文档库 最新最全的文档下载
当前位置:文档库 › 高效液相色谱测定法标准操作规程

高效液相色谱测定法标准操作规程

高效液相色谱测定法标准操作规程
高效液相色谱测定法标准操作规程

标准操作规程

STANDARD OPERATION PROCEDURE

编号SOP-02-QC-014题目高效液相色谱测定法标准操作规程

版本号0.0 生效日期2015年12月1日

编制部门QC 签名/日期

审核部门QC经理签名/日期

审核部门QA经理签名/日期

批准质量副总经理签名/日期

颁发部门质量保证部分发部门QC

1目的:建立高效液相色谱测定法操作规程,以使检验操作规范化。

2适用范围:适用于高效液相色谱测定法检验操作全过程。

3责任:QC人员对本SOP实施负责。

4内容

高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。

4.1.对仪器的一般要求和色谱条件

高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。

4.1.1.色谱柱

反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。

正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。

手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被

分离物质的性质来选择合适的色谱柱。

温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。

残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。

4.1.2.检测器

最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。

紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。

紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定范围内呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。

不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。

4.1.3.流动相

反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。

正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。

品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变范围为0.7X?1.3X;当X大于33%时,允许改变范围为X—10%?X+10% 。

2/h R W W t 、、(

)()

(,2/,22/12

170.1221

21

2h h R R R R W W t t R W W t t R +?-?=

+-?=

若需使用小粒径(约2μm )填充剂,输液泵的性能、进样体积、检测池体积和系统的死体积等必须与之匹配;如有必要,色谱条件也应作适当的调整。当对其测定结果产生争议时,应以品种项下规定的色谱条件的测定结果为准。

当必须使用特定牌号的色谱柱方能满足分离要求时,可在该品种正文项下注明。 4.2.系统适用性试验

色谱系统的适用性试验通常包括理论板数、分离度、灵敏度、拖尾因子和重复性等五个参数。

按各品种正文项下要求对色谱系统进行适用性试验,即用规定的对照品溶液或系统适用性试验溶液在规定的色谱系统进行试验,必要时,可对色谱系统进行适当调整,以符合要求。 4.2.1.色谱柱的理论板数(n ) 用于评价色谱柱的分离效能。由于不同物质在同一色谱柱上的色谱行为不同,采用理论板数作为衡量柱效能的指标时,应指明测定物质,一般为待测物质或内标物质的理论板数。

在规定的色谱条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图,量出供试品主成分色谱峰或内标物质色谱峰的保留时间R t 和峰宽(W )或半高峰宽(h W /2),

按()()2

2/2/54.5/16n h R R W t n W t ==或计算色谱柱的理论板数。可用时

间或长度计(下同),但应取相同单位。

4.2.2.分离度(R ) 用于评价待测物质与被分离物质之间的分离程度,是衡量色谱系统分离效能的关键指标。可以通过测定待测物质与已知杂质的分离度,也可以通过测定待测物质与某一指标性成分(内标物质或其他难分离物质)的分离度,或将供试品或对照品用适当的方法降解,通过测定待测物质与某一降解产物的分离度,对色谱系统分离效能进行评价与调整。

无论是定性鉴别还是定量测定,均要求待测物质色谱峰与内标物质色谱峰或特定的杂质对照色谱峰及其他色谱峰之间有较好的分离度。除另有规定外,待测物质色谱峰与相邻色谱峰之间的分离度应大于1.5。分离度的计算公式为;

式中 2t R 为相邻两色谱峰中后一峰的保留时间;

1t R 为相邻两色谱峰中前一峰的保留时间;

1

h 05.02d W T

2/h 22/121、、、及、W W W W h 分别为此相邻两色谱峰的峰宽及半高峰宽(如图)。

当对测定结果有异议时,色谱柱的理论板数(n )和分离度(R )均以峰宽(W )的计算结果为准。

4.2.3.灵敏度 用于评价色谱系统检测微量物质的能力,通常以信噪比(S/N)来表示。通过测定一系列不同浓度的供试品或对照品溶液来测定信噪比。定量测定时,信噪比应不小于10;定性测定时,信噪比应不小于3。系统适用性试验中可以设置灵敏度实验溶液来评价色谱系统的检测能力。

4.2.4.拖尾因子(T ) 用于评价色谱峰的对称性。拖尾因子计算公式为:

式中:W 0.05h 为5%峰高处

的峰宽;

1d 为峰顶在5%峰高处横坐标平行线的投影点至峰前沿与此平行线交点的距离(如图)。

()R

R S S c A c A f //=

校正因子'

S

A ()''c /S

S X X A A f c ?

=含量以峰高作定量参数时,除另有规定外,T 值应在0.95-1.05之间。

以峰面积作定量参数时,一般的峰拖尾或前伸不会影响峰面积积分,但严重拖尾会影响基线和色谱峰起止的判断和峰面积积分的准确性,此时应在品种正文项下对拖尾因子作出规定。

4.2.

5.重复性 用于评价色谱系统连续进样时响应值的重复性能。采用外标法时,通常取各品种项下的对照品溶液,连续进样5次,除另有规定外,其峰面积测量值的相对标准偏差应不大于2.0%,采用内标法时,通常配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成3种不同浓度的溶液,分别至少进样2次,计算平均校正因子,其相对标准偏差应不大于2.0%。 4.3测定法 4.3.1内标法

按品种正文项下的规定,精密称(量)取对照品和内标物质,分别配成溶液,各精密量取适量,混合配成校正因子测定用的对照溶液。取一定量进样,记录色谱图。测量对照品和内标物质的峰面积或峰髙,按下式计算校正因子:

式中 S A 为内标物质的峰面积或峰高;

R A 为对照品的峰面积或峰高;

S c 为内标物质的浓度; R c 为对照品的浓度。

再取各品种项下含有内标物质的供试品溶液,进样,记录色谱图,测量供试品中待测成分和内标物质的峰面积或峰高,按下式计算含量:

式中 X A 为供试品的峰面积或峰高;

X c 为供试品的浓度;

内标物质的峰面积或峰高; S

c'为内标物质的浓度;

f 为内标法校正因子。

采用内标法,可避免因供试品前处理及进样体积误差对测定结果的影响。 4.3.2外标法

()R

X R X A A c c ?

=含量B

B A A A c A //c =

校正因子按各品种项下的规定,精密称(量)取对照品和供试品,配制成溶液,分别精密取一定量,进样,记录色谱图,测量对照品溶液和供试品溶液中待测物质的峰面积(或峰高),按下式计算含量:

式中各符号意义同上。

由于微量注射器不易精确控制进样量,当采用外标法测定时,以手动进样器定量环或自动进样器进样为宜。

4.3.3加校正因子的主成分自身对照法

测定杂质含量时,可采用加校正因子的主成分自身对照法。在建立方法时,按各品种项下的规定,精密称(量)取待测物对照品和参比物质对照品各适量,配制待测物校正因子的溶液,进样,记录色谱图,按下式计算待测物的校正因子。

式中 A c 为待测物的浓度;

A A 为待测物的峰面积或峰髙;

B c 为参比物质的浓度;

B A 为参比物质的峰面积或峰髙。

也可精密称(量)取主成分对照品和杂质对照品各适量,分别配制成不同浓度的溶液,进样,记录色谱图,绘制主成分浓度和杂质浓度对其峰面积的回归曲线,以主成分回归直线斜率与杂质回归直线斜率的比计算校正因子。

校正因子可直接载入各品种项下,用于校正杂质的实测峰面积。需作校正计算的杂质,通常以主成分为参比,采用相对保留时间定位,其数值一并载入各品种项下。

测定杂质含量时,按各品种项下规定的杂质限度,将供试品溶液稀释成与杂质限度相当的溶液,作为对照溶液;进样,记录色谱图,必要时,调节纵坐标范围(以噪声水平可接受为限)使对照溶液的主成分色谱峰的峰高约达满量程的10%?25%。除另有规定外,通常含量低于0.5%的杂质,峰面积的相对标准偏差(RSD)应小于10%;含量在0.5%?2%的杂质,峰面积的RSD 应小于5%;含量大于2%的杂质,峰面积的RSD 应小于2%。然后,取供试品溶液和对照溶液适量,分别进样,除另有规定外,供试品溶液的记录时间,应为主成分色谱峰保留时间的2倍,测量供试品溶液色谱图上各杂质的峰面积,分别乘以相应的校正因子后与对照溶液主成分的峰面积比较,计算各杂质含量。

4.3.4不加校正因子的主成分自身对照法

测定杂质含量时,若无法获得待测杂质的校正因子,或校正因子可以忽略,也可采用不加

校正因子的主成分自身对照法。同上述4.3.3法配制对照溶液、进样调节纵坐标范围和计

算峰面积的相对标准偏差后,取供试品溶液和对照品溶液适量,分别进样。除另有规定外,供试品溶液的记录时间应为主成分色谱峰保留时间的2倍,测量供试品溶液色谱图上各杂

质的峰面积并与对照溶液主成分的峰面积比较,依法计算杂质含量。

4.3.5面积归一化法

按各品种项下的规定,配制供试品溶液,取一定量进样,记录色谱图。测量各峰的面积和

色谱图上除溶剂峰以外的总色谱峰面积,计算各峰面积占总峰面积的百分率。用于杂质检

查时,由于仪器响应的线性限制,峰面积归一化法一般不宜用于微量杂质的检査。

4.4参考标准:中国药典(2015年版)四部0512高效液相色谱法P59。

5.附页:无

6.历史

版本号修订主要内容描述生效日期

0.0 新制定文件2015年12月1日

氮测定法(2010药典一部)检验标准操作规程

1.目的:建立氮测定法(一部)检验标准操作规程,并按规程进行检验,保证检验操作规范化。 2. 依据: 2.1. 《中华人民共和国药典》2010年版一部。 3. 范围:适用于所有用氮测定法(一部)测定的供试品。 4. 责任:检验员、质量控制科主任、质量管理部经理对本规程负责。 5. 正文: 5.1.第一法(常量法):取供试品适量(约相当于含氮量25~30mg),精密称定,供试品如为固体或半固体,可用滤纸称取,并连同滤纸置干燥的500ml凯氏烧瓶中;然后依次加入硫酸钾(或无水硫酸钠)10g和硫酸铜粉末0.5g,再沿瓶壁缓缓加硫酸20ml;在凯氏烧瓶口放一小漏斗并使烧瓶成45°斜置,用直火缓缓加热,使溶液的温度保持在沸点以下,等泡沸停止,强热至沸腾,俟溶液成澄明的绿色后,除另有规定外,继续加热30分钟,放冷。沿瓶壁缓缓加水250ml,振摇使混合,放冷后,加40%氢氧化钠溶液75ml,注意使沿瓶壁流至瓶底,自成一液层,加锌粒数粒,用氮气球将凯氏烧瓶与冷凝管连接;另取2%硼酸溶液50ml, 置500ml锥形瓶中,加甲基红-溴甲酚绿混合指示液10滴;将冷凝管的下端插入硼酸溶液的液面下,轻轻摆动凯氏烧瓶,使溶液混合均匀,加热蒸馏,至接收液的总体积约为250ml时,将冷凝管尖端提出液面,使蒸气冲洗约1分钟,用水淋洗尖端后停止蒸馏;馏出液用硫酸滴定液(0.05mol/L)滴定至溶液由蓝绿色变为灰紫色,并将滴定的结果用空白试验校正。每1ml硫酸滴定液(0.05m0l/L)相当于1.401mg的N。 5.2. 第二法(半微量法):蒸馏装置如图。图中A为1000ml圆底烧瓶,B 为安全瓶,C为连有氮气球的蒸馏器,D为漏斗,E为直形冷凝管,F为100ml锥形瓶,G、H为橡皮管夹。

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

高效液相色谱法测定甲硝唑的含量

实验二高效液相色谱法测定甲硝唑的含 量 一、实验目的 1.熟悉高效液相色谱仪主要结构组成及功能。 2.了解反相色谱法的原理、优点和应用。 3.了解流动相的选择依据及配制方法。 4.掌握高效液相色谱法进行定性和定量分析的基本方法。 二、实验原理 高效液相色谱法是采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由数据处理系统记录色谱信号。本实验以甲硝唑为测定对象,以反相HPLC来分离检测未知样中甲硝唑的含量。以甲硝唑标准系列溶液的色谱峰面积对其浓度进行线性回归,再根据样品中甲硝唑的峰面积,由线性方程计算其浓度。 三、实验内容 (一)实验仪器与材料 1.实验仪器:高效液相色谱仪、精密天平、50mL烧杯、玻璃棒、称量纸、10mL容量瓶、50mL 容量瓶、注射器、洗瓶。 2.实验材料:甲硝唑原料、蒸馏水、HCl(0.1mol/L)、乙腈、三氟乙酸、超纯水。 (二)实验内容 1、色谱操作条件的制定: 色谱柱:C18柱(250×4.6mm,5μm); 流动相:乙腈:0.02%三氟乙酸水溶液(20:80) 流速:1mL/min 检测波长:277nm 柱温:35℃ 进样量:20μL 2、标准溶液配制 精密称取在105℃条件下干燥至恒重的甲硝唑对照品10mg,置于50mL容量瓶中,用0.1mol/L的HCl溶液溶解并定容至刻度,即得浓度为0.2mg/mL的甲硝唑标准储备液,备用。 3、标准曲线的建立 (1)精密量取甲硝唑标准储备液分别为0.3mL、0.5 mL、0.7 mL、0.9 mL、1.1 mL置于10 mL的容量瓶中,然后用0.1mol/L的HCl溶液定容至刻度,得到浓度梯度为6μg/mL、10μg/mL、14μg/mL、18μg/mL和22μg/mL的标准溶液,分别过0.22μm的微孔滤膜过滤,滤

硫氮分析仪操作规程.pdf

Elab5500硫氮分析仪操作规程 一、仪器分析原理 1.1油样的分解 使用氩气作为载气,液体样品由注射器取样以μl/s 级的速度被进样器注入到裂解管并 保持高温850℃。在裂解管中样品经两个阶段处理,第一阶段是在氩气中裂解;第二阶段在氧气中燃烧,燃烧产物参见下列样品反应式: R + O2 →CO2+ H2O (1) R-N + O2 →CO2+NO+H2O R-S + O2 →CO2+SO2+H2O (2) R——含碳物质 1.2 干燥 分析气体离开燃烧管后,通过过滤器(过滤器可以阻挡因样品不完全燃烧而形成的积碳),在过滤器后面接一个膜干燥器(膜干燥器的作用是除去分析气体中的水分),除水后的分析气体直接到紫外荧光检测器和化学发光检测器。 1.3 S 和N 测量 SO2 被紫外荧光检测器采集,信号随着时间的变化形成类似正态分布的曲线,曲线下的积分面积正比于分析溶液中的硫的浓度,有了积分面积再根据以前的校正曲线计算出样品 中的硫含量。 NO 进入化学发光检测器和另一路O3 发生反应,产生特定的光,光的强度取决于NO 的浓度。光强度转化为电信号,信号随着时间的变化形成类似正态分布的曲线,曲线下的积分面积正比于分析溶液中的氮的浓度,有了积分面积再根据以前的校正曲线计算 出样品中的氮含量。 二、所用气体 氩气载气高纯氩(≥99.995%) 氧气氧化剂高纯氧(≥99.995%) 三、开机操作 1.打开高温燃烧炉主机电源,然后打开检测器机箱电源。 2.设置温控仪的测量温度至850—1050℃。 3.打开氧气瓶和氩气瓶总阀,调整减压阀的分压阀为0.3 兆帕(MPa)左右。 4. 打开计算机电源,然后打开“Elab9100”软件。 5.新建方法:点击“方法”,点击“新建方法”,在“新建方法栏”中键入新文件名然 后点击“确定”按钮。根据实验需要,在“检测模式”栏选择TN+TS;在“样品形态”栏可选择液体、固体或气体进样;在“测量浓度范围”栏可选择低或高;在“进样速度’栏可选择合适的进样速度(进样速度不宜过快);根据实验需要设置“样品单位”、“最大积分时间”以及“积分起点和终点”等。点击“保存方法”保存,点击“调入”,此方法作为当前的测量方法。载入已存方法:点击“方法”,在“选择方法文件”栏双击已存 方法,点击“调入”确认。已存方法中已包含校准曲线,可用一点标准样品来检验校准曲 线是否满足测试要求(校准曲线是否漂移),如果校准曲线满足测试要求,可直接测试样品,否则需重新制作校准曲线。 四、.校准曲线的制作: 4.1点击“标样测量”按钮,点击“新建标样设定”在弹出的窗口第一行右击选择“编辑行”,在弹出的窗口里输入“进样量和浓度”,然后点击“确定”按钮,点击“开始测量”按钮进行检测。

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

浸出物测定规程修订版

浸出物测定规程修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

Standard Operating Procedure 1、目的:建立浸出物测定规程,规范浸出物的测定。 2、范围:本公司产品、原料、辅料、中间体的检测。 3、责任人:QC检验员。 4、正文: 4.1简述:浸出物系指供试品用规定溶剂,在规定的条件下浸提所得的干浸膏占供试品的百分比。

4.2仪器与用具:天平(准确至0.01g)、单标线吸管、水浴、烘箱。 4.3试药与试液:水、乙醇、甲醇、其他规定的溶剂。 4.4操作方法: 4.4.1 将测定用的供试品粉碎,过二号筛,并混合均匀。 4.4.2 水溶性浸出物冷浸法。 4.4.2.1取供试品约4g,称定重量(准确至0.01g)。 4.4.2.2置250~300ml的锥形瓶中,精密加入水100ml,塞紧,冷浸,前6小时内时时振摇,再静置18小时。 4.4.2.3用干燥滤器迅速滤过,精密量取滤液20ml,置已干燥至恒重的蒸发皿中,在水浴上蒸干。 4.4.2.4蒸发皿于105℃干燥3小时,移置干燥器中,冷却30分钟。 4.4.2.5迅速精密称定重量,除另有规定外,以干燥品计算供试品中水溶性浸出物的含量(%)。 4.4.3水溶性浸出物热浸法。 4.4.3.1取供试品约2~4g,称定重量(准确至0.01g)。 4.4.3.2置100~250ml的锥形瓶中,精密加入水50~100ml,塞紧,称定重 量,静置1小时后,连接回流冷凝管,加热至沸腾,并保持微沸1小时。

4.4.3.3放冷后,取下锥形瓶,密塞,称定重量,用水补足减失的重量,摇匀。 4.4.3.4用干燥滤器滤过。精密量取滤液25ml,置已干燥至恒重的蒸发皿中,在水浴上蒸干。 4.4.3.5于105℃干燥3小时,移置干燥器中,冷却30分钟。 4.4.3.6迅速精密称定重量,除另有规定外,以干燥品计算供试品中水溶性浸出物的含量(%)。 4.4.4醇溶性浸出物测定法。 4.4.4.1冷浸法照水溶性浸出物冷浸法测定(4.4.2.1~4.4.2.5),以各该品种项下规定浓度的乙醇或甲醇代替水为溶剂。 4.4.4.2热浸法照水溶性浸出物热浸法测定(4.4.3.1~4.4.3.6),以各该品种项下规定浓度的乙醇或甲醇代替水为溶剂。

高效液相色谱法的标准操作规程

高效液相色谱法的标准操作规程 1 定义及概述: 1.1 高效液相色谱法是一种现代液体色谱法,其基本方法是将具不同极性的单一溶剂或不同比例的混合溶液作为流动相,用高压输液泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图或进行数据处理,得到测定结果。由于应用各种性质的微粒填料和加压的液体流动相,本法具有分离性能高、分析速度快的特点。 1.2 高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需要在色谱分离前或后经过衍生化反应,方能进行分离或检测。常用的色谱柱填充剂有:硅胶,用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子交换色谱;凝胶或玻璃微球等填充剂是有一定孔径的大孔填料,用于排阻色谱。 1.3 高效液相色谱仪基本由泵、进样器、色谱柱、检测器和色谱数据处理组成。检测器最常用的为可变波长紫外检测器或紫外—可见检测器。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2 高效液相色谱仪的使用要求: 2.1 按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程”的规定作定期检定,应符合规定。 2.2 仪器各部件应能正常工作,管路为无渗漏连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3 具体仪器在使用前应详细参阅各操作说明书。

水中氨氮的测定(标准操作规程作业指导书)

1.适用范围 本测定规程规定了测定水中氨氮的纳氏试剂分光光度法。 2.测试原理 以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420 nm处测量吸光度。3.仪器设备 3.1 可见分光光度计:配置20 mm比色皿。 3.2 凯氏定氮仪。 3.3 玻璃比色管:50 ml。 3.4 天平:精度0.01 g。 3.5 一般实验室常用仪器和设备,玻璃容器需符合国家A级标准。 4.试剂 除非另有说明,分析时均用符合国家标准的分析纯试剂。 4.1 一级水,文中所说的水均指一级水。 4.2轻质氧化镁:不含碳酸盐,在500 ℃下加热氧化镁,以除去碳酸盐。 4.3纳氏试剂:称取16.0 g氢氧化钠,溶于50 ml水中,冷却至室温。 称取7.0 g碘化钾和10.0 g碘化汞,溶于水中,然后将此溶液在搅拌下,缓慢加入到上述50 ml氢氧化钠溶液中,用水稀释至100 ml,若有红棕色沉淀产生,需要过滤。存于聚乙烯瓶,于暗处存放,有效期一年。 4.4 酒石酸钾钠溶液:ρ=500 g/L。 称取50.0 g酒石酸钾钠,溶于100 ml水中,加热煮沸以驱除氨,充分冷却后稀释至100 ml。 4.5 硫酸锌溶液:ρ=100 g/L。 称取10.0 g硫酸锌溶于水中,稀释至100 ml。 4.6 硫代硫酸钠溶液:ρ=3.5 g/L。 称取3.5 g硫代硫酸钠溶于水中,稀释至1000 ml。 4.7 氢氧化钠溶液:ρ=250 g/L。 称取25 g氢氧化钠溶于水中,稀释至100 ml。 4.8 氢氧化钠溶液:C=1 mol/L。

称取4 g氢氧化钠溶于水中,稀释至100 ml。 4.9 盐酸溶液:C=1 mol/L。 量取8.5 ml盐酸(ρ=1.18 g/ml)于适量水中,并稀释至100 ml。 4.10硼酸溶液:ρ=20 g/L。 称取20 g硼酸溶于水中,稀释至1000 ml。 4.11溴百里酚蓝指示剂:ρ=0.5 g/L。 称取0.05 g溴百里酚蓝溶于50 ml水中,加入10 ml无水乙醇,用水稀释至100 ml。 4.12淀粉-碘化钾试纸: 称取1.5 g可溶性淀粉于烧杯中,用少量水调成糊状,加入200 ml沸水,搅拌混匀。加0.50 g碘化钾和0.50 g碳酸钠,用水稀释至250 ml。将滤纸条浸渍后,取出晾干,于棕色瓶中密封保存。 4.13氨氮标准溶液:10 μg/ml,由国家有证标准物质稀释而来。 5. 样品前处理 5.1 去除余氯 如样品中有余氯,可加入适量的硫代硫酸钠溶液(ρ=3.5 g/L)去除。每加0.5 ml 可去除0.25 mg余氯。用淀粉-碘化钾试纸检验余氯是否除尽。 5.2 絮凝沉淀 100 ml样品中加入1 ml硫酸锌溶液(ρ=100g/L)和0.1~0.2 ml氢氧化钠溶液(ρ=250 g/L),调节pH=10.5,放置使之沉淀,用中速滤纸过滤,弃去初滤液。 5.3预蒸馏 如絮凝沉淀后样品还有颜色或浑浊则用预蒸馏,将20 ml硼酸溶液(ρ=20 g/L)移入100 ml容量瓶内,馏分出口在硼酸溶液液面下。取100 ml样品于凯氏消化管中,加入几滴溴百里酚蓝指示剂,必要时,用氢氧化钠溶液(C=1 mol/L)或盐酸溶液(C=1 mol/L)调pH=6.0~7.4,加入0.25 g轻质氧化镁。加热蒸馏,馏出液到80 ml时,停止蒸馏,加水定容至100 ml,待测。 6. 分析测试 6.1 校准曲线 分别加入0.00、0.50、1.00、2.00、4.00、6.00、8.00、10.00 ml氨氮标准溶

检验标准操作规程

1.目的 规范检验操作。 2.适用范围 检验操作。 3.责任者 化验员。 4.规程: 4.1检验 4.1.1 按化验品种的检验规程。准备好化验需要的仪器、试液、标准滴定液及其它必需品。如果有规定的化验周期,就应在规定期限内完成化验,无规定化验周期的,也应及时化验,确保生产的正常进行。 4.1.2 严格按检验规程进行操作,不得修改检验方法。如果检验方法有问题,应通知质管部经理分析原因,如修改则应按文件管理制度办理。 4.1.3在需较长时间使用仪器(如培养箱或干燥箱)时,可将“运行中”的状态标志挂在仪器上,待仪器使用完毕后,及时取下。精密仪器应填写仪器使用记录,并按相应的SOP检查并校验仪器。定期检定仪器,只有在其正常运行时才能使用仪器。如果仪器不正常,使用人应及时挂上相应的状态标志,直到问题解决为止。使用完仪器后,填写仪器使用记录,并由使用人做好仪器的清洁卫生,换上“清洁待用”的标志牌。 4.1.4除含量、浸出物及规定需做两份平行化验外,其它检测项目通常做一份即可。如果平行化验数据超出方法中规定的偏差要求(但在合格限内),应报告质管部经理。一般情况下需要再做一次化验(即无法判断误差原因时需做的再次化验)。 4.1.5 化验完毕后应及时清洗使用过的仪器,以备下一个化验员使用。所有的玻璃器具都应在使用后及时冲洗掉实验样品,以免样品干燥后难以清洗,然后将其清洗。对易挥发物品进行处理和化验时,应在通风橱内进行。应使用适当的方法处理挥发性和有毒物品。 4.1.6 样品化验结束后,化验员应填写检验记录并签字,记录应由QC负责人审核并签字。如果样品符合规定,就在记录单上填写“符合标准规定”,如不合格,另一化验员应重新检验,如确实不 合格,则填写“不符合标准规定”。如QC负责人要求重新取样进行化验,在化验新样品的同时应再复验一次原样品,如化验结果被证实是正确的,QC负责人应做出出报的决定,并打好检验报告书报给QA审核签发。如果第二次化验结果与第一次不符,应排除化验员的检验误差及其他可能产生的检验误差,对该物料做出处理意见。

氮测定法-操作规程

氮测定法 1 1.1 1.2本法系将供试品在硫酸及催化剂作用下,经强热分解使有机氮转化为硫酸铵,再经强碱碱化使氨馏出并吸收于硼酸液,最后用硫酸滴定液滴定,求出氮含量。 1.3 2 2.1 2.1.1常量定氮仪由500ml 2.1.2半微量定氮仪由1000ml圆底烧瓶、连有氮气球的蒸馏器和直形冷凝管等组 2.1.3天平万分之一天平,适用于精密称取0.1g以上者;十万分之一天平,适用于精密称量0.1g以下者。 2.1.4消化应用可调压电炉加热。蒸馏可用可调压电炉或电热套 2.1.5蒸馏连接用的乳胶管或橡胶管,应用氢氧化钠试液煮20分钟,洗去碱液后 2.2 2.2.1试剂均为化学纯。 2.2.2滴定液的配制和标定应符合中国药典附录规定。硫酸液(0.005mol/L)用硫酸液(0.05mol/L) 2.2.3 2.2.4硫酸铜用作消化催化剂;硫酸钾(或无水硫酸钠)用以提高硫酸的沸点,也可将硫酸钾与硫酸铜按10∶1 3 3.1常量法(第一法) 3.1.1称样取供试品适量(约相当于含氮量25~30mg),精密称定,置干燥的500ml凯氏烧瓶中。供试品如为固体或半固体,可用定量滤纸包裹加入,也可直

3.1.2消化在凯氏烧瓶中依次加入硫酸钾(或无水硫酸钠)10g和硫酸铜0.5g,再沿瓶壁缓缓加入硫酸20ml;若瓶颈上有少量供试品粘附,可用硫酸冲下(保证样品在硫酸液面之下)。加2~3粒玻璃珠或沸石,在瓶口置一小漏斗并使烧瓶成45℃斜置,可用调压电炉缓缓加热,此时烧瓶内物质碳化变黑、溶解;继续使溶液的温度保持在沸点以下,等泡沸停止,消化液由黑色渐变棕色时,强热至沸,俟溶液成澄清的绿色后,除另有规定外,继续加热30分钟,放冷,沿瓶壁缓缓加水250ml 3.1.3蒸馏沿瓶壁加40%氢氧化钠溶液75ml,使流至瓶底自成一液层,加锌粒数粒,用氮气球将凯氏烧瓶与冷凝管连接(氮气球可防止碱液溅入硼酸吸收液)。另取2%硼酸溶液50ml,置500ml锥形瓶中,加甲基红-溴甲酚绿指示液10滴,将冷凝管尖端浸入硼酸溶液的液面下;轻轻摇动凯氏烧瓶,摇匀(防止温度骤然变化引起硼酸接受液倒吸),加热蒸馏(蒸馏时不易泡沸过高,以免溅满氮气球),蒸至接受液的总体积约为250ml时,将冷凝管尖端提出液面,使蒸汽冲洗约1分钟,用水淋洗尖端,停止蒸馏。(蒸馏过程中不可突然降低温度,以免硼酸吸收液倒吸。) 3.1.4滴定馏出液用硫酸液(0.05mol/L)滴定至溶液由蓝绿色变为灰紫色,并将滴定结果用空白试验校正,即得。每1ml的硫酸液(0.05mol/L)相当于1.401mg 的N 3.1.5空白试验照供试品消化、蒸馏、滴定的全过程,以相同条件下做空白试验,用(0.05mol/L) 硫酸滴定液滴定至相同的终点,其读数用于校正供试品的读数。 3.2半微量法(第二法) 3.2.1称样取供试品适量(约相当于含氮1.0~2.0mg),精密称定,置干燥的30~50ml凯氏烧瓶中。供试品如为固体或半固体,可用定量滤纸包裹加入,也可直接 3.2.2消化在凯氏烧瓶中依次加入硫酸钾(或无水硫酸钠).3g与30%硫酸铜溶液5滴,再沿瓶壁用吸管滴加硫酸2.0ml,并加玻璃珠1~2粒,在凯氏烧瓶口放一小漏斗,并使烧瓶成45°斜置,用小火缓缓加热使消化液保持在沸点以下,并使小

高效液相色谱法测定饮料中的咖啡因(含问题分析)

实验二 高效液相色谱法测定饮料中的咖啡因 一、目的要求 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定咖啡因的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 二、基本原理 咖啡因又称咖啡碱,是由茶叶或咖啡中提取而得的一种生物碱,它属黄嘌呤衍生物,化学名称为1,3,7-三甲基黄嘌呤。咖啡因能兴奋大脑皮层,使人精神兴奋。咖啡中含咖啡因约为1.2~1.8%,茶叶中约含2.0~4.7%。可乐饮料、APC 药片等中均含咖啡因。其分子式为C 8H 10O 2N 4,结构式为: N N CH 3 H 3C O O N N CH 3 定量测定咖啡因的传统分析方法是采用萃取分光光度法。用反相高效液相色谱法将饮料中的咖啡因与其它组分(如:单宁酸、咖啡酸、蔗糖等)分离后,将已配制的浓度不同的咖啡因标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R 和峰面积A 后,可直接用t R 定性,用峰面积A 作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的咖啡因含量。 三、仪器和试剂 1、Agilent 1100高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm 。 3、流动相:30%甲醇(色谱纯)+70%高纯水;流动相进入色谱系统前,用超声波发生器脱气10min 。 4、 咖啡因标准贮备溶液:将咖啡因在110℃下烘干1h 。准确称取0.1000g 咖啡因,用二次蒸馏水溶解,定量转移至100mL 容量瓶中,并稀释至刻度。标样浓度1000μg·mL -1。 5、测饮料试液:可乐,茶叶,速溶咖啡。

浸出物测定法操作规程

1 ?目的 建立浸出物测定法操作规程。 2.适用范围 本规程适用于浸出物测定法。 3.编制依据 《药品生产质量管理规范(1998年修订)》国家药品监督管理局(1999) 4.责任 4.1 QC质检员对本规程的实施负责。 4.2 QC主管对本规程的有效执行承担监督检查责任。 5.正文 5.1简述 5. 1.1浸出物测定法系指用水、乙醇或其他适宜溶剂,有针对性地对药材及制剂中可溶性物质进行测定的方法。适用于有效成分尚不清楚或确实无法建立含量测定和虽建立含量测定,但所测含量值棋微的药材及制剂。是控制药品质量的指标之一。 5.1.2浸出物测定应选择对有效成分溶解度大,非有效成分或朵质洛解度小的溶剂。 5.1.3本法根据采用溶剂不同分为:水溶性浸出物、醇溶性浸出物及挥发性醴浸出物等三种测定法。 5. 2仪器与用具 5. 2. 1分析天平感量0. lmgo 5.2.2药筛二号、四号筛。 5. 2. 3锥形瓶 5. 2.4移液管100?250ml, 250?300ml□20ml, 25ml, 50ml, 100mlo 5. 2. 5蒸发皿 5. 2. 6干燥器50ml o 直径约30cm。 温度50?300°C,,控温精度±l°Co 5.2.8电炉或电热套、水浴锅(可调温)。 5. 2. 9冷凝管。 5.2.10索氏提取器。 5. 3试药

5.3.1乙醇、乙醴等均为分析纯。 5.3.2干燥剂五氧化二磷为化学纯。 5. 4操作方法 5. 4.1水溶性浸出物测定法 测定用的药材供试品需粉碎,过二号筛(丸剂剪碎,其他制剂按各品种项下规定), 并混合均匀。 5.4.1. 1冷浸法取供试品约4g,精密称定,置250?300ml锥形瓶中,精密加水100ml, 密塞,冷浸,前6小时内时时振摇,再静置18小时,用干燥滤器迅速滤过,精密量取续滤液20ml,置已干燥至恒重的蒸发皿中,在水浴上蒸干后,于105°C干燥3小时,移置干燥器中,冷却30分钟,迅速精密称定重量,除另有规定外,以干燥品计算供试品中水溶性浸出物的含量(%)。 5.4.1. 2热浸法取供试品约2?4g,精密称定,置100?250ml锥形瓶中,精密加水50?100ml,密塞,称定重量,静置1小时后,连接回流冷凝管,加热至沸腾,并保持微沸1 小时。放冷后,取下锥形瓶,密塞,再称定重量,用水补足减失的重量,摇匀,用干燥滤器滤过,精密量取续滤液25ml,置已干燥至恒重的蒸发皿中,在水浴上蒸干后,于105°C干燥3小时,移置干燥器中,冷却30分钟,迅速精密称定重量。除另有规定外, 以干燥品计算供试品中水溶性浸出物的含量(%) 5.4.2醇溶性浸出物测定法 照水溶性浸出物测定法测定(热浸法在水浴上加热),以各品种项下规定浓度的乙醇代替水为溶剂。操作详见水溶性浸出物测定法。 5.4.3挥发性瞇浸出物测定法测定用的药材供试品需粉碎,过四号筛(丸剂剪碎,其他制剂按各品种项下规定),并混合均匀。取2?5g,精密称定,置五氧化二磷干燥器中干燥12小时,置索氏提取器中,加乙瞇适量,加热回流8小时,取乙醯液,置干燥至恒重的蒸发皿中,放置,挥去乙储,残渣置五氧化二磷干燥器中干燥18小时,精密称定,缓缓加热至105°C,并于105°C干燥至恒重。减失重量即为挥发性瞇浸出物的重量, 计算,即得。 5. 5注意事项 5.5.1浸出物测定,供试品应测定2份,2份的平均相对偏差应小于5%。 5.5.2凡以干燥品计?算,操作时同时取供试品测定水分含量,计算时扣除水分的量。凡未规定水分检查的制剂,浸出物含量可不以干燥品计。

水中总氮的测定(标准操作规程作业指导书)

1.适用范围 本测定规程规定了碱性过硫酸钾消解紫外分光光度法测定水中的总氮。 当样品量为10ml时,本方法的检出限为0.05mg/L,测定范围为0.20~7.00mg/L。2.测定原理 在120-124℃下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测定吸光度A220和A275,按下面公示计算校正吸光度A,总氮(以N计)含量与校正吸光度A成正比。 A=A220-2A275 3.仪器设备 3.1 紫外分光光度计:配有10mm石英比色皿。 3.2高压蒸汽灭菌器:最高工作压力不低于1.1~1.4kg/cm2,;最高工作温度不低 于120~124℃。 3.3玻璃具塞比色管:25ml。 3.4 分析天平:精度0.01g。 3.5一般实验室常用仪器和设备。 4.试剂 除另有说明,分析时均使用符合国家标准的的分析纯试剂,试验用水为蒸馏水。 4.1 蒸馏水。 4.2 碱性过硫酸钾溶液:称取10.0g过硫酸钾(进口试剂)溶于150ml水中(可置于50℃水浴中加热至全部溶解);另称取3.75g氢氧化钠溶于75m水中。待氢氧化钠溶液温度冷却至室温后,混合两种溶液定容至250ml,存放于聚乙烯瓶中。可保存一周。 4.3 (1+9)盐酸溶液:取100ml浓度为1.19g/ml的盐酸于900ml蒸馏水中混匀。 4.4 (200g/L)氢氧化钠溶液:称取20.0g氢氧化钠溶于少量水中,用水稀释至100ml。 4.5 (20g/L)氢氧化钠溶液:取200g/L氢氧化钠溶液10.0 ml,用水稀释至100ml。 4.6 浓硫酸:ρ(H2SO4)=1.84g/ml

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。

离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关;

高效液相色谱测定法标准操作规程

标准操作规程 STANDARD OPERATION PROCEDURE 1 目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2 适用围:适用于高效液相色谱测定法检验操作全过程。 3 责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1. 对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据 处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μ m。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1. 色谱柱反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合 物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分 离物质的性质来选择合适的色谱柱。温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2? 8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2 或大于8 的流动相。

氮测定法二部检验标准操作规程

1.目的:建立氮测定法(二部)检验标准操作规程,并按规程进行检验,保证检验操作规范化。 2.依据: 2.1. 《中华人民共和国药典》2010年版二部。 3.范围:适用于所有用氮测定法(二部)测定的供试品。 4.责任:检验员、质量控制科主任、质量管理部经理对本规程负责。 5.正文: 5.1. 第一法(常量法):取供试品适量(约相当于含氮量25~30mg),精密称定,供试品如为固体或半固体,可用滤纸称取,并连同滤纸置干燥的500ml凯氏烧瓶中;然后依次加入硫酸钾(或无水硫酸钠)10g和硫酸铜粉末0.5g,再沿瓶壁缓缓加硫酸20ml;在凯氏烧瓶口放一小漏斗并使烧瓶成45°斜置,用直火缓缓加热,使溶液的温度保持在沸点以下,等泡沸停止,强热至沸腾,俟溶液成澄明的绿色后,除另有规定外,继续加热30分钟,放冷。沿瓶壁缓缓加水250ml,振摇使混合,放冷后,加40%氢氧化钠溶液75ml,注意使沿瓶壁流至瓶底,自成一液层,加锌粒数粒,用氮气球将凯氏烧瓶与冷凝管连接;另取2%硼酸溶液50ml,置500ml锥形瓶中,加甲基红-溴甲酚绿混合指示液10滴;将冷凝管的下端插入硼酸溶液的液面下,轻轻摆动凯氏烧瓶,使溶液混合均匀,加热蒸馏,至接收液的总体积约为250ml时,将冷凝管尖端提出液面,使蒸气冲洗约1分钟,用水淋洗尖端后停止蒸馏;馏出液用硫酸滴定液(0.05mol/L)滴定至溶液由蓝绿色变为灰紫色,并将滴定的结果用空白试验校正。每1ml硫酸滴定液(0.05m0l/L)相当于1.401mg的N。

5.2. 第二法(半微量法):蒸馏装置如图。图中A为1000ml圆底烧瓶,B为安全瓶,C为连有氮气球的蒸馏器,D为漏斗,E为直形冷凝管,F为100ml锥形瓶,G、H为橡皮管夹。 5.2.1. 连接蒸馏装置,A瓶中加水适量与甲基红指示液数滴,加稀硫酸使成酸性,加玻璃珠或沸石数粒,从D漏斗加水约50ml,关闭G夹,开放冷凝水,煮沸A瓶中的水,当蒸汽从冷凝管尖端冷凝而出时,移去火源,关H夹,使C 瓶中的水反抽到B瓶,开G夹,放出B瓶中的水,关B瓶及G夹,将冷凝管尖端插入约50ml水中,使水自冷凝管尖端反抽至C瓶,再抽至B瓶,如上法放去。如此将仪器内部洗涤2~3次。 5.2.2. 取供试品适量(约相当于含氮量1.0~2.0mg),精密称定,置干燥的30~50ml凯氏烧瓶中,加硫酸钾(或无水硫酸钠)0.3g与30%硫酸铜溶液5滴,再沿瓶壁滴加硫酸2.0ml;在凯氏烧瓶口放一小漏斗,并使烧瓶成45°斜置,用小火缓缓加热使溶液保持在沸点以下,等泡沸停止,逐步加大火力,沸腾至溶液成澄明的绿色后,除另有规定外,继续加热10分钟,放冷,加水2ml。 5.2.3. 取2%硼酸溶液10ml,置100ml锥形瓶中,加甲基红-溴甲酚绿混合指示液5滴,将冷凝管尖端插入液面下。然后,将凯氏烧瓶中内容物经由D漏

大黄质量标准及检验操作规程

XXXXXXX有限公司原料质量标准及检验操作规程 1 品名: 1.1 中文名:大黄 1.2 汉语拼音:Da huang 2 代码: 3 取样文件编号: 4 检验方法文件编号: 5 依据:《中国药典》(2020年版一部)。 6 质量标准:

7 检验操作规程: 7.1 试药与试剂:甲醇、水、盐酸、乙醚、三氯甲烷、大黄对照药材、大黄酸对照品、石油醚(30~60℃)、甲酸乙酯、甲酸、氨蒸气、乙醇、磷酸、芦荟大黄素对照品、大黄素对照品、大黄酚对照品、大黄素甲醚对照品。 7.2 仪器与用具:显微镜、电子天平、以羧甲基纤维素钠为黏合剂的硅胶H薄层板、水浴锅、三用紫外分析仪、恒温鼓风干燥箱、马福炉、高效液相色谱仪、超声波清洗器。 7.3 性状:取本品适量,自然光下目测色泽,嗅闻气味。 7.4 鉴别: 7.4.1 取本品制片置10×10显微镜下做显微观察。 7.4.2 取本品粉末少量,进行微量升华,可见菱状针晶或羽状结晶。 7.4.3 取本品粉末0.1g,加甲醇20ml,浸泡1小时,滤过,取滤液5ml,

蒸干,残渣加水10ml使溶解,再加盐酸1ml,加热回流30分钟,立即冷却,用乙醚分2次提取,每次20ml,合并乙醚液,蒸干,残渣加三氯甲烷1ml使溶解,作为供试品溶液。另取大黄对照药材0.1g,同法制成对照药材溶液。再取大黄酸对照品,加甲醇制成每1ml含1mg的溶液,作为对照品溶液。照薄层色谱法(附录7)试验,吸取上述三种溶液各4μl,分别点于同一以羧甲基纤维素钠为黏合剂的硅胶H薄层板上,以石油醚(30~60℃)-甲酸乙酯-甲酸(15 : 5 : 1)的上层溶液为展开剂,展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照药材色谱相应的位置上,显相同的五个橙黄色荧光主斑点;在与对照品色谱相应的位置上,显相同的橙黄色荧光斑点,置氨蒸气中熏后,斑点变为红色。 7.5 检查: 7.5.1 土大黄苷:取本品粉末0. 1g,加甲醇10ml,超声处理20分钟,滤过,取滤液lml,加甲醇至10ml,作为供试品溶液。另取土大黄苷对照品,加甲醇制成每lml含10ug的溶液,作为对照品溶液(临用新制)。照薄层色谱法(附录7)试验,吸取上述两种溶液各5ul,分别点于同一聚酸胺薄膜上,以甲苯-甲酸乙酯-丙酮-甲醇-甲酸(30 : 5 : 5 : 20 : 0.1)为展开剂,展开,取出,晾干,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,不得显相同的亮蓝色荧光斑点。 7.5.2水分不得过15.0%(通则0832第二法)。 7.5.3 总灰分:照总灰分测定法(附录17)测定。 7.5.4二氧化硫残留量照二氧化硫残留量测定法(附录58)测定,不得过150mg/kg。 7.6 浸出物:照水溶性浸出物测定法(附录19)项下的热浸法测定。

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

相关文档
相关文档 最新文档