让不该动作的继电器及时返回,使正常运行的部分系统不被切除。在出现故障后,可以保护继电器。

自动化控制实验报告(DOC 43页)

自动化控制实验报告(DOC 43页)

本科生实验报告 实验课程自动控制原理 学院名称 专业名称电气工程及其自动化 学生姓名 学生学号2013 指导教师 实验地点6C901 实验成绩 二〇一五年四月——二〇一五年五月

线性系统的时域分析 实验一(3.1.1)典型环节的模拟研究 一. 实验目的 1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式 2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响 二.典型环节的结构图及传递函数 方 框 图 传递函数 比例 (P ) K (S) U (S) U (S)G i O == 积分 (I ) TS 1 (S)U (S)U (S)G i O == 比例积分 (PI ) )TS 1 1(K (S)U (S)U (S)G i O +== 比例微分 (PD ) )TS 1(K (S) U (S) U (S)G i O +== 惯性 TS 1K (S)U (S)U (S)G i O += =

环节 (T) 比例 积分 微分 (PI D) S T K S T K K (S) U (S) U (S) G d p i p p i O + + = = 三.实验内容及步骤 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。 改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告 运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。具体用法参见用户手册中的示波器部分。1).观察比例环节的阶跃响应曲线 典型比例环节模拟电路如图3-1-1所示。 图3-1-1 典型比例环节模拟电路 传递函数: 1 (S) (S) (S) R R K K U U G i O= = = ;单位阶跃响应:

武汉大学计算机网络实验报告 (2)

武汉大学教学实验报告 动力与机械学院能源动力系统及自动化专业2013 年11 月10 日

一、实验操作过程 1.在仿真软件packet tracer上按照实验的要求选择无线路由器,一般路由器和PC机构建一个无线局域网,局域网的网络拓扑图如下: 2.按照实验指导书上的表9.1(参数配置表)对路由器,DNS服务器,WWW服务器和PC机进行相关参数的配置: 服务器配置信息(子网掩码均为255.255.255.0) 主机名IP地址默认网关 DNS 202.2.2.1 202.2.2.2 WWW 202.3.3.1 202.3.3.3 路由器配置信息(子网掩码均为255.255.255.0) 主机名型号IP地址默认网关时钟频率ISP 2620XM e1/0:202.2.2.2 e1/1:202.3.3.3 s0/0:202.1.1.2 64000 Router2(Server) 2620XM f0/0:192.168.1.1 s0/0:202.1.1.1 Wireless Router Linksys WRT300N 192.168.1.2 192.168.1.1 202.2.2.1 备注:PC机的IP地址将通过无线路由器的设置自动分配 2.1 对router0(sever)断的配置: 将下列程序代码输到router0中的IOS命令行中并执行,对router0路由器进行设置。Router>en Router#conf t

2.3 WWW服务器的相关配置 对www服务器进行与DNS服务器相似的配置,包括它的IP地址,子网掩码,网关等,具体的相关配置图见下图: WWW服务器的相关配置图

仪表自动控制实验报告

一、实验目的 1、通过实验对自控仪表和控制元器件有一具体认识。 2、了解自控原理,锻炼动手能力。学习并安装不同的温度自控电路。 3、通过对不同电路的调试和数据测量,初步掌握仪表自控技术。 4、要求按流程组装实验电路,并测量加热反应釜温度随加热时间的变化。 5、要求待反应釜加热腔温度稳定后测量加热釜轴向温度分布规律。 二、实验原理 仪表自动控制在现代化工业生产中是极其重要的,它减少大量手工操作,使操作人员避免恶劣、危险环境,自动快速完成重复工作,提高测量精度,完成远程传输数据。本实验就是仪表自动控制在化工生产和实验中非常重要的一个分支——温度的仪表自动控制。 图-1所示是本实验整套装置图。按图由导线连接好装置,首先设置“人工智能控制仪”的最终温度,输出端输出直流电压用于控制“SSR”(固态继电器),则当加热釜温度未达到最终温度时“SSR”是通的状态,电路导通,给加热釜持续加热;当加热釜温度达到最终温度后“SSR”是不通的状态,电路断开,加热釜加热停止。本实验研究的数据对象有两个:其一,测量仪表在加热釜开始加热后测量的升温过程,即温度随时间变化;其二,当温度达到最终温度并且稳定后,测量温度沿加热釜轴向的分布,即稳定温度随空间分布。 图-1 实验装置图

1、控温仪表,2测温仪表,3和4、测温元件(热电偶),5电加热釜式反应器, 6、保险 7、电流表,8固态调压器,9、滑动电阻,10、固态继电器(SSR),11、中间继电器,12、开关 实验装置中部分仪器的工作原理: 1,控温仪表:输出端输出直流电压控制SSR,当加热釜温度未达到预设温度时SSR使电路导通,持续加热;当达到最终温度后SSR使电路断开,加热停止。 2,测温仪表:与测温的热电偶相连,实时反馈加热釜内温度的测量值。 3、4,热电偶:分别测量加热腔和反应芯内的温度。工作原理:热电阻是利用金属的电阻值随温度变化而变化的特性来进行温度测量。它是由两种不同材料的导体焊接而成。焊接的一端插入被测介质中,感受被测温度,称为热电偶的工作端或热端。另一端与导线连接,称为自由端或冷端。若将其两端焊接在一起,且两段存在温度差,则在这个闭路回路中有热电势产生。如在回路中加一直流毫伏计,可见到毫伏计中有电势指示,电势的大小与两种不同金属的材料和温度有关,与导线的长短无关。 图2 热电偶工作原理 8,RSA固态调压器原理:通过电位器手动调节以改变阻性负载上的电压,来达到调节输出功率的目的(相当于一个滑动变阻器)。输出端接加热回路,输入端接控温仪表。 10,SSR 固态继电器工作原理:固态继电器是一种无触点通断电子开关,为四端有源器件。其中两个端子为输入控制端,另外两端为输出受控端。在输入端加上直流或脉冲信号,输出端就能从关断状态转变成导通状态(无信号时呈阻断状态),从而控制较大负载。可实现相当于常用的机械式电磁继电器一样的功能

(完整word版)继电保护三段电流保护实验实验报告

北京交通大学Beijing Jiaotong University 继电保护三段电流保护实验实验报告 姓名: **** 学号: *******(1005班) 指导老师:倪** 课程老师:和*** 实验日期: 2013.5.29(8--10)

目录 一、实验预习 (1) 二、实验目的 (1) 三、实验电路 (1) 四、实验注意问题 (2) 五、保护动作参数的整定 (2) 六、模拟故障观察保护的动作情况 (2) 七、思考题 (3)

一、实验前预习: 三段电流保护包括: Ⅰ段:无时限电流速断保护 Ⅱ段:限时电流速断保护 Ⅲ段:定时限过电流保护 三段保护都是反应于电流增大而动作的保护,它们之间的区别主要在于按照不同的原则来整定动作电流。 三段式保护整定计算内容及顺序:1 动作电流:选取可靠系数,计算短路电流和继电器动作电流;2 动作时间的整定;3灵敏度校验。 对继电保护的评价,主要是从选择性、速动性、灵敏性和可靠性四个方面评价。 二、实验目的 1、熟悉三段电流保护的接线; 2、掌握三段电流保护的整定计算原则和保护的性能 三、实验电路 实验电路如下图: 其中继电器的接线法有: (1)三相三继电器的完全星形接线(2)两相两继电器的不完全星形接线

另外还有两种继电器的接法如下: (3)两相三继电器接线法(4)两相继电器接线法 对三相继电保护的评价: 由I段、II段或III段而组成的阶段式电流保护,其最主要的优点就是简单、可靠,并且在一般情况下能满足快速切除故障的要求,因此在电网中特别是在35kV及以下的单侧电源辐射形电网中得到广泛的应用。其缺点是受电网的接线及电力系统运行方式变化的影响,使其灵敏性和保护范围不能满足要求。 四、实验注意问题 1、交流电流回路用允许大于5A的导线; 2、接好线后请老师检查。 五、保护动作参数的整定 1、要求整定参数如下: 保护I段动作电流为4.8A,动作时间为0秒; 保护III段动作电流为1.4A,动作时间为2秒。 2、按上述要求进行电流继电器和时间继电器的整定。 时间继电器的整定:将时间继电器整定把手调整到要求的刻度位置。 电流继电器的整定:按图接线。先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节单相调压器改变电流,分别整定电流I、III段的动作电流,要求电流继电器的动作电流与整定值的误差不超过5%。将实际整定结果填入表13-1。 表 六、模拟故障观察保护的动作情况 1、电流I段 通入5A电流(模拟I段区内故障):先合交流电源开关,但直流电源先不投入,按下模拟断路器手合按钮,调节调压器使电流为5A,再按下模拟断路器手分按钮,投入直流电源,按下模拟断路器手合按钮(模拟手合I段区内故障),观察各继电器的动作。

自动控制原理实验报告

实验报告 课程名称:自动控制原理 实验项目:典型环节的时域相应 实验地点:自动控制实验室 实验日期:2017 年 3 月22 日 指导教师:乔学工 实验一典型环节的时域特性 一、实验目的 1.熟悉并掌握TDN-ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃相应曲线和实际阶跃响应曲线。对比差异,分析原因。 3.了解参数变化对典型环节动态特性的影响。 二、实验设备 PC 机一台,TD-ACC+(或TD-ACS)实验系统一套。 三、实验原理及内容 下面列出各典型环节的方框图、传递函数、模拟电路图、阶跃响应,实验前应熟悉了解。 1.比例环节 (P) (1)方框图 (2)传递函数: K S Ui S Uo =) () ( (3)阶跃响应:) 0()(≥=t K t U O 其中 01/R R K = (4)模拟电路图: (5) 理想与实际阶跃响应对照曲线: ① 取R0 = 200K ;R1 = 100K 。 ② 取R0 = 200K ;R1 = 200K 。

2.积分环节 (I) (1)方框图 (2)传递函数: TS S Ui S Uo 1 )()(= (3)阶跃响应: ) 0(1)(≥= t t T t Uo 其中 C R T 0= (4)模拟电路图 (5) 理想与实际阶跃响应曲线对照: ① 取R0 = 200K ;C = 1uF 。 ② 取R0 = 200K ;C = 2uF 。

1 Uo 0t Ui(t) Uo(t) 理想阶跃响应曲线 0.4s 1 Uo 0t Ui(t) Uo(t) 实测阶跃响应曲线 0.4s 10V 无穷 3.比例积分环节 (PI) (1)方框图: (2)传递函数: (3)阶跃响应: (4)模拟电路图: (5)理想与实际阶跃响应曲线对照: ①取 R0 = R1 = 200K;C = 1uF。 理想阶跃响应曲线实测阶跃响应曲线 ②取 R0=R1=200K;C=2uF。 K 1 + U i(S)+ U o(S) + Uo 10V U o(t) 2 U i(t ) 0 0 .2s t Uo 无穷 U o(t) 2 U i(t ) 0 0 .2s t

武汉大学电力系统分析实验报告

电气工程学院 《电力系统分析综合实验》2017年度PSASP实验报告 学号: 姓名: 班级:

实验目的: 通过电力系统分析的课程学习,我们都对简单电力系统的正常和故障运行状态有了大致的了解。但电力系统结构较为复杂,对电力系统极性分析计算量大,如果手工计算,将花费 大量的时间和精力,且容易发生错误。而通过使用电力系统分析程序PSASP,我们能对电 力系统潮流以及故障状态进行快速、准确的分析和计算。在实验过程中,我们能够加深对电力系统分析的了解,并学会了如何使用计算机软件等工具进行电力系统分析计算,这对我们以后的学习和工作都是有帮助的。 潮流计算部分: 本次实验潮流计算部分包括使用牛顿法对常规运行方式下的潮流进行计算,以及应用PQ分解法规划运行方式下的潮流计算。在规划潮流运行方式下,增加STNC-230母线负荷的有功至1.5.p.u,无功保持不变,计算潮流。潮流计算中,需要添加母线并输入所有母线 的数据,然后再添加发电机、负荷、交流线、变压器、支路,输入这些元件的数据。对运行方案和潮流计算作业进行定义,就可以定义的潮流计算作业进行潮流计算。 因为软件存在安装存在问题,无法使用图形支持模式,故只能使用文本支持模式,所以 无法使用PSASP绘制网络拓扑结构图,实验报告中的网络拓扑结构图均使用Visio绘制, 请见谅。 常规潮流计算: 下图是常规模式下的网络拓扑结构图,并在各节点标注电压大小以及相位。 下图为利用复数功率形式表示的各支路功率(参考方向选择数据表格中各支路的i侧母

线至j侧),因为无法使用图形支持模式,故只能通过文本支持环境计算出个交流线功率,下图为计算结果。

自动控制实验报告1

东南大学自动控制实验室 实验报告 课程名称:自动控制原理 实验名称:闭环电压控制系统研究 院(系):仪器科学与工程专业:测控技术与仪器姓名:学号: 实验室:常州楼五楼实验组别:/ 同组人员:实验时间:2018/10/17 评定成绩:审阅教师: 实验三闭环电压控制系统研究

一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。 (2)自动控制的根本是闭环,尽管有的系统不能直接感受到它的闭环形式,如步进电机控制,专家系统等,从大局看,还是闭环。闭环控制可以带来想象不到的好处,本实验就是用开环和闭环在负载扰动下的实验数据,说明闭环控制效果。自动控制系统性能的优劣,其原因之一就是取决调节器的结构和算法的设计(本课程主要用串联调节、状态反馈),本实验为了简洁,采用单闭环、比例调节器K。通过实验证明:不同的K,对系性能产生不同的影响,以说明正确设计调节器算法的重要性。 (3)为了使实验有代表性,本实验采用三阶(高阶)系统。这样,当调节器K值过大时,控制系统会产生典型的现象——振荡。本实验也可以认为是一个真实的电压控制系统。 三、实验设备: THBDC-1实验平台 四、实验线路图: 五、实验步骤:

电力系统继电保护实验报告

实验一电流继电器特性实验 一、实验目的 1、了解继电器的結构及工作原理。 2、掌握继电器的调试方法。 二、构造原理及用途 继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。 继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。 利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。 继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。 电流继电器用于发电机、变压器、线路及电动机等的过负荷和短路保护装置。 三、实验内容 1. 外部检查 2. 内部及机械部分的检查

3. 绝缘检查 4. 刻度值检查 5. 接点工作可靠性检查 四、实验步骤 1、外部检查 检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。 1. 内部和机械部分的检查 a. 检查转轴纵向和横向的活动范围,该范围不得大于0.15~0.2mm,检查舌片与极间的间隙,舌片动作时不应与磁极相碰,且上下间隙应尽量相同,舌片上下端部弯曲的程度亦相同,舌片的起始和终止位置应合适,舌片活动范围约为7度左右。 b. 检查刻度盘把手固定可靠性,当把手放在某一刻度值时,应不能自由活动。 c. 检查继电器的螺旋弹簧:弹簧的平面应与转轴严格垂直,弹簧由起始位置转至刻度最大位置时,其层间不应彼此接触且应保持相同的间隙。 d. 检查接点:动接点桥与静接点桥接触时所交的角度应为55~65度,且应在距静接点首端约1/3处开始接触,并在其中心线上以不大的摩擦阻力滑行,其终点距接点末端应小于1/3。接点间的距离不得小于2mm,两静接点片的倾斜应一致,并与动接点同时接触,动接点容许在其本身的转轴上旋转10~15度,并沿轴向移动0.2~0.3mm,继电器的静接点片装有一限制振动的防振片,防振片与静接点片刚能接触或两者之间有一不大于0.1~0.2mm的间隙。 2、电气特性的检验及调整 (1)实验接线图如下:

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些? 2、 如何判断系统稳定性? 3、 系统的动态性能指标有哪些? 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为:) ()()()(1)(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,();,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

西安交大自动控制原理实验报告

自动控制原理实验报告 学院: 班级: 姓名: 学号:

西安交通大学实验报告 课程自动控制原理实验日期2014 年12月22 日专业班号交报告日期 2014 年 12月27日姓名学号 实验五直流电机转速控制系统设计 一、实验设备 1.硬件平台——NI ELVIS 2.软件工具——LabVIEW 二、实验任务 1.使用NI ELVIS可变电源提供的电源能力,驱动直流马达旋转,并通过改变电压改变 其运行速度; 2.通过光电开关测量马达转速; 3.通过编程将可变电源所控制的马达和转速计整合在一起,基于计算机实现一个转速自 动控制系统。 三、实验步骤 任务一:通过可变电源控制马达旋转 任务二:通过光电开关测量马达转速 任务三:通过程序自动调整电源电压,从而逼近设定转速

编程思路:PID控制器输入SP为期望转速输出,PV为实际测量得到的电机转速,MV为PID输出控制电压。其中SP由前面板输入;PV通过光电开关测量马达转速得到;将PID 的输出控制电压接到“可变电源控制马达旋转”模块的电压输入控制端,控制可变电源产生所需的直流电机控制电压。通过不断地检测马达转速与期望值对比产生偏差,通过PID控制器产生控制信号,达到直流电机转速的负反馈控制。 PID参数:比例增益:0.0023 积分时间:0.010 微分时间:0.006 采样率和待读取采样:采样率:500kS/s 待读取采样:500 启动死区:电机刚上电时,速度为0,脉冲周期测量为0,脉冲频率测量为无限大。通过设定转速的“虚拟下限”解决。本实验电机转速最大为600r/min。故可将其上限值设为600r/min,超过上限时,转速的虚拟下限设为200r/min。 改进:利用LabVIEW中的移位寄存器对转速测量值取滑动平均。

分析化学实验报告(武汉大学第五版)

分析化学实验报告 陈峻 (贵州大学矿业学院贵州花溪 550025) 摘要:熟悉电子天平得原理与使用规则,同时可以学习电子天平得基本操作与常用称量方法;学习利用HCl与NaOH相互滴定,便分别以甲基橙与酚酞为指示剂得 滴定终点;通过KHC 8H 4 O 4 标定NaOH溶液,以学习有机酸摩尔质量得测定方法、熟 悉常量法滴定操作并了解基准物质KHC 8H 4 O 4 得性质及应用;通过对食用醋总浓度 得测定,以了解强碱滴定弱酸过程中溶液pH得变化以及指示剂得选择。 关键词:定量分析;电子天平;滴定分析;摩尔质量;滴定;酸度,配制与标定 前言 实验就是联系理论与实际得桥梁,学好了各种实验,不仅能使学生掌握基本操作技能,提高动手能力,而且能培养学生实事求就是得科学态度与良好得实验习惯,促其形成严格得量得观念。天平就是大多数实验都必须用到得器材,学好天平得使用就是前提,滴定就是分析得基础方法,学好配制与滴定就是根本。 (一)、分析天平称量练习 一、实验目得: 1、熟悉电子分析天平得使用原理与使用规则。 2、学习分析天平得基本操作与常用称量法。 二、主要试剂与仪器 石英砂电子分析天平称量瓶烧杯小钥匙 三、实验步骤 1、国定质量称量(称取0、5000g 石英砂试样3份) 打开电子天平,待其显示数字后将洁净、干燥得小烧杯放在秤盘上,关好天平门。然后按自动清零键,等待天平显示0、0000 g。若显示其她数字,可再次按清零键,使其显示0、0000

g。 打开天平门,用小钥匙将试样慢慢加到小烧杯中央,直到天平显示0、5000 g。然后关好 天平门,瞧读数就是否仍然为0、5000g。若所称量小于该值,可继续加试样;若显示得量超过 该值,则需重新称量。每次称量数据应及时记录。 2、递减称量(称取 0、30~0、32 g石英砂试样 3 份) 按电子天平清零键,使其显示0、0000 g,然后打开天平门,将1个洁净、干燥得小烧杯 放在秤盘上,关好天平门,读取并记录其质量。 另取一只洁净、干燥得称量瓶,向其中加入约五分之一体积得石英砂,盖好盖。然后将 其置于天平秤盘上,关好天平门,按清零键,使其显示0、0000 g。取出称量瓶,将部分石英 砂轻敲至小烧杯中,再称量,瞧天平读数就是否在-0、30~-0、32 g 范围内。若敲出量不够, 则继续敲出,直至与从称量瓶中敲出得石英砂量,瞧其差别就是否合乎要求(一般应小于 0、4 mg)。若敲出量超过0、32 g,则需重新称量。重复上述操作,称取第二份与第三份试样。 四、实验数据记录表格 表1 固定质量称量 编号 1 2 3 m/g 0、504 0、500 0、503 表2 递减法称量 编号 1 2 3 m(空烧杯)/g 36、678 36、990 37、296 称量瓶倒出试样m1 -0、313 -0、303 -0、313 M(烧杯+试样)/g 36、990 37、296 37、607

自动控制系统实验报告

自动控制系统实验报告 学号: 班级: 姓名: 老师:

一.运动控制系统实验 实验一.硬件电路的熟悉和控制原理复习巩固 实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。 实验内容:了解运动控制实验仪的几个基本电路: 单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路) ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理) 步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构 步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。) 微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。 实验结果: 步进电机驱动技术: 控制信号接口: (1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双 脉冲控制方式时为正转脉冲信号。 (2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式 时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。 (4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。 电流设定: (1)工作电流设定: (2)静止电流设定: 静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。 (3)细分设定: (4)步进电机的转速与脉冲频率的关系 电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m) 逐点比较法的直线插补和圆弧插补: 一.直线插补原理: 如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为: 00 00Y Ye X Xe Y Y X X --= -- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)

继电保护实验报告-实验四

《电力系统继电保护实验》实验报告 实验名称实验四输电线路距离保护阻抗特 性测定实验 学号 日期2018-5-18 地点动力楼306 教师陈歆技蒋莉 电气工程学院 东南大学

1.实验目的: (1)熟悉和掌握智能变电站综合自动化系统输电线路距离保护装置定值配置方法、模拟电网故障设置及继电保护测试仪的操作方法。 (2)通过输电线路的短路故障实验,记录和观察故障电压、电流数值,理解输电线路故障动作过程及接地距离与相间距离阻抗特性的测试原理。 (3)通过输电线路故障电压、电流数值分析及保护装置动作行为的分析,学会阻抗特性曲线的绘制方法,理解和掌握短路类型、故障点阻抗及保护定值对输电线路距离保护阻抗特性的影响。 2.实验内容: 1)相间、接地距离I段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离I段保护动作边界,绘制PSL 603U 保护装置相间、接地距离I段实际阻抗特性曲线图,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离I段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 2)相间、接地距离Ⅱ段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离Ⅱ段保护动作边界,绘制PSL 603U保护装置相间、接地距离Ⅱ段保护实际阻抗特性曲线,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离Ⅱ段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 3)相间、接地距离Ⅲ段保护阻抗特性曲线的测定 该实验项目分别搜索和测试相间、接地距离Ⅲ段保护动作边界,绘制PSL 603U保护装置相间、接地距离Ⅲ段保护实际阻抗特性曲线,根据保护定值及保护算法计算并绘制PSL 603U装置相间、接地距离Ⅲ段保护的理论阻抗特性曲线,比较两者的误差,并校验阻抗特性的正确性。 3.实验原理(实验的理论基础): 本实验以智能变电站综合自动化实验系统所装设的PSL 603U线路保护装置为基础,变电站的线路一次主接线图如图-1所示。图中Zk为所装设的PSL 603U 线路保护装置,其电压与电流输入量与实验一一样,均来自220KV母线与断路器2201之间所装设的电压互感器EPT与电流互感器ECT的测量量,即基于IEC 61850标准的SMV信号量。 F1 实验线路距离保护模拟一次主接线图 根据电力系统继电保护相关原理,及PSL 603U线路保护装置说明书所述工作原理,可知PSL 603U线路距离保护主要有三段式相间距离继电器、接地距离继电器及辅助阻抗元件组成,相间、接地距离继电器主要有偏移阻抗元件、全阻

武汉大学计算机学院教学实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年11 月15 日 实验名称电路仿真实验实验台号实验时数3小时 姓名秦贤康学号2013301500100年级2013 班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 实验目的: 熟悉multisim仿真软件的使用 用multisim进行电路仿真,并验证书上的理论知识的正确性 内容:用仿真软件进行实验 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 一台微机 实验步骤: 用multisim先进行电路仿真,再记录下相关数据 三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等)

实验内容及数据记录 1、简单直流电路 简单直流电路在有载状态下电源的电阻、电压和电路 简单直流电路在短路状态下电源的电阻、电压和电路 简单直流电 路在 开路状 态下电源的电阻、电压和电路 2、复杂直 流电路 复杂直流电路中各元件上的电压 复杂直流电路中各元件上的电流 复杂直流电路在E1作用下负载上的电压和电流 复杂直流电路在E2作用下的电压和电流 复杂直流电路在E1与E2作用下的电压和电流 复杂直 流电路 中的等效电阻 R (k Ω) 1 2 3 4 5 I (mA ) 24000 24000 24000 24000 24000 U (V ) 0.000024 0.000024 0.000024 0.000024 0.000024 R (k Ω) 1 2 3 4 5 I (mA ) 12 6.09 4.011 3.011 2.412 U (V ) 11.94 11.997 11.99 8 11.998 11.999 R (k Ω) 1 2 3 4 5 I (mA ) 0.000176 0.000176 0.000176 0.000176 0.000176 U (V ) 12 12 12 12 12 RL (k Ω) 1 2 3 4 5 URL (V ) 6.799 8.497 9.269 9.710 9.995 UR1(V ) 5.198 3.501 2.730 2.289 2.004 UR2(V ) -3.200 -1.502 -0.731 -0.290 -0.005286 UE1(V ) 11.997 11.998 11.999 11.999 11.999 UE2(V ) 9.999 10.000 10.000 10.000 10.000 RL (k Ω) 1 2 3 4 5 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 IR1(mA ) 5.198 3.505 2.733 2.292 2.006 IR2(mA ) -1.603 2.499 --1.999 -1.666 -1.428 IE1(mA ) 5.198 3.505 2.733 2.292 2.006 IE2(mA ) -1.603 -2.501 -2.000 -1.666 -1.428 RL (k Ω) 1 2 3 4 5 UE1(V ) 4.798 5.996 6.540 6.851 7.053 IE1(mA ) 4.803 3.004 2.187 1.720 1.418 RL (k Ω) 1 2 3 4 5 UE2(V ) 2.002 2.501 2.729 2.858 2.942 IE2(mA ) 2.002 1.252 0.911 0.718 0.592 RL (k Ω) 1 2 3 4 5 URL (V ) 6.802 8.497 9.269 9.710 9.995 IRL (mA ) 6.807 4.258 3.100 2.437 2.209 R3(k Ω) 1 2 3 4 5 R6(k Ω) 2 3 4 5 6 R7(k Ω) 3 4 5 6 7 RL (k Ω) -1.603 2.499 --1.999 -1.666 -1.428 URL (V ) 5.198 3.505 2.733 2.292 2.006 IRL (A ) -1.603 -2.501 -2.000 -1.666 -1.428 R3(k Ω) 1 2 3 4 5

相关文档
相关文档 最新文档