文档库 最新最全的文档下载
当前位置:文档库 › 51单片机IO口的存取

51单片机IO口的存取

51单片机IO口的存取
51单片机IO口的存取

MCS-51单片机通常有4个8位I/O端口, 向各端口的写数据均写入到对应端口的锁存器中, 但对各端口的读操作却有两个方式:读锁存器和读引脚

1 读-修改-写操作

Pn(指P0,P1,P2,P3)在51汇编语言中是特殊的标识符,既代表Pn端口引脚,又代表Pn锁存器(Pn SFR)。在MCS-51指令系统中有些指令读锁存器的值, 有些指令则读引脚上的值。读锁存器指令是从锁存器中读取一个值并进行处理, 把处理后的值(原值或已修改后的值)重新写入锁存器中。这类指令称为读-修改-写指令, 表1列举了有该功能的指令当目的操作数是Pn端口或Pn端口的某一位时. 该指令读取锁存器的值.

这些指令的一个共同特点, 就是要先并行读入Pn锁存器(非Pn端口引脚)中的值,作一定的修改,然后再写入谚端口的锁存器。表1中晶后三条指令读-修改-写关系不够明显。实际上它们的执行过程序是:先将Pn 的8位锁存器内容一起读人,再对指定位进行修改, 然后又8位一起写入锁存器。

对于读-修改-写指令。直接读锁存器而不是读端口引脚, 是因为从引脚上读出的数据不一定能真正反映锁存器的状态例如:若用Pn的某一位引脚直接驱动一个NPN三极管的基极,当向此端口写“1” 时, 三极管导通并把端口引脚的电平钳位约0.7 V (对于硅管) 这时,CPU若从此引脚读取数据. 会把该数据(应为1)错读为0;若直接从锁存器读取, 则读出正确的数据。

理解了Pn的特殊性及读-修改-写指令后, 就不难理解指令PUSH Pn的含义了。它的执行过程是:读Pn 引脚(非读Pn 嫫?的值, 然后将此数值压入堆栈以下是一段测试程序:

ORG 1000H

1000 75A07F MOV P2,#7FH

1003 7900 MOV R1,#00H

1005 74FF MOV A,#0FFH

1007 COA0 PUSH P2

1009 D0A0 POP P2

100B F3 MOVX @R1,A

100C 22 RET

这段程序原意是将FFH立即数存人外部RAM地址为7F00的单元中, 但具体的运行结果与这段程序是在片内或片外被执行有密切关系。若在片内,结果与程序原意一致;若在片外,MCU执行这段片外程序后结果却把FFH错误地送到了外部RAM 的1000H地址去。为什么会出错?因为在执行片外程序时, 出现在P2端口引脚上的数据是PCH (程序指针的高8位,此时为10H),在执行PUSH P2指令时.读取P2引脚上的数据是10H.所

以将10H压入堆栈,紧跟的POP P2指令是将当前栈顶数据10H弹出并写入P2锁存器,然后执行的MOVX @R1,A指令,将A中的数据写入[P2R1](此

时P2RI=1000H)地址中有兴趣的读者可以尝试一下。

2 可靠读取Pn锁存器中数据的方法

上述程序并无实际运行意义, 在这里只是引出如何可靠地读取Pn锁存器中的数据问题。在MCS51指令系统中并没有一条指令可以让汇编程序员直接读取Pn锁存器的数据。在表1中只有JBC Pn.Y,Label可以较快速地获取Pn锁存器第Y位的值。由于篇幅关系,本文只介绍P2锁存器的操作,其他锁存器的操作可参照P2写出下面是获取P2锁存器值的子程序。

GetSfrP2:PUSH IE ;保护中断允许寄存器CLR EA ;禁止所有中断

MOV A.#0FFH

JBC P2.0,$+5;P2锁存器位0为1 则清0并跳;转到$+5地址(JBC P2.1,$+5)

CLR ACC.0 ;否则ACC.0清为0

JBC P2.1,$+5

CLR ACC.1

JBC P2.2,$+5

CLRACC2

JBC P2.3,$+5

CLR ACC 3

JBC P2.4,$+5

CLR ACC 4

JBC P2.5,$+5

CLRACC 5

JBC P2.6,$+5

CLR ACC.6

JBC P2.7,$+5

CLR ACC.7

MOV P2,A ;恢复P2锁存器原值

POPIE ;恢复中断允许寄存器

RET

另外也可在RAM 中建立各Pn锁存器的映像.通过专用程序对Pn锁存器进行操作这样就可以在不对引脚状态有任何影响的情况下,快速可靠地读取与Pn锁存器一致的数值。以在内部RAM 中建立P2映像为例:

EP2 Data 60H ;P2锁存器映像

WriteSfrP2:MOV EP2,A ;将A写人P2锁存器映像

MOV P2,A ;将A写人P2锁存器

RET

ReadSfrP2:MOV A,EP2 ;将P2锁存器映像写入A

RET

如果确信读P2端口时的值都等于P2锁存器中的值,则可以用51单片机地址指针及其应用的操作方法,

简单地PUSHP2和POP P2指令来保护和恢复现场程序段中使用的P2锁存器

以上三种读取Pn锁存器值的方法, 第二种方法,即在RAM 中建立Pn锁存器映像的方法,存取速度较快,适台MCS-51的任何工作方式,在读过程中不会对Pn锁存器及端口引脚状态有任何干扰,是三种方法中最好的。

AT89C51单片机的基本结构和工作原理

AT89C51单片机的主要工作特性: ·内含4KB的FLASH存储器,擦写次数1000次; ·内含28字节的RAM; ·具有32根可编程I/O线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能: 1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。

(1)运算器 运算器主要用来实现算术、逻辑运算和位操作。其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。 ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。 累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。 (1)I/O口线 ·P0口 8位、漏极开路的双向I/O口。 当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。 ·P1口 8位、准双向I/O口,具有内部上拉电阻。 P1口是为用户准备的I/O双向口。在编程和校验时,可用作输入低8位地址。用作输入时,应先将输出锁存器置1。P1口可驱动4个TTL负载。 ·P2 8位、准双向I/O口,具有内部上拉电阻。 当使用外存储器或外扩I/O口时,P2口输出高8位地址。在编程和校验时,P2口接收高字节地址和某些控制信号。 ·P3 8位、准双向I/O口,具有内部上拉电阻。 P3口可作为普通I/O口。用作输入时,应先将输出锁存器置1。在编程/校验时,P3口接收某些控制信号。它可驱动4个TTL负载。 (2)控制信号线

51单片机IO口使用经验绝对经典

绝对经典 按常规,在51端口(P1、P2、P3)某位用作输入时,必须先向对应的锁存器写入1,使FET截止。一般情况是这样,也有例外。所谓IO口内部与电源相连的上拉电阻而非一常规线性电阻,实质上,该电阻是由两个场效应管并联在一起:一个FET为负载管,其阻值固定;另一个FET 可工作在导通或截止两种状态(姑且叫可变FET)。使其总电阻值变化近似为0或阻值较大(20千欧--40千欧)两种情况。当和端口锁存器相连的FET由导通至截止时,该阻值近似为0,可将引脚快速上拉至高电平;当和锁存器相连的FET由截止至导通时,该电阻呈现较大阻值,限制了和端口锁存器相连的FET的导通电流。 51I/O口作为输入端和外部信号相连有时必须考虑上述特性,本人在设计LTP1245热敏打印头驱动板时,资料上推介热敏头“抬头”和“纸尽”信号由头中内嵌检测电路提供,MCU IO口采集该信号时需加缓冲(如74HC04)。当时本人认为51IO口上拉电阻为一较大阻值的固定电阻,对输入信号无影响,故未加缓冲电路(为降低成本能省则省)。可到调试PCBA时发现,“抬头”、“纸尽”状态变化时,采集信号只在3.90V--5.10V之间变化,应为低电平时无低电平输出。究其原因,打印头的“抬头”、“缺纸”信号输出为一光敏三极管的集电极输出,集电极和电源间原有一个负载电阻,饱和导通设计工作电流仅为450--1100微安,当该集电极直接和MCU IO口某位相连时,IO口上拉电阻和光敏三极管负载电阻并联,当IO口上拉时,上拉电阻极小致使光敏三极管直流负载线斜率陡然增大,工作状态进入放大区而非希望的饱和区。当时在不改硬件的条件下,我几乎无计可施,甚至想到了准备烧断IO口上拉电阻(前两天我曾发帖求救怎么烧断IO 口上拉电阻的方法)后来听网友建议该方法风险较大,所以总想用软件方法解决。 后来我的解决方法是:采样信号前不是先向对应锁存器写1,而是先写入0,再写入1,延时约10毫秒以上,然后再采样(当然此法只适应于采样频率很低的情况)。这样作的目的是:先写入0迫使IO口上拉电阻先为一较大值,此时如果外部光敏三极管本来处于截止状态,当完成上述一系列锁存器的写入过程后光敏管仍为截止态,IO口正确采样到高电平;此时如果外部

单片机io口理解

【转】单片机IO口设置推挽和开漏的区别(转自网易博客冷水泡茶的日志)2010-09-28 13:43 单片机IO口设置推挽和开漏的区别 一般情况下我们在电路设计编程过程中设置单片机,大多是按照固有的模式去做的,做了几年这一行了,也没碰到过什么问题。昨天就遇到了这样一个问题,电路结构如图一,在这种情况下STC单片机与410单片机通讯是没问题的 但是与PC就无法通讯了,STC收不到PC的命令,以前410的位置是用的STC的片子一直没问题,我想也许是驱动能力不够,在410TX端加了上拉,不过没起作用。 用示波器监视串口得到面的波形 这说明sp3232下拉得不够,于是加了下拉,还是没起作用。又把410端口内部的上拉去掉,结果还是一样。 最后请教老师,在410程序里将TX的工作方式由推挽式改为开漏式,一切ok~!

从网上查了推挽和开漏的区别,放在这里免得以后再到处找了,给自己保存了 我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极C跟发射极E之间相当于断开),所以5V电源通过1K电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。 我们将图1简化成图2的样子。图2中的开关受软件控制,“1”时断开,“0”时闭合。很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。而当开关断开时,则输出端悬空了,即高阻态。这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。 再看图三。图三中那个1K的电阻即是上拉电阻。如果开关闭合,则有电流从1K电阻及开关上流过,但由于开关闭其它三个口带内部上拉),当我们要使用输入功能时,只要将输出口设置为1即可,这样就相当于那个开关断开,而对于P0口来说,就是高阻态了。 对于漏极开路(OD)输出,跟集电极开路输出是十分类似的。将上面的三极管换成场效应管即可。这样集电极就变成了漏极,OC就变成了OD,原理分析是一样的。 另一种输出结构是推挽输出。推挽输出的结构就是把上面的上拉电阻也换成一个开关,当要输出高电平时,上面的开关通,下面的开关断;而要输出低电平时,则刚好相反。比起OC或者OD来说,这样的推挽结构高、低电平驱动能力都很强。如果两个输出不同电平的输出口接在一起的话,就会产生很大的电流,有可能将输出口烧坏。而上面说的OC或OD输出则不会有这样的情况,因为上拉电

基于热敏电阻的数字温度计

电子信息工程学院电子设计应用软件训练任务 【训练任务】: 1、熟练掌握PROTEUS软件的使用; 2、按照设计要求绘制电路原理图; 3、能够按要求对所设计的电路进行仿真; 【基本要求及说明】: 1、按照设计要求自行定义电路图纸尺寸; 2、设计任务如下: 基于热敏电阻的数字温度计 设计要求 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 3、按照设计任务在Proteus 6 Professional中绘制电路原理图; 4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。【按照要求撰写总结报告】 成绩:_____

一、任务说明 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 二、元器件简介 1、AT89C51简介 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS,8位微处理器,俗称单片机。AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。其引脚图如图一所示。 图一 AT89C51引脚图

51单片机热敏电阻测温程序

//本程序是通过热敏电阻测温度(30c-50c),采用六位串行数码管显示,前三位显示ds18b20测得数据,后三位是热敏电阻测得数据 #include #include #include #define uchar unsigned char #define uint unsigned int uchar smg[]={0x88,0xeb,0x4c,0x49,0x2b,0x19,0x18,0xcb,0x08,0x09}; uchar b,d; uint shuju; int a,temp; sbit start=P2^7; sbit ale=P2^7; sbit addc=P2^6; sbit addb=P2^5; sbit adda=P2^4; sbit eoc=P2^3; sbit oe=P2^2; sbit clk=P3^2;//0809时钟脚 sbit dat=P3^0; //串行数码管数据端 sbit clock=P3^1; //串行数码管时钟端 sbit DQ=P2^0; /******************delay**************************/ void delay(uint x) { while(x--); } void delay1(uint x) { uint i,j; for(i=0;i

51单片机IO口使用DE 经验

DANPAINJI 51单片机I/O口使用经验 字体大小: 小中大作者:来源:日期:2006-08-18 点击:364 按常规,在51端口(P1、P2、P3)某位用作输入时,必须先向对应的锁存器写入1,使FET 截止。一般情况是这样,也有例外。所谓IO口内部与电源相连的上拉电阻而非一常规线性电阻,实质上,该电阻是由两个场效应管并联在一起:一个FET为负载管,其阻值固定;另一个FET可工作在导通或截止两种状态(姑且叫可变FET)。使其总电阻值变化近似为0或阻值较大(20千欧--40千欧)两种情况。当和端口锁存器相连的FET由导通至截止时,该阻值近似为0,可将引脚快速上拉至高电平;当和锁存器相连的FET由截止至导通时,该电阻呈现较大阻值,限制了和端口锁存器相连的FET的导通电流。 51I/O口作为输入端和外部信号相连有时必须考虑上述特性,本人在设计LTP1245热敏打印头驱动板时,资料上推介热敏头“抬头”和“纸尽”信号由头中内嵌检测电路提供,MCU IO口采集该信号时需加缓冲(如74HC04)。当时本人认为51IO口上拉电阻为一较大阻值的固定电阻,对输入信号无影响,故未加缓冲电路(为降低成本能省则省)。可到调试PCBA时发现,“抬头”、“纸尽”状态变化时,采集信号只在3.90V--5.10V之间变化,应为低电平时无低电平输出。究其原因,打印头的“抬头”、“缺纸”信号输出为一光敏三极管的集电极输出,集电极和电源间原有一个负载电阻,饱和导通设计工作电流仅为450--1100微安,当该集电极直接和MCU IO口某位相连时,IO口上拉电阻和光敏三极管负载电阻并联,当IO口上拉时,上拉电阻极小致使光敏三极管直流负载线斜率陡然增大,工作状态进入放大区而非希望的饱和区。当时在不改硬件的条件下,我几乎无计可施,甚至想到了准备烧断IO口上拉电阻(前两天我曾发帖求救怎么烧断IO口上拉电阻的方法)后来听网友建议该方法风险较大,所以总想用软件方法解决。 后来我的解决方法是:采样信号前不是先向对应锁存器写1,而是先写入0,再写入1,延时约10毫秒以上,然后再采样(当然此法只适应于采样频率很低的情况)。这样作的目的是:先写入0迫使IO口上拉电阻先为一较大值,此时如果外部光敏三极管本来处于截止状态,当完成上述一系列锁存器的写入过程后光敏管仍为截止态,IO口正确采样到高电平;此时如果外部光敏三极管基极电流足够大有容许三极管饱和导通的条件(即基极吸收到充分光强),虽然采样一开始集电极被人为钳位在低电平,但当下一时隙和IO口相连的锁存器被写入1时,在IO口上拉电阻中的可变FET导通之前,光敏三极管已先进入饱和态而又把引脚钳位在实际输出的低电平,此时MCU IO口的上拉电阻仍为较大阻值,同时和原光敏三极管集电极负载电阻并联(考虑并联后阻值变化,原光敏三极管集电极负载电阻需增大到适当阻值)充当饱和导通后光敏三极管的负载电阻,事实上,IO口上拉电阻中的可变FET未来得及导通又被截止了,由此又保证了信号低电平的正确采样。经过波形测试问题得

基于单片机热敏电阻温度采集

毕业设计说明书 第一章序论 1.1课题研究的意义 温度是工业生产中主要的参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。单片机在工业生产中的应用尤其广泛,温度采集系统则是单片机在工业生产中的一个典型的应用。采用单片机对温度进行采集不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。 随着嵌入式系统开发技术的快速发展及其在各个领域的广泛应用,单片机已经以其体积小、功能强、价格低、使用灵活等特点显示出了明显的优势和广泛的应用前景。作为一名测控技术与仪器专业的学生,理应对单片机有更深的了解,此次针对89C51型单片机在温度控制方面的应用,对温度恒定系统进行了分析并给出了具体的解决方案。 1.2课题研究的背景和当今发展趋势 数据采集系统始于20世纪50年代,1965年美国首先研究了用在军事上的测试系统,目标是测试中不依靠相关的测试文件,由非熟练人员操作,并且测试任务由测试设备高速自动控制完成。由于该种数据采集系统具有高速属性和一定的灵活性,可以满足众多传统方法不能完成的数据采集和测试任务,因而得到了初步的认可。 20世纪70年代中后期,随着微型机的发展,诞生了采集器、仪表同计算机融为一体的数据采集系统。由于这种数据采集系统的性能优良,超过了传统的自动检测仪表和专用数据采集系统,因而获得了惊人的发展。从70年代起,数据采集系统发展过程中逐渐分为两类,一类是实验室数据采集系统,另一类是工业现场数据采集系统。 20世纪80年代随着计算机的普及应用,数据采集系统得到了极大的发展,开始出现了,通用的数据采集与自动化测试系统。该阶段的数据采集系统主要有两类,一类以仪器仪表和采集器、通用接口总线和计算机等构成。例如:国际标准ICE625(GPIB)接口总线系统就是一个典型的代表。这类系统主要用于实验室,在工业生产现场也有一定的应用。 时至今日,由于集成电路制造技术的不断提高,出现了高性能、高可靠性的数据采集系统。现代的数据采集系统,在系统初始化、编程、修改、扩充等方面,变得比过去更加容易。A/D变换器的技术发展,允许以更高的分辨率,更快的采集速度和更低的成本,实现更精密的测量。目前,数据采集系统的一种较为肯定的发展趋势是:把个人计算机同数据采集系统结合起来,实现测量和控制任务的自动化 随着科学技术的发展和数据采集技术的广泛应用,对数据采集系统的各项指标,如采样率、分辨率、存储深度、数字信号处理的、抗干扰能力等方面提出了越来越高的要求,这时超高速数据采集系统应运而生。

基于AT89C51单片机电子体温计设计

1系统设计的目的意义 1.1 目的 体温是生命活动的一种表现,是人体新陈代谢的一个重要生理参数。体温既有生理学的意义,又有重要的临床意义,是临床诊断的一个重要指标。因此体温计在现在的生活中有极为重要的作用。传统的水银体温计易破碎,存在水银污染的可能,测量时间较长,不易读数,为此设计一种新型的体温计,它的测量精度与传统的水银体温计相媲美的情况下,大大地缩短了测量时间且携带方便,对环境几乎没有污染。它以AT89C51单片机为核心,结合温度传感器,LED模块等外部设备,在软件的控制下,实现智能化的体温测量,不但能够精确测温,而且能够对温度进行逻辑判断,并且通过LED显示器将测量结果显示出来。若温度高于38摄氏度系统就会自动报警,这就意味着所测得的温度异于人体正常温度,引起人们注意。本设计的创新点在于,不仅完成了电子体温计的要求,而且还增加了一个报警装置。当测量者的体温高于人体正常体温时,体温计就会自动报警,人性化设计,为广大客户带来方便。 1.2 国内外进展情况 中国电子体温计行业最早起源于1998年,以每年高于30%的速度发展至今经历了十多年时间。高达数倍甚至十多倍的利润空间、较低的政策壁垒和技术壁垒吸引了众多企业进入该行业。目前国内涌现了大小80多家电子体温计品牌,既有“欧姆龙”、“婴之侣”、“捷威”等行业领头的外资品牌,也有“华辰”、“世佳”、“华安”、“康复”等迅速发展壮大的国内品牌。今后试图进去该行业的生产厂家将达到50多家。由于行业逐步规范和新一轮电子体温计产品消费热潮的兴起,2009年以后,电子体温计产品行业进入了一个前所未有的高速发展时期,市场的快速发展孕育着巨大的商机。

基于51单片机和DS18B20的数字温度计设计说明

题目:基于89C51和DS18B20的数字温度计设计 一、设计要求 数字式温度计要求测温范围为-55~125°C,精度误差在0.1°C以内,LED数码管直读显示。 二、方案论证 根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机AT89C51为测控系统的核心来完成数据采集、处理、显示、报警等功能。选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。 该系统的总体设计思路如下:温度传感器DS18B20把所测得的温度发送到AT89C51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器用4位共阳LED数码管以动态扫描法实现。检测范围-55摄氏度到125摄氏度。 按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。 数字温度计总体电路结构框图如图1所示。

图1 数字温度计总体电路结构框图 三、系统硬件电路的设计 温度计电路设计原理图如图2所示,控制器使用单片机AT89C51,温度传感器使用DS18B20,用4位共阳LED数码管实现温度显示。 图2 数字温度计设计电路原理图 1、主控制器 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 2、显示电路

单片机IO口结构与工作原理

一、P0端口的结构及工作原理 P0端口8位中的一位结构图见下图: 由上图可见,P0端口由锁存器、输入缓冲器、切换开关、一个与非门、一个与门及场效应管驱动电路构成。 下面,先分析组成P0口的各个部分: 先看输入缓冲器:在P0口中,有两个三态的缓冲器,在其的输出端可以是高电平、低电平,同时还有一种就是高阻状态(或称为禁止状态),上面一个是读锁存器的缓冲器,下面一个是读引脚的缓冲器,读取P0.X引脚上的数据,要使这个三态缓冲器有效,引脚上的数据才会传输到部数据总线上。 D锁存器:在51单片机的32根I/O口线中都是用一个D触发器来构成锁存器的。D端是数据输入端,CP是控制端(也就是时序控制信号输入端),Q是输出端,Q非是反向输出端。 多路开关:在51单片机中,不需要外扩展存储器时,P0口可以作为通用的输入输出端口(即I/O)使用,对于8031(部没有ROM)的单片机或者编写的程序超过了单片机部的存储器容量,需要外扩存储器时,P0口就作为‘地址/数据’总线使用。这个多路选择开关就是用于选择是做为普通I/O口使用还是作为‘数据/地址’总线使用的选择开关了。当多路开关与下面接通时,P0口是作为普通的I/O口使用的,当多路开关是与上面接通时,P0口是作为‘地址/数据’总线使用的。 输出驱动部份:P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当V1导通时,V2就截止,当V2导通时,V1截止。

P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),V1管截止,多路开关是与锁存器的Q非端相接的(即P0口作为I/O口线使用)。作为地址/数据线使用时,多路开关的控制信号为1,V1管由地址/数据线决定,多路开关与地址/数据线连接。 输出过程: 1、I/O输出工作过程:当写锁存器信号CP有效,数据总线的信号→锁存器的输入端D→锁存器的反向输出Q非端→多路开关→V2管的栅极→V2的漏极到输出端P0.X。这时多路开关的控制信号为低电平0,V1管是截止的,所以作为输出口时,P0是漏极开路输出,类似于OC门,当驱动上接电流负载时,需要外接上拉电阻。 下图就是由部数据总线向P0口输出数据的流程图(红色箭头)。 2、地址输出过程 控制信号为1,地址信号为“0”时,与门输出低电平,V1管截止;反相器输出高电平,V2管导通,输出引脚的地址信号为低电平。

pic18单片机热敏电阻测温查表程序

//;************************************************* 1.//;* heat.c ** 2.//;************************************************* 3.//;* 本程序为热敏电阻输入处理模块程序 4.//;* 将温度值在LCD特定位置显示 5.//;* 占用I/O RA1,RB5,RB4,RB3 6.//;* 使用RAM 7.//;* 程序包括: 8.//;* - tempdeal 热敏电阻输入处理子程序 9.//;* - heattab 温度值校准表 10.//;* 11.//;* 入口参数无 12.//;* 出口参数 TempH,TempL (温度值) 13.//;************************************************* 14.#include // ;定义所用单片机的头文件 15.#define TSRCLK TRISD5 16.#define TRCLK TRISD4 17.#define TSER TRISD3 18.#define SRCLK RD5 19.#define RCLK RD4 20.#define SER RD3 21. 22. 23.void preled(void) 24.{ 25. TSRCLK=0; 26. TRCLK=0; 27. TSER=0; 28. SRCLK=0; 29. RCLK=0; 30. SER=0; 31.} 32.void moniled (unsigned char led_data) 33.{ 34. //MONILED; 入口参数LED_DATA,需要为 35. //;芯片全部在时钟上升沿完成动作,故需在低电平期间完成数据的变 化。先发送高位 36. unsigned char i; 37. for(i=8;i!=0;i--) 38. { 39. if(led_data&0x80) 40. SER=1; 41. else

51单片机原理期末考试题

广西工学201 2011学年 2学期课程考核试 考核课单片机技卷)考核班通08082 考核类闭学生人 8 打印份 8 一、填空题(每小分,2分 1.若累加器A中的数据为67H,则PSW中的P=_1__。 2. 一个机器周期= _6_个状态周期=12个振荡周期。 3.89C51的堆栈是按照先进后出的原则进行存取的RAM区。 4. 用一条指令实现以下功能: 若A中数据不等于200,则程序转至PROM_ CJNZ A,#200H,PROM__。 5. 为了使10H—17H作工作寄存器使用RS1, RS0的取值为__1,0。 6. 89C51中21个特殊功能寄存器,其地址凡是能被8整除的都有位寻址功能。 7. 89C51单片机有片内ROM容量_4KB , RAM容量128。 8. 某串行通信中有1个起始位,8个数据位和1个停止位,应选择的异步串行通信方式为方式1。 9. 在89C51单片机初始化时,SP存放的是07H。 10. 当89C51引脚ALE信号有效时,表示从P0口稳定地送出了_数据和地信息。 四、判断题(每小题2分,共20分) 1.如果发生除法溢出错误,则PSW标志位P置1。(∨) 5.对于89C51单片机,当CPU对内部程序存储器寻址超过4K时,系统会自动在外部程序存储器中寻址(∨)。 6.外加晶振频率越高,系统运算速度也就越快,系统性能也就越好(∨)。 7. 位TF0是定时器T1的溢出中断标志位。(∨) 8.在定时器T0和外部中断1都设为高优先级时,外部中断1优先级高于定时器T0。(×) 9.子程序的返回指令是RETI ,中断程序的返回指令是RET。(×) 10.波特率是数据传输的速率,指每秒传送的字节数。(∨) 3、51有 5个中断源,有2个中断优先级,优先级由软件填写特殊功能寄存器 IP 加以选择 4、中断请求信号有电平触发和脉冲触发两种触发方式。 6、74LS273通常用来作简单输出接口扩展;而74LS244则常用来作简单输入接口扩展。 7、A/D转换器的三个重要指标是转换速度、分辨率和转换精度。 二、选择题(从备选答案中选择一个正确答案,并将代号写在括号内。每题2分,共10分) 1、MCS-51单片机外扩存储器芯片时,4个I/O口中用作数据总线的是( B )。 (A)P0和P2口(B)P0口(C)P2和P3口(D)P2口 2、访问外部数据存储器时,不起作用的信号是( C )。 WRPSENRD(D)(CA))(B)ALE (3、使用定时器T1时,有几种工作模式( C )。 (A)1种(B)2种(C)3种(D)4种 4、MCS-51响应中断时,下面哪一个条件不是必须的( C )。 A、当前指令执行完毕 B、中断是开放的 C、没有同级或高级中断服务 D、必须有RETI指令 5、当MCS-51进行多机通讯时,串行接口的工作方式应选为( C )。 (A)方式0 (B)方式1 (C)方式2 (D)方式0或方式2 三、简答题(每题15分,共30分) 1、MCS-51单片机内部有几个定时/计数器?它们由哪些寄存器组成? 答:MCS-51单片机内部有两个16位可编程的定时/计数器,简称定时器0(T0)和定时器1(T1)。它们分别由方式寄存器TMOD、控制寄存组成。TL1、TH1,TL0、TH0和数据寄存器TCON器. 一、填空题(每空1分,共20分) 1、计算机的系统总线有地址总线、控制总线和数据总线。 2、通常、单片机上电复位时PC= 0000H ,SP= 07H ;而工作寄存器则缺省采用第 00 组,这组寄存器的地址范围是从000H~007H 。 3、JZ e 的操作码地址为1000H,e=20H,它转移的目标地址为 1022H 。 4、汇编语言中可以使用伪指令,它们不是真正的指令,只是用来对汇编过程进行 某种控制进行某种控制。

实验二单片机IO口的使用

姓名:学号:日期: 实验二单片机I/O口的使用 一、实验名称:单片机I/O口的使用 二、实验目的 1.掌握在Keil环境下建立项目、添加、保存源文件文件、编译源程序的方法; 2.掌握运行、步进、步越、运行到光标处等几种调试程序的方法; 3.掌握在Proteus环境下建立文件原理图的方法; 4.实现Proteus与Keil联调软件仿真。 三、使用仪器设备编号、部件及备件 1.实验室电脑; 2.单片机实验箱。 四、实验过程及数据、现象记录 1.在Proteus环境下建立如下仿真原理图,并保存为文件; 原理图中常用库元件的名称: 无极性电容:CAP 极性电容:CAP-ELEC 单片机:AT89C51 晶体振荡器:CRYSTAL 电阻:RES 按键:BUTTON 发光二极管:红色LED-RED 绿色LED-GREEN 蓝色LED-BLUE 黄色LED-YELLOW 2.在Keil环境下建立源程序并保存为.ASM文件,生成.HEX文件; 参考程序如下: ORG 0000H LJMP MAIN ORG 0100H MAIN: MOV A,# H LOOP: MOV P2,A CALL DELAY SJMP LOOP DELAY: MOV R1,# H DL1: MOV R2,# H DL2: MOV R3,# H DJNZ R3,$

DJNZ R2,DL2 DJNZ R1,DL1 RET END 将以上程序补充完整,流水时间间隔为50ms。 3.将.HEX文件导入仿真图,运行并观察结果; 4.利用Keil软件将程序下载至实验箱,进行硬件仿真,观察实验结果。 五、实验数据分析、误差分析、现象分析 现象:进行软硬件仿真时,观察到8支LED发光二极管流水发光。 六、回答思考题 1.如何让改变流水方向? 2.若将R3至R10上拉电阻省略,8支LED还能正常发光吗? 3.如果将LED接到P0口与接到P2口硬件设计时应注意什么问题? Keil软件建立项目的方法: 1.新建项目 2.新建文件 3.添加文件 4.设置选项 5.重建所有目标文件 6.调试仿真

(完整版)基于51单片机与DS18B20的数字温度计设计

信息与通信工程学院 课 程 设 计 项目:基于单片机的DS18B20数字温度计设计指导老师:湛腾西 设计人:尹世强彭娇礼 班级:电实11-1BF 2013 年06 月18 日

1 设计要求 1.1 基本要求 1、测量精度0.5℃ 2、范围:-50℃-110℃ 3、可测多点温度,演示两点以上 4、LED直读显示 5、可任意设计温度报警的上限与下限 6、可上传通信(RS232口),也可以相互对通(485口) 1.2 扩展功能 温度报警,能任意设定温度范围实现声光报警; 每隔10分钟记录一次温度数据,至少能查询过去10个时刻的温度情况。 2 元器件清单

3 总体方案设计 2.1 方案论证 2.1.1 方案一 由于本设计是测温电路,可以使用热敏电阻之类的器件,将随被测温度变化的电压或电流采样,进行A/D 转换后就可以用单片机进行数据处理,实现温度显示。这种设计需要用到A/D 转换电路,增大了电路的复杂性,而且要做到高精度也比较困难。 2.1.2 方案二 考虑到在单片机属于数字系统,容易想到数字温度传感器,可选用DS18B20数字温度传感器,此传感器为单总线数字温度传感器,起体积小、 构成的系统结构简单,它可直接将温度转化成串行数字信号给单片机处理,即可实现温度显示。另外DS18B20具有3引脚的小体积封装,测温范围为-55~+125摄氏度,测温分辨率可达0.0625摄氏度,其测量范围与精度都能符合设计要求。 以上两种方案相比较,第二种方案的电路、软件设计更简单,此方案设计的系统在功耗、测量精度、范围等方面都能很好地达到要求,故本设计采用方案二。 图1 系统总体方框图

51单片机的电子钟以及lcd1602显示器的工作原理

51单片机的电子钟以及lcd1602显示器的工作原理 基于51单片机的电子钟C语言程序 #include #include #define uchar unsigned char #define uint unsigned int /*七段共阴管显示定义*/ uchar code dispcode[ ]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F, 0xBF,0x86,0xCB,0xCF,0xEF,0xED,0xFD,0x87,0xFF, 0xDF}; /*定义并初始化变量*/ uchar seconde=0; uchar minite=0; uchar hour=12; uchar mstcnt=0; sbit P1_0=P1^0; // second 调整定义 sbit P1_1=P1^1; //minite调整定义 sbit P1_2=P1^2; //hour调整定义 /*函数声明*/ void delay(uchar k ); //延时子程序 void time_pro( ); //时间处理子程序 void display( ); //显示子程序 void keyscan( ); //键盘扫描子程序 /*****************************/ /*延时子程序*/ /****************************/ void delay (uchar k) { uchar j; while((k--)!=0) { for(j=0;j<125;j++) {;} } } /**************************/ /*时间处理子程序*/ /**************************/ void time_pro( void) {

51单片机IO端口的四种输入输出模式

51单片机IO端口的四种输入输出模式(by wuleisly) 单片机I O口的使用对所有单片机玩家来说都是“家常便饭”,但是你真的了解I O 口吗?你真的能按你的需要配置I O口吗? 一、准双向口输出 准双向口输出类型可用作输出和输入功能而不需重新配置 口线输出状态。这是因为当口线 输出为1时驱动能力很弱,允许外部装置将其拉低。当引脚输出为低时,它的驱动能力很强, 可吸收相当大的电流。(准双向口有3个上拉晶体管适应不同的需要) 准双向口读外部状态前,要先锁存为…1?,才可读到外部正确的状态. 二、强推挽输出 推挽输出配置的下拉结构与开漏输出以及准双向口的下拉 结构相同,但当锁存器为1时提供持续的强上拉。推挽模式一般用于需要更大驱动电流的情况。 三、仅为输入(高阻) 输入口带有一个施密特触发输入以及一个干扰抑制电路。 四、开漏输出配置(若外加上拉电阻,也可读) 当口线锁存器为0时,开漏输出关闭所有上拉晶体管。当作为一个逻辑输出时,这种配置方式必须有外部上拉,一般通过电阻外接到V c c。如果外部有上拉电阻,开漏的I/O口还可读外部状态,即此时被配置为开漏模式的I/O口还可作为输入I/O口。这种方式的下拉与准双向口相同。 开漏端口带有一个施密特触发输入以及一个干扰抑制电路。 关于I/O口应用注意事项: 1.有些是I/O口由低变高读外部状态时,读不对,实际没有损坏,软件处理一下即可。 因为1T的8051单片机速度太快了,软件执行由低变高指令后立即读外部状态,此时由于实际输出还没有变高,就有可能读不

对,正确的方法是在软件设置由低变高后加1到2个空操作指令延时,再读就对了. 有些实际没有损坏,加上拉电阻就OK了 有些是外围接的是NP N三极管,没有加上拉电阻,其实基极串多 大电阻,I/O口就应该上拉多大的电阻,或者将该I/O口设置为强 推挽输出. 2.驱动L E D发光二极管没有加限流电阻,建议加1K以上的限流电阻,至少也要加470欧姆以上 做行列矩阵按键扫描电路时,实际工作时没有加限流电阻,实际工作时可能出现2个I/O口均输出为低,并且在按键按下时,短接在一起,我们知道一个C MOS电路的2个输出脚不应该直接短接在一起,按键扫描电路中,此时一个口为了读另外一个口的状态,必须先置高才能读另外一个口的状态,而8051单?片机的弱上 拉口在由0变为1时,会有2时 钟的强推挽高输出电流输出到另外一个输出为低的I/O口,就有 可能造成I/O口损坏.建议在其中的一侧加1K限流电阻,或者在 软件处理上,不要出现按键两端的I/O口同时为低. 一种典型三极管控制电路: 如果用弱上拉控制,建议加上拉电阻R1(3.3K~10K),如果不加上拉电阻R1(3. 3K~10K), 建议R2的值在15K以上,或用强推挽输出。 典型发光二极管控制电路:

最新51单片机热敏电阻测温查表程序汇总

51单片机热敏电阻测温查表程序

1.#include 2.#include"LCD.h" 3.#define uchar unsigned char 4.#define uint unsigned int 5.#define N 10 6.uchar bai,ge,shi,n; 7.uint temp,tp;temph,templ; 8.uint code ad_date[]={ 9. 1060,1060,1060,1100,1120,1140,1166,1180,1200,1220, 10. 1240,1320,1340,1360,1380,1400,1420,1440,1460,1480, 11. 1500,1520,1540,1560,1580,1600,1620,1640,1660,1680, 12. 1700,1720,1740,1760,1780,1800,1820,1840,1840,1860, 13. 1880,1900,1920,1940,1960,1980,2000,2020,2040,2060, 14. 2080,2100,2120,2140,2160,2180,2200,2220,2240,2260, 15. 2280,2300,2320,2340,2360,2380,2400,2420,2440,2460, 16. 2480,2500,2520,2540,2560,2580,2600,2620,2640,2660, 17. 2680,2700,2720,2740,2760,2780,2800,2820,2840,2860, 18. 2880,2900,2920,2920,2940,2960,2980,3000,3020,3040, 19. 3060,3080,3100,3120,3140,3160,3180,3200,3220,3240, 20. 3260,3280,3300,3320,3340,3360,3380,3400,3420,3440, 21. 3460,3480,3500,3520,3540,3560,3580,3600,3620,3640, 22. 3660,3680}; 23.uint code temperiture[]={ 24. 594,593,586,580,579,560,564,559,552,545, 25. 541,518,513,508,503,497,491,488,483,480, 26. 473,468,463,458,455,451,447,440,434,433, 27. 430,425,420,416,413,409,404,401,401,396, 28. 390,386,382,378,374,372,368,364,361,357, 29. 354,351,347,343,340,336,333,328,326,322, 30. 319,316,313,309,307,303,300,296,294,289, 31. 286,283,280,276,274,271,267,264,260,257, 32. 253,249,246,243,240,237,233,231,228,224, 33. 222,219,214,216,211,209,206,202,198,194, 34. 187,184,181,178,175,171,168,164,161,158, 35. 154,152,148,146,142,139,136,133,130,126, 36. 124,121,116,114,112,108,102,98,96,94, 37. 89,86}; 38.uchar code table[]=" T:00.0`C"; 39.uchar num=0; 40.uchar keynum,max=40,min=0; 41.uchar code Temp_max[]=" Max:40`C",Temp_min[]=" Min:00`C"; 42. 43.sbit ad_wr=P3^6; 44.sbit ad_rd=P3^7;

相关文档
相关文档 最新文档