文档库 最新最全的文档下载
当前位置:文档库 › 十种经典的全波整流电路

十种经典的全波整流电路

十种经典的全波整流电路
十种经典的全波整流电路

十种经典的全波整流电路

图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益

图2优点是匹配电阻少,只要求R1=R2

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下: ②讨论C和RL的大小对输出电压的影响。

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

10种精密整流电路的详解

1.第一种得模拟电子书上(第三版442页)介绍得经典电路。A1用得就是半波整流并且放大 两倍,A2用得就是求与电路,达到精密整流得目得。(R1=R3=R4=R5=2R2) 2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器 得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0得时候电路等效就是这样得

放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0得时候电路图等效如下: 放大器A就是电压跟随器,放大器B就是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示

4.第四种电路就是要求所有电阻全部相等。这个仿真相对简单。 电路与仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。(不知道这么想就是不就是正确得) 当Ui<0得时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

半波精密整流电路、8种类型精密全波整流电路及详细分析

精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.

整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻 并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω 100Ω 50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω) 200Ω 100Ω

50 Ω 25 Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: a v g ) r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

十种运放精密全波整流电路

十种运放精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K

图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了. 图3的优势在于高输入阻抗. 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高. 两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随

10种全波精密整流电路

十种精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊

说明,增益均按1设计。 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容。电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益。缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离。另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0。使用时要小心单电源运放在信号很小时的非线性。而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,

种精密整流电路的详解

1.第一种的模拟电子书上(第三版442页)介绍的经典电路。A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。(R1=R3=R4=R5=2R2) 2.第二种方法看起来比较简单A1是半波整流电路,是负半轴有输出,A2的电压跟随器的 变形,正半轴有输出,这样分别对正负半轴的交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0的时候电路等效是这样的

放大器A是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0的时候电路图等效如下: 放大器A是电压跟随器,放大器B是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示

4.第四种电路是要求所有电阻全部相等。这个仿真相对简单。 电路和仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真是不清楚为什么是这样分析,可以参照模拟电子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B的部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。(不知道这么想是不是正确的) 当Ui<0的时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

简单学电路——半波与全波,半波整流、全波整流、桥式整流(原创)

一、半波整流电路 图 5-1 、是一种最简单的整流电路。它由电源变压器 B 、整流二极管 D 和负载电阻Rfz ,组成。变压器把市电电压(多为220 伏)变换为所需要的交变电压e2 , D 再把交流电变 换为脉动直流电。 下面从图5-2 的波形图上看着二极管是怎样整流的。 变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在 0 ~K 时间内, e2 为正半周即变压器上端为正下端为负。此时二极管承受正 向电压面导通, e2 通过它加在负载电阻 Rfz 上,在π~ 2π时间内, e2 为负半周,变压器

次级下端为正,上端为负。这时 D 承受反向电压,不导通,Rfz,上无电压。在π~2π 时间内,重复0 ~π时间的过程,而在3π~ 4π时间内,又重复π~2π 时间的过程? 这样反复下去,交流电的负半周就被"削 "掉了,只有正半周通过Rfz,在 Rfz 上获得了一个单一右 向(上正下负)的电压,如图5-2 ( b )所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲 "一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个 周期内的平均值,即负载上的直流电压Usc =0.45e2)因此常用在高电压、小电流的场合, 而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引 出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压 e2a 、e2b ,构成 e2a 、 D1 、 Rfz 与 e2b 、 D2 、 Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4所示的波形图说明。在0 ~π间内, e2a 对 Dl 为正向电压, D1 导通,在Rfz 上得到上正下负的电压;e2b对D2为反向电压,D2 不导通(见图5-4 (b )。在π- 2π时间内, e2b 对 D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;e2a对D1为反向电压,D1 不导通(见图5-4 ( C)。

精密整流电路

实验 精密整流电路 一、实验目的 (1) 了解精密半波整流电路及精密全波整流电路的电路组成、工作原理及参数估算; (2) 学会设计、调试精密全波整流电路,观测输出、输入电压波形及电压传输特性。 二、知识点 半波精密整流、全波精密整流 三、实验原理 将交流电压转换成脉动的直流电压,称为整流。众所周知,利用二极管的单向导电性,可以组成半波及全波整流电路。在图1(a )中所示的一般半波整流电路中,由于二极管的伏安特性如图1(b )所示,当输入电压 幅值小于二极管的开启电压 时,二极管在信 号的整个周期均处于截止状态,输出电压始终为零。即使幅值足够大,输出电压也只反 映 大于 的那部分电压的大小,故当用于对弱信号进行整流时,必将引起明显的误差, 甚至无法正常整流。如果将二极管与运放结合起来,将二极管置于运放的负反馈回路中,则 可将上述二极管的非线性及其温漂等影响降低至可以忽略的程度,从而实现对弱小信号的精密整流或线性整流。 1.精密半波整流 图2给出了一个精密半波整流电路及其工作波形与电压传输特性。下面简述该电路的工作原理: 当输入>0时,<0,二极管D 1导通、D 2截止,由于N 点“虚地”,故≈0(≈-0.6V )。 图1 一般半波整流电路 V i V O

当输入<0 时,>0,二极管D2导通、D1 截止,运放组成反相比例运算器,故,若R1=R2,则=-。其工作波形及电压传输特性如图所示。电路的输出电压可表示为 v0 = 0 v i>0 -v i v i<0 (a)电路(b)波形 (c)电压传输特性 图2 精密半波整流电路

这里,只需极小的输入电压,即可有整流输出,例如,设运放的开环增益为105 ,二 极管的正向导通压降为0.6V ,则只需输入为 μV 以上,即有整流输出了。同 理,二极管的伏安特性的非线性及温漂影响均被压缩了105 倍。 2.精密全波整流 图3给出一个具有高输入阻抗的精密全波整流电路及其工作波形与电压传输特性。 当输入 >0时, <0,二极管D 1导通、D 2截止,故 = = 。运放A 2为差分输入 放大器,由叠加原理知。 v o v i V OM (b )工作波形 (c ) 电压传输特性 图3 精密全波整流电路 v i R - + A 1 +15V -15V N D 1 R D 2 v o1 - + A 2 +15V -15V N R 2R R L v o (a )电路 t v i v o t

三相半波、桥式(全波)整流及六脉冲整流电路(精)

三相半波、桥式(全波)整流及六脉冲整流电路 1.三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o叠加,并且整流输出波形不过0点,其最低点电压 式中U p——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。 图1 三相半波整流电路原理图 2.三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a 是三相交流电压波形;图3(b是三相半波整流电压波形图;图3(c是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动 周期是60o;

②三相半波整流波形的脉动幅度和输出电压平均值: 三相半波整流波形的脉动幅度是: (1 式中 U——脉动幅度电压;U p是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为:(2 那么其脉动幅度电压就是: 输出电压平均值U d是从30o~150o积分得, (3) 式中 U d——输出电压平均值; U A——相电压有效值。 如果滤波后再经电容滤波,则输出电压就接近于幅值U p。 三相全波整流波形的脉动幅度是: 输出电压平均值U d是从60o~120o积分得: U AB=2.34 U A=514V (4 式中 U d——输出电压平均值, U AB——线电压有效值。 如果滤波后再经电容滤波,则输出电压就接近于幅值U p。

单相全波整流电路的设计(1)

《电力电子技术》课程设计之 单相全波整流电路的设计 姓名 学号 年级 专业 系(院) 指导教师 2012/8/21

目录 第一章设计任务书 1.1 设计目的 (2) 1.2 设计要求 (2) 1.3 设计内容 (2) 1.4设计题目 (2) 第二章设计内容 2.1 方案的论证与选择 (3) 2.1.1主电路的方案论证 (3) 2.2 主电路的设计 (5) 2.2.1 带阻感负载的单相桥式全控整流电路 (5) 2.2.2 原理图分析 (6) 2.3 电路方案说明 (7) 第三章触发电路 3.1 同步触发电路 (7) 3. 2 晶闸管的触发条件 (7) 3.3 晶闸管的分类 (13) 3.4 同步环节 (13) 3.5 脉冲形成环节 (14) 3.6双窄脉冲形成环节 (14) 3.7 同步变压器 (15) 第四章保护电路的设计 4.1 过电流保护 (16) 4.2 过电压保护 (17) 第五章元器件的选用 (20) 第六章参数的计算 (26) 第七章心得体会 (27)

第八章参考文献 (28) 第一章设计任务书 1.1 设计目的: 《电力电子技术》课程设计是配合交流电路理论教学,为自动化和电气工程及自动化专业开设的专业基础技术技能设计,是自动化和电气工程及自动化专业学生在整个学习过程中一项综合性实践环节,是走向工作岗位、从事专业技术之前的一项综合性技能训练,对学生的职业能力培养和实践技能训练具有相当重要的意义。主要目的在于: 1:进一步掌握晶闸管相控整流电路的组成、结构、工作原理; 2:重点理解移相电路的功能、结构、工作原理; 3:理解同步变压器的功能。 1.2 设计要求: 1:根据课题正确选择电路形式; 2:绘制完整电气原理图(包括主要电气控制部分); 3:详细介绍整体电路和各功能部件工作原理并计算各元、器件值; 4:编制使用说明书,介绍适用范围和使用注意事项; 说明:负载形式及参数可自行选择 1.3设计内容: 单相全波整流电路的设计。 1:主电路方案论证 2:电路方框图 3:整流电路方框图 4:电路方案说明 单相整流电路可分为单相半波、单相全波和单相桥式可控整流电路,它们所连接的负载性质不同就会有不同的特点。 单相桥式全控整流电路应用广泛,只用四只晶闸管,一个电阻,一个电感,投资比较少,在交流电源的正负半周都有整流输出电流流过负载,整流电压波形脉动次数多于半波整流电路。变压器而次绕组中,正负两个半周电流方向相反且波形对称,直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率高。 单相桥式全控桥整流电路与半波整流电路相比较: (1)a的移相范围相等,均为0~180。 (2)输出电压平均值Ud是半波整流电路的2倍。 (3)相同的负载功率下,流过晶闸管的平均电流减小一半。 (4)功率因数提高了1.414倍。

桥式整流电路计算

桥式整流电路计算 桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

结论2:从图10.6可看出,滤波电路中二极管的导电角小于180o,导电时间缩短。因此,在短暂的导电时间内流过二极管很大的冲击电流,必须选择较大容量的二极管。 在纯电阻负载时: 有电容滤波时: 结论3:电容放电的时间τ=R L C越大,放电过程越慢,输出电压中脉动(纹波)成分越少,滤波效果越好。取τ≥(3~5)T/2,T为电源交流电压的周期。 整流电路输出电压计算 对于整流电压的输出电压大小,大家一定不陌生。很多人会说,输出平均值全波0.9倍,半波0.45倍的交流有效。但是在设计中,我们常常发现一个事实,例如在半波整流后,输出电压得到的不止0.45倍,9V交流整流后可能有11~12V。之前我一直很困惑,是我记错了计算倍数吗?翻了很多书籍,公式当然是没错的。那到底怎么回事? 可能之前我们在学校学这个方面知识点的时候太过注重整流电路,而忽略了脉动比的概念,所以造成我们现在很多人对这一简单的知识不是很清晰。其实这里是由于整流电路后面接的滤波电容有关的,查阅模电知识我们即可了解到,整流后往往会加滤波稳压,而滤波电路会改变整流输出的脉动比,并且和负载有关。因此最终整流后得到的电压除了跟整流方式有关,还和负载、滤波电容大小有关系。RL*C的数值直接影响输出电压的大小。因此滤波电容选择其实不是随意的,而是需要根据负载选取合适的值。 接入滤波电路后,输出电压平均值近似取值为1.2倍,负载开路取1.414倍。 RC=(3-5)T/2 来确定电容容量选择。其中T表示电网周期。

桥式整流电路图及工作原理介绍

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下:

无需二极管的精密全波信号整流器

无需二极管的精密全波信号整流器 使用半导体二极管的整流器电路通常要处理大大超过二极管正向压降的电压,一般这不会影响整流的精度。但是,当二极管压降超过施加的电压时,整流信号的精度就会受到影响。精密整流电路将二极管与运算放大器结合起来,可消除了二极管压降的影响,实现了高精度的小信号整流。由于它具有现代运放的优点,因而可以处理满摆幅的输入、输出。图 1 的电路中完全无需二极管,即可在单电源供电情况下运行,提供全波整流。 电路工作原理如下:如果VIN>0V,则IC1A 的输出VHALF 等于VIN/2,而IC1B 用作一个减法器,其输出电压VOUT = VIN。实际上,这个电路是一个单位增益的跟随器。如果VIN = 0V,则VHALF = 0V,此时电路是一个单位增益反相器,输出VOUT = - VIN。图2 显示了电路在VIN、中间电压VHALF,以及输出电压VOUT下的输入信号。 无需二极管的精密全波信号整流器 作者:José M Blanes and José A Carrasco, University Miguel Hernández, Elche, Spain 使用半导体二极管的整流器电路通常要处理大大超过二极管正向压降的电压,一般这不会影响整流的精度。但是,当二极管压降超过施加的电压时,整流信号的精度就会受到影响。精密整流电路将二极管与运算放大器结合起来,可消除了二极管压降的影响,实现了高精度的小信号整流。由于它具有现代运放的优点,因而可以处理满摆幅的输入、输出。图 1 的电路中完全无需二极管,即可在单电源供电情况下运行,提供全波整流。

电路工作原理如下:如果VIN>0V,则IC1A 的输出VHALF 等于VIN/2,而IC1B 用作一个减法器,其输出电压VOUT = VIN。实际上,这个电路是一个单位增益的跟随器。如果VIN = 0V,则VHALF = 0V,此时电路是一个单位增益反相器,输出VOUT = - VIN。图2 显示了电路在VIN、中间电压VHALF,以及输出电压VOUT下的输入信号。 本电路使用了一块美国国家半导体公司的LMC6482 芯片,工作在两个运算放大器的线性区。推荐的应用包括用于自动增益控制、信号解调和过程仪表的低成本整流。电路只有一个与器件有关的特性:当输入电压超出负供电电压时,放大器一定不能有相位反转,LMC6482就能满足这一要求

简单学电路——半波与全波,半波整流、全波整流、桥式整流原创

一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间,e2 为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2 通过它加在负载电阻Rfz上,在π~2π时间,e2 为负半周,变压器次级下端为正,上端为负。这时D 承受反向电压,不导通,Rfz,上无电压。在π~2π时间,重复0~π时间的过程,而在3π~4π时间,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。

二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4 所示的波形图说明。在0~π间,e2a 对Dl 为正向电压,D1 导通,在Rfz 上得到上正下负的电压;e2b 对D2 为反向电压,D2 不

全波整流电路图

全波整流电路如图Z0703所示。它是由次级具有中心抽头的电源变压器Tr、两个整流二极管D1、D2和负载电阻R L组成。 变压器次级电压u21和u22大小相等,相位相反, 即 u21 = - u22= 式中,U2 是变压器次级半边绕组交流电压的有效 值。 全波整流电路的工作过程是:在u2 的正半周(ωt = 0~π)D1正偏导通,D2反偏截止,R L 上有自上而下的电流流过,RL上的电压与u21 相同。 在u2 的负半周(ωt =π~2π),D1反偏截止,D2正偏导通,R L上也有自上而下的电流流过, R L上的电压与u22相同。可画出整流波形如图Z0704所示。可见,负载凡上得到的也是一单 向脉动电流和脉动电压。其平均值分别为: GS0705 流过负载的平均电流为 GS0706 流过二极管D的平均电流(即正向电流)为 加在二极管两端的最高反向电压为 选择整流二极管时,应以此二参数为极限参数。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小, 但变压器需要中心抽头、制造麻烦,整流二极管需承受的反向 电压高,故一般适用于要求输出电压不太高的场合。 全波整流电路如图Z0703所示。它是由次级具有中心抽头的电 源变压器Tr、两个整流二极管D1、D2和负载电阻R L组成。变 压器次级电压u21和u22大小相等,相位相反,即 u21 = - u22=

式中,U2 是变压器次级半边绕组交流电压的有效值。 全波整流电路的工作过程是:在u2 的正半周(ωt = 0~π)D1正偏导通,D2反偏截止,R L 上有自上而下的电流流过,RL上的电压与u21 相同。 在u2 的负半周(ωt =π~2π),D1反偏截止,D2正偏导通,R L上也有自上而下的电流流过, R L上的电压与u22相同。可画出整流波形如图Z0704所示。可见,负载凡上得到的也是一单 向脉动电流和脉动电压。其平均值分别为: 流过负载的平均电流为 流过二极管D的平均电流(即正向电流)为 加在二极管两端的最高反向电压为 选择整流二极管时,应以此二参数为极限参数。 全波整流输出电压的直流成分(较半波)增大,脉动程度减小,但变压器需要中心抽头、制造麻烦,整流 二极管需承受的反向电压高,故一般适用于要求输出电压不太高的场合。

相关文档
相关文档 最新文档