文档库 最新最全的文档下载
当前位置:文档库 › 高三-函数的单调性、奇偶性、周期性 (1)

高三-函数的单调性、奇偶性、周期性 (1)

高三-函数的单调性、奇偶性、周期性 (1)
高三-函数的单调性、奇偶性、周期性 (1)

精锐教育学科教师辅导讲义

授课主题T(单调性)T (奇偶性和周期性) C (函数的基本性质综合)授课日期及时段

教学内容

知识梳理

函数单调性定义

1.增函数

一般地,设函数y=f(x)的定义域为I,

如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

思考:仿照增函数的定义说出减函数的定义.(学生活动)

注意:

○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;单调性是与“区间”紧密相关的概念,一个函数在定义域的不同的区间上可以有不同的单调性。

○2必须是对于区间D内的任意两个自变量x1,x2;当x1

2.函数的单调性定义

如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:

3.证明函数单调性的方法步骤

利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:

○1 任取x 1,x 2∈D ,且x 1

○2 作差f(x 1)-f(x 2);

○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负);

○5 下结论(即指出函数f(x)在给定的区间D 上的单调性). 4、判定函数单调性的常见方法

(1)定义法:如上述步骤,这是证明或判定函数单调性的常用方法 (2)图象法:根据函数图象的升降情况进行判断。

(3)直接法:运用已知的结论,直接得到函数的单调性,如一次函数、二次函数、反比例函数的单调性均可直接说出。直接判定函数的单调性,可用到以下结论:

(3.1)的单调性相反。与函数函数)()(x f y x f y =-= (3.2)函数)(x f 恒为正或恒为负时,的单调性相反。与函数)()

(1

x f y x f y ==

(3.3)在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数。

提醒:书写函数的单调区间时,区间端点的开或闭没有严格规定,习惯上,若函数在区间端点处有定义,则写成闭区间,当然写成开区间也可;若函数在区间端点处没有定义,则必须写成开区间。

5. 最大值 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M

那么,称M 是函数y=f(x)的最大值(Maximum Value ).

思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义. 注意:

1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○

2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ). 6.利用函数单调性的判断函数的最大(小)值的方法 ○

1 利用二次函数的性质(配方法)求函数的最大(小)值

2 利用图象求函数的最大(小)值

3 2

()

y f x =-4

2

1

5

4

3

1

-1

-2

-1 -5 -3 -2 o

x

3 利用函数单调性的判断函数的最大(小)值

如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);

如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b)。 例1. 下图是定义在[-5,5]上的函数)(x f y =的图象,根据图象说出函数)(x f y =的单调区间,以及在每一单调区间上,)(x f y =是增函数还是减函数。

解:)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5]。

其中)(x f y =在[-5,-2),[1,3)上是减函数; 在[-2,1), [3,5)上是增函数。 强调单调区间的写法:

(1)单调区间一般不能求并集;

(2)当端点满足单调性定义时,可开可闭。

变式:如图为函数]7,4[),(--∈=x x f y 的图象,指出它的最大值、最小值及单调区间。

解:观察图象知,图象上最高点是(3,3),最低点 是(-1.5,-2)。所以

2,3min

max

-==y

y

单调增区间为]6,5[]3,5.1[,

-;单调减区间为]7,6[]5,3[]5.1,4[,,--。

例2. 设函数f (x )=

b

x a

x ++(a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性. 解析:在定义域内任取x 1<x 2,f (x 1)-f (x 2)=

1222x a x a x b x b ++-++121212()()()()

()()

x a x b x b x a x b x b ++-++=

++ -4 -1.

5

-2

-1 3 3 5 6 7

x

y

)

)(()

)((2121b x b x x x a b ++--=

,∵a >b >0,∴b -a <0,x 1-x 2<0,只有当x 1<x 2<-b 或-b <x 1<x 2时函数才单调.当x 1

<x 2<-b 或-b <x 1<x 2时f (x 1)-f (x 2)>0.

∴f (x )在(-b ,+∞)上是单调减函数,在(-∞,-b )上是单调减函数. 例3. 已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围. 解: ∵f (x )在(-2,2)上是减函数

∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )

∴??

??

??

???

<<<-<<-?????-<-<-<-<-<-32232

1

3

1211,2212212m m m m m m m 即 , 解得3221<<-m ,∴m 的取值范围是(-32,21)。

例4. 函数f (x )=log 2(x 2

-4x -5)的单调增区间为________.

解析 由题意知x 2-4x -5>0,解得x <-1或x >5,即函数f (x )=log 2(x 2-4x -5)的定义域为(-∞,-1)∪(5,+∞),

根据外层函数为单调增函数,而内层函数u =x 2-4x -5=(x -2)2

-9在(5,+∞)上单调递增,所以所求函数的单调增区间为(5,+∞). 答案 (5,+∞)

例5. 已知f (x )=???

?

?

a -x +4a x ,

log a x x

是(-∞,+∞)上的减函数,那么a 的取值范围是________.

解析 ∵当x ≥1时,y =log a x 单调递减,∴0<a <1;

而当x <1时,f (x )=(3a -1)x +4a 单调递减,∴a <1

3

又函数在其定义域内单调递减,故当x =1时,(3a -1)x +4a ≥log a x ,得a ≤1

7

综上可知,17≤a <1

3.

答案 .17≤a <13

知识梳理

函数奇偶性的概念:

偶函数的定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数。

奇函数的定义:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 就叫做奇函数。

如果函数()f x 是奇函数或是偶函数,我们就说函数()f x 具有奇偶性。 注意:1、判定函数的奇偶性,必须先求定义域。

2、不要盲目判断()f x 与()f x -的关系,要先看定义域是否关于原点对称。 奇偶性的理解:

(1)奇函数、偶函数的定义域关于原点对称。若x 是定义域中的一个数值,则x -也必然在定义域中,因此,函数()y f x =是奇函数或是偶函数的一个必不可少的条件是定义域关于原点对称。换言之,所给函数的定义域若不 关于原点对称,则这个函数必不具奇偶性。

(2)若奇函数()f x 在0x =处有定义,则(0)0f =。

(3)1()()()F x f x f x =+-为偶函数,2()()()F x f x f x =--为奇函数。

(4)函数的奇偶性是相对于整个定义域来说的,而单调性是相对于定义域内某个区间而言的,是局部性质。 奇偶函数的图象与性质:

(1) 奇函数的图象特征:奇函数的图象关于原点对称;反过来,图象关于原点对称的函数是奇函数。 (2) 偶函数的图象特征:偶函数的图象关于y 轴对称;反过来,图象关于y 轴对称的函数是偶函数 (3) 重要性质:

①奇函数在[,]a b 和[,]b a --上有相同的单调性;偶函数在[,]a b 和[,]b a --上有相反的单调性。 ②在公共定义域内:

两个奇函数的和是奇函数,两个奇函数的积是偶函数; 两个偶函数的和、积都是是偶函数; 一个奇函数,一个偶函数的积是奇函数.

函数奇偶性的判断方法:

判断函数奇偶性常见的方法有定义法、图像法、性质法。

(1)用定义法判断函数奇偶性的一般步骤: ①考察定义域是否关于原点对称;

②判断()()f x f x -=±或()()0f x f x -±=或是否成立。 ③得出结论。

(2)图像法:一个函数为奇(偶)函数的充要条件是它的图像关于原点(y 轴)对称。

例1.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x ∈R),其中正确命题的个数是

解:偶函数的图象关于y 轴对称,但不一定相交,因此③正确,①错误 奇函数的图象关于原点对称,但不一定经过原点,因此②不正确

若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x ∈R ,如例1中的(3),故④错误,答案是1个

小结:既奇又偶函数的充要条件是定义域关于原点对称且函数值恒为零。

例2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,

∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).

∴,,)0()0()

2()

2()(<≥---=??

?x x x x x x x f

例3.判断下列函数的奇偶性

(1)1()(1)1x f x x x +=--; (2)22

(0)()(0)x x

x f x x x

x ?+??

解:(1)由

101x

x

+≥-,得定义域为[1,1)-,关于原点不对称,∴()f x 为非奇非偶函数 (2)当0x <时,0x ->,则2

2

()()()()f x x x x x f x -=---=-+=-, 当0x >时,0x -<,则22

()()()()f x x x x x f x -=--=--+=-,

综上所述,对任意的(,)x ∈-∞+∞,都有()()f x f x -=-,∴()f x 为奇函数。 例4.已知函数f (x )=log 4(4x

+1)+kx (k ∈R )是偶函数,则k 的值为________.

解析 由f (-x )=f (x ),得log 4(4-x

+1)-kx =log 4(4x

+1)+kx ,即2kx =log 4???

?1+4x

4x -log 4(4x +1)=log 41

4x =-x ,所以

k =-1

2.

答案 -1

2

例5.定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)123()12(22+-<++a a f a a f ,求a 的取值范围 解析:

偶函数)(x f 在)0,(-∞是单调递减,∴函数)(x f 在(0,)+∞上单调递增,

087

)41(212222>++=++a a a ,

又03

2)31(312322

>+-=+-a a a ,)123()12(22+-<++a a f a a f ,

1231222+-<++∴a a a a ,解得3>a 或0

例6.若y =f (x )是奇函数,且在(0),+∞内是增函数,又f (3)=0,则xf (x )<0的解集是 _______. 解析 因为f(x)在(0),+∞内是增函数,f(3)=0, 所以当03时,f(x)>0.

又因为f(x)是奇函数,其图象关于原点对称,所以当-30; 当x<-3时,f(x)<0.

可见xf(x)<0的解集是{x|-3

思考:如果题中不等式改成(x -1)f (x+2)<0呢?

练习1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.

解析 由f (x )是偶函数知,f (x )=f (-x ), 即ax 2+bx =a (-x )2-bx ,∴2bx =0,∴b =0. 又f (x )的定义域应关于原点对称, 即(a -1)+2a =0,∴a =13,故a +b =1

3.

答案 1

3

练习2.下列函数:

①f (x )=1-x 2+x 2-1;②f (x )=x 3-x ;③f (x )=ln(x +x 2

+1);④f (x )=3x -3-

x 2;⑤f (x )=lg 1-x

1+x

.

其中奇函数的个数是________.

解析 ①f (x )=1-x 2

+x 2

-1的定义域为{-1,1},又f (-x )=±f (x )=0,则f (x )既是奇函数,也是偶函数;

②f (x )=x 3-x 的定义域为R ,又f (-x )=(-x )3-(-x )=-(x 3-x )=-f (x ),则f (x )=x 3-x 是奇函数; ③由x +x 2+1>x +|x |≥0知f (x )=ln(x +x 2+1)的定义域为R , 又f (-x )=ln(-x +(-x )2+1)=ln

1

x +x 2

+1

=-ln(x +x 2+1)=-f (x ),则f (x )为奇函数; ④f (x )=3x -3-

x 2的定义域为R ,又f (-x )=3-

x -3x 2=-3x -3-

x

2=-f (x ),则f (x )为奇函数;

⑤由1-x 1+x >0得-1

1+x 的定义域为(-1,1),

又f (-x )=ln

1+x 1-x =ln ? ??

??1-x 1+x -1=-ln 1-x 1+x =-f (x ),则f (x )为奇函数;

∴奇函数的个数为5.

练习3.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.

解析 令g (x )=f (x )-1=x 3cos x ,

∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ),∴g (x )为定义在R 上的奇函数. 又∵f (a )=11,∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9. 答案 -9

练习4.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________. 解析:f (mx -2)<-f (x )=f (-x ),因为f (x )为奇函数并且单调递增,所以mx -2<-x 对任意的m ∈[-2,2]恒成立 答案:(-2,2

3

) 练习5.已知定义域为R 的函数f (x )=a +1

4x +1

是奇函数.

(1)求a 的值;

(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.

解:(1)∵奇函数f (x )=a +14x +1的定义域为R ,∴f (0)=0.从而a +140+1

=0,∴a =-1

2.

经检验,a =-1

2符合题意.

(2)易知f (x )=-12+1

4x +1

是R 上的减函数.

?t ∈R ,f (t 2-2t )+f (2t 2-k )<0恒成立,即f (t 2-2t )<-f (2t 2-k )恒成立. 又∵f (x )为奇函数,

∴f (t 2-2t )<f (k -2t 2)恒成立. ∵f (x )是减函数,

∴t 2-2t >k -2t 2恒成立,

∴k <3t 2-2t 恒成立,即k 比3t 2-2t 的最小值还小.

令u =3t 2-2t ,u min =-1

3

∴k <-1

3.

周期性

(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. 说明:nT 也是)(x f 的周期

(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 周期性的性质:

若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期 若)()(x f a x f -=+;)(1)(x f a x f =

+;)

(1

)(x f a x f -=+;则)(x f 周期是2a 对称性

若函数f (x )满足f (a -x )=f (a +x )或f (x )=f (2a -x ),则函数f (x )关于直线x =a 对称.

例1.已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则,f (6)的值为________ 解析 ∵f (x +4)=-f (x+2)=-(-f (x ))=f (x ) ∴函数周期为4 ∴f (6)=f (2)=-f (0)=0 答案 0

例2:设f(x)是定义在(-∞,+∞)上的奇函数,且f(x +2)=-f(x),当0≤x≤1时,f(x)=x ,则f(7.5)=________. 解析 由题意得f(x +4)=f[(x +2)+2]=-f(x +2)=f(x),所以f(x)是以4为周期的函数,所以f(7.5)=f(7.5-8)=f(-0.5)=-f(0.5)=-0.5. 答案 -0.5

例3:设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201

x x ax f x bx x <+-??

=+??+?≤≤≤,

,,,其中a b ∈R ,

.若1322f f ????

= ? ?????

,则3a b +的值为 . 【解析】因为1322f f ????

= ? ?????

,函数()f x 的周期为2,所以

)21()223()21(-=-=f f f ,根据0111()201

x x ax f x bx x <+-??

=+??

+?≤≤≤,

,,,得到223-=+b a ,

又)1()1(-=f f ,得到02,2

2

1=++=+-b a b a 即,结合上面的式子解得4,2-==b a ,所以103-=+b a . 答案 -10

一、 能力培养

例1.定义在R 的奇函数f (x )单调递增,且对任意实数a ,b 满足f (a )+f (b -1)=0,则a +b =________. 解析 ∵f (x )为奇函数,∴f (-x )=-f (x ) ∴f (a )=-f (b -1)=f (1-b ) 又∵f (x )单调递增 ∴a =1-b 即a +b =1. 答案 1

例2.若函数y =3+x 2

ln ? ????1+x 1-x ???

?x ∈????-12,12的最大值与最小值分别为M ,m ,则M +m =________. 解析:函数的图象关于(0,3)对称,并且具有中心对称的函数在对称区间上的最大值与最小值之和为对称中心纵坐标的2倍,故答案为6。也可以理解成y-3是个奇函数。

答案:6

例3.设f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2,对于任意x∈[t-2,t],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是________.

解析:f(x+t)≥2f(x)等价于f(x+t)≥f(2x)根据奇偶性得到函数在定义域上是单调递减函数,所以x+t≤2x 恒成立,解得t≤- 2.

答案:(-∞,- 2 ]

思考:如果解析式换成2x,不等式右边变成f 3 (x)呢

例4.函数f(x)对任意的m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.

(1)求证:f(x)在R上是增函数;

(2)若f(3)=4,解不等式f(a2+a-5)<2.

解:(1)证明:设x10.

∵当x>0时,f(x)>1,∴f(x2-x1)>1.

f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,

∴f(x2)-f(x1)=f(x2-x1)-1>0?f(x1)

∴f(x)在R上为增函数.

(2)∵m,n∈R,不妨设m=n=1,

∴f(1+1)=f(1)+f(1)-1?f(2)=2f(1)-1,

f(3)=4?f(2+1)=4?f(2)+f(1)-1=4

?3f(1)-2=4,

∴f(1)=2.∴f(a2+a-5)<2=f(1).

∵f(x)在R上为增函数,

∴a2+a-5<1?-3

例5.已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.

解析:因为定义在R上的奇函数,满足f(x-4)=-f(x),所以f(x-4)=f(-x).由f(x)为奇函数,得函数图象关于直线x=2对称且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示.那么方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1

答案:-8

二、能力点评

已知函数的单调性确定参数的值或范围,可以通过解不等式或转化为不等式恒成立问题求解;需注意的是,

若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.

利用函数的单调性求参数的取值范围,解题思路为视参数为已知数,依据函数的图象或单调性定义,确定函

数的单调区间,与已知单调区间比较求参.

对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或 与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2

x 1=x 2+x 1-x 2等;利用函数单调性可以求函数最值.

函数性质的综合问题,可以利用函数的周期性、对称性确定函数图象,充分利用已知区间上函数的性质,体

现了转化思想.

学法升华

一、 知识收获

1.单调性

(1)定义:一般地,设函数y =f (x )的定义域为A ,如果对于区间I 内的任意两个值x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间I 上是单调________________.

(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0?f (x 1)-f (x 2)

x 1-x 2

>0?f (x )在[a ,b ]上

是单调________;(x 1-x 2)(f (x 1)-f (x 2))<0?f (x 1)-f (x 2)

x 1-x 2

<0?f (x )在[a ,b ]上是单调________.

(3)单调区间:如果函数y =f (x )在某个区间上是单调增函数或减函数,那么说函数y =f (x )在区间I 上具有单调

性,单调增区间和单调减区间统称为__________.

(4)函数y =x +a

x

(a >0)在 (-∞,-a ),(a ,+∞)上单调________;在(-a ,0),(0,a )上单调________;

函数y =x +a

x

(a <0)在____________上单调递增.

2.最值 一般地,设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得对于任意的x ∈A ,都有f (x )≤f (x 0)(或≥f (x 0)),则称f (x 0)为y =f (x )的最____(或最____)值.

3.函数奇偶性的定义

设函数y =f (x )的定义域为A .如果对于任意的x ∈A ,都有__________,则称f (x )为奇函数;如果对于任意的x ∈A 都有__________,则称f (x )为偶函数.

4.奇偶函数的性质

(1)f (x )为奇函数?f (-x )=-f (x )?f (-x )+f (x )=____; f (x )为偶函数?f (x )=f (-x )=f (|x |)?f (x )-f (-x )=____.

(2)f (x )是偶函数?f (x )的图象关于____轴对称;f (x )是奇函数?f (x )的图象关于______对称.

(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有______的单调性. 5.函数的周期性 (1)定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x +T )=______,则称f (x )为______函数,其中T 称作f (x )的周期.若T 存在一个最小的正数,则称它为f (x )的________.

(2)性质: ①f (x +T )=f (x )常常写作f (x +T 2)=f (x -T

2

).

②如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x ).

③若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1

f (x )

(a 是常

数且a ≠0),则f (x )是以______为一个周期的周期函数.

二、 方法总结

通过判定函数的单调性来判断函数的最值求值域,是处理函数值域问题的重要手段。

利用数形结合和分类讨论解决含参数不等式存在或恒成立的问题,是函数部分最重要的变化之一。

自己整理抽象函数单调性及奇偶性练习及答案

1、已知f x ()的定义域为R ,且对任意实数x ,y 满足f xy f x f y ()()()=+,求 证:f x ()是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, f x ()<0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值; (2)求证: ()f x 在R 上是单调减函数;

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

抽象函数单调性、奇偶性、周期性和对称性典例分析[1]

抽象函数的对称性、奇偶性与周期性 一、典例分析 1.求函数值 例1.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于( ) (A )0.5; (B )-0.5; (C )1.5; (D )-1.5. 例2.已知)(x f 是定义在实数集上的函数,且[])(1)(1)2(x f x f x f +=-+,,32)1(+=f 求)1989(f 的值.(1989)f = 。 2、比较函数值大小 例3.若))((R x x f ∈是以2为周期的偶函数,当[]1,0∈x 时,,)(1998 1x x f =试比较)1998( f 、)17101(f 、)15 104(f 的大小. 3、求函数解析式 例 4.设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当 0I x ∈时,.)(2x x f =求)(x f 在k I 上的解析式. 例5.设)(x f 是定义在),(+∞-∞上以2为周期的周期函数,且)(x f 是偶函数,在区间[]3,2上,. 4)3(2)(2 +--=x x f 求[]2,1∈x 时,)(x f 的解析式. 4、判断函数奇偶性 例6.已知)(x f 的周期为4,且等式)2()2(x f x f -=+对任意R x ∈均成立,判断函数)(x f 的奇偶性. 5、确定函数图象与x 轴交点的个数 例7.设函数)(x f 对任意实数x 满足)2()2(x f x f -=+,=+)7(x f ,0)0()7(=-f x f 且判断函数)(x f 图象在

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

高一数学函数奇偶性练习题及答案解析

高一数学函数奇偶性练习题及答案解析 数学函数奇偶性练习题及答案解析 1.下列命题中,真命题是 A.函数y=1x是奇函数,且在定义域内为减函数 B.函数y=x3x-10是奇函数,且在定义域内为增函数 C.函数y=x2是偶函数,且在-3,0上为减函数 D.函数y=ax2+cac≠0是偶函数,且在0,2上为增函数 解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+cac≠0在0,2上为减函数,故选C. 2.奇函数fx在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f-6+f-3的值为 A.10 B.-10 C.-15 D.15 解析:选C.fx在[3,6]上为增函数,fxmax=f6=8,fxmin=f3=-1.∴2f-6+f-3=-2f6- f3=-2×8+1=-15. 3.fx=x3+1x的图象关于 A.原点对称 B.y轴对称 C.y=x对称 D.y=-x对称 解析:选A.x≠0,f-x=-x3+1-x=-fx,fx为奇函数,关于原点对称. 4.如果定义在区间[3-a,5]上的函数fx为奇函数,那么a=________. 解析:∵fx是[3-a,5]上的奇函数, ∴区间[3-a,5]关于原点对称, ∴3-a=-5,a=8. 答案:8 1.函数fx=x的奇偶性为

A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 解析:选D.定义域为{x|x≥0},不关于原点对称. 2.下列函数为偶函数的是 A.fx=|x|+x B.fx=x2+1x C.fx=x2+x D.fx=|x|x2 解析:选D.只有D符合偶函数定义. 3.设fx是R上的任意函数,则下列叙述正确的是 A.fxf-x是奇函数 B.fx|f-x|是奇函数 C.fx-f-x是偶函数 D.fx+f-x是偶函数 解析:选D.设Fx=fxf-x 则F-x=Fx为偶函数. 设Gx=fx|f-x|, 则G-x=f-x|fx|. ∴Gx与G-x关系不定. 设Mx=fx-f-x, ∴M-x=f-x-fx=-Mx为奇函数. 设Nx=fx+f-x,则N-x=f-x+fx. Nx为偶函数. 4.已知函数fx=ax2+bx+ca≠0是偶函数,那么gx=ax3+bx2+cx A.是奇函数 B.是偶函数 C.既是奇函数又是偶函数

(完整版)函数的单调性与奇偶性练习题基础

1 函数单调性(一) (一)选择题 1.函数x x f 3 )(= 在下列区间上不是..减函数的是( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)∪(0,+∞) D .(1,+∞) 2.下列函数中,在区间(1,+∞)上为增函数的是( ) A .y =-3x +1 B .x y 2 = C .y =x 2-4x +5 D .y =|x -1|+2 3.设函数y =(2a -1)x 在R 上是减函数,则有 A .2 1≥ a B .2 1≤ a C .2 1> a D .2 1< a 4.若函数f (x )在区间[1,3)上是增函数,在区间[3,5]上也是增函数,则函数f (x )在区间[1,5]上( ) A .必是增函数 B .不一定是增函数 C .必是减函数 D .是增函数或减函数 (二)填空题 5.函数f (x )=2x 2-mx +3在[-2,+∞)上为增函数,在(-∞,-2)上为减函数,则m =______. 6.若函数x a x f = )(在(1,+∞)上为增函数,则实数a 的取值范围是______. 7.函数f (x )=1-|2-x |的单调递减区间是______,单调递增区间是______. 8.函数f (x )在(0,+∞)上为减函数,那么f (a 2-a +1)与)4 3(f 的大小关系是______。 *9.若函数f (x )=|x -a |+2在x ∈[0,+∞)上为增函数,则实数a 的取值范围是______. (三)解答题 10.函数f (x ),x ∈(a ,b )∪(b ,c )的图象如图所示,有三个同学对此函数的单调性作出如下的判断: 甲说f (x )在定义域上是增函数; 乙说f (x )在定义域上不是增函数,但有增区间, 丙说f (x )的增区间有两个,分别为(a ,b )和(b ,c ) 请你判断他们的说法是否正确,并说明理由。 11.已知函数.21 )(-= x x f (1)求f (x )的定义域; (2)证明函数f (x )在(0,+∞)上为减函数. 12.已知函数| |1)(x x f = . (1)用分段函数的形式写出f (x )的解析式;

专题抽象函数的单调性和奇偶性应用

抽象函数的单调性和奇偶性应用 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数。它是高中数学中的一个难点,因为抽象,解题时思维常常受阻,思路难以展开,而高考中会出现这一题型,本文对抽象函数的单调性和奇偶性问题进行了整理、归类,大概有以下几种题型: 一、判断单调性和奇偶性 1. 判断单调性 根据函数的奇偶性、单调性等有关性质,画出函数的示意图,以形助数,问题迅速获解。 例1.如果奇函数f x ()在区间[]37,上是增函数且有最小值为5,那 么f x ()在区间[]--73,上是 A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 分析:画出满足题意的示意图,易知选B 。 例2.偶函数f x ()在(0),+∞上是减函数,问f x ()在()-∞,0上是 增函数还是减函数,并证明你的结论。 分析:如图所示,易知f x ()在()-∞,0上是增函数,证明如下: 任取 x x x x 121200<-> 因为f x ()在(0),+∞上是减函数,所以 f x f x ()()-<-12。 又f x ()是偶函数,所以 f x f x f x f x ()()()()-=-=1122,, 从而f x f x ()()12<,故f x ()在()-∞,0上是增函数。 2. 判断奇偶性 根据已知条件,通过恰当的赋值代换,寻求f x ()与f x ()-的关系。 例3.若函数y f x f x =≠()(())0与y f x =-()的图象关于原点对称,判断:函数 y f x =()是什么函数。

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

最新函数的奇偶性和单调性综合训练及答案

一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数1()(1)1x f x x x +=--是偶函数 C .函数2()1f x x x =+ -是非奇非偶函数 D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3.函数11y x x = +--的值域为( ) A .( ]2,∞- B .(] 2,0 C .[ ) +∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2 ()2f x ax bx =++与x 轴没有交点,则2 80b a -<且0a >;(3) 223y x x =--的 递增区间为[)1,+∞;(4) 1y x =+和2(1)y x = +表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

最全最详细抽象函数的对称性、奇偶性和周期性常用结论

抽象函数的对称性、奇偶性与周期性常用结论 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT a ==平移,即得在其他周期的图像: []b kT a kT x kT x f y ++∈-=,),(。 [][]? ??++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-。 分段函数的奇偶性 3、函数的对称性: (1)中心对称即点对称: ①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++-- ③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= (2)轴对称:对称轴方程为:0=++C By Ax 。 ①))(2,)(2(),(),(2222//B A C By Ax B y B A C By Ax A x B y x B y x A +++-+++-=与点关于

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

高中数学函数的奇偶性说课稿

《函数的奇偶性》说课稿 各位评委老师,上午好,我是号考生叶新颖。今天我的说课题目是函数的奇偶性。首先我们来进行教材分析。 一、教材分析 函数是中学数学的重点和难点,函数的思想贯穿于整个高中数学之中。函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习指、对、幂函数的性质作好了坚实的准备和基础。因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用。 二.教学目标 1.知识目标: 理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性; 2.能力目标: 通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想. 3.情感目标: 通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.三.教学重点和难点: 教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法与格式 四、教学方法 为了实现本节课的教学目标,在教法上我采取: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。 2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。 五、学习方法

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。 2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。 六.教学程序 (一)创设情景,揭示课题 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 观察下列函数的图象,总结各函数之间的共性. 2()f x x = ()||1f x x =- 2 1()x x = x x x 通过讨论归纳:函数2()f x x =是定义域为全体实数的抛物线;函数()||1f x x =-是定义域为全体实数的折线;函数21()f x x =是定义域为非零实数的两支曲线,各函数之间的共性为图象关于y 轴对称.观察一对关于y 轴对称的点的坐标有什么关系? 归纳:若点(,())x f x 在函数图象上,则相应的点(,())x f x -也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等. (二)互动交流 研讨新知 函数的奇偶性定义: 1.偶函数 一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么

9运用函数地单调性与奇偶性解抽象函数不等式(附加半节课)—学生版

教学容概要

教学容 【知识精讲】 一、常见的抽象函数模型: ① 正比例函数模型:()0,≠=k kx x f ┄┄┄()()()y f x f y x f ±=±。 ② 幂函数模型:()2 x x f =┄┄┄()()()y f x f xy f ?=;() ()y f x f y x f =??? ? ??。 ③ 指数函数模型:()x a x f =┄┄┄()()()y f x f y x f ?=+;()()() y f x f y x f = -。 ④ 对数函数模型:()x x f a log =┄┄()()()y f x f xy f +=;()()y f x f y x f -=??? ? ??。 ⑤ 三角函数模型:()x x f tan =┄┄┄()()()()() y f x f y f x f y x f ?-+= +1。 如何利用函数单调性解题是历年高考和模考的重点,其中利用函数单调性解不等式是一个重点中的难点,如何攻克这个难点呢?一个词:去壳。 二、奇偶函数的性质:

奇函数:(1)()()f x f x -=-; (2)若奇函数()f x 的定义域包含0,则(0)0f =; (3)图像关于原点对称; (4)y 轴左右两侧的单调性相同; 偶函数:(1)()()f x f x -=; (3)图像关于y 轴对称; (4)y 轴左右两侧的单调性相反; 三、函数单调性的逆用: 若()f x 在区间D 上递增,则1212()()f x f x x x .(1x 2,x D ∈). 四、不等式恒成立问题的解法 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 通过上面的等价转化,转换为函数求最值的问题。 【经典例题】

函数的奇偶性与周期性考点和题型归纳

函数的奇偶性与周期性考点和题型归纳 一、基础知 1.函数的奇偶性 函数的定义域关于原点对称是函数具有奇偶性的前提条件. 若f (x )≠0,则奇(偶)函数定义的等价形式如下: (1)f (-x )=f (x )?f (-x )-f (x )=0?f (-x ) f (x )=1?f (x )为偶函数; (2)f (-x )=-f (x )?f (-x )+f (x )=0?f (-x ) f (x )=-1?f (x )为奇函数. 2.函数的周期性 (1)周期函数 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期. 周期函数定义的实质 存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 二、常用结论 1.函数奇偶性常用结论

(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |). (2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性. (3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )= 1 f (x ) ,则T =2a (a >0). (3)若f (x +a )=-1 f (x ),则T =2a (a >0). 3.函数图象的对称性 (1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称. (2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称. 考点一 函数奇偶性的判断 [典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2 |x +3|-3; (2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2) |x -2|-2 ; (4)f (x )=? ??? ? x 2+x ,x <0,x 2-x ,x >0. [解] (1)由f (x )=36-x 2 |x +3|-3,可知????? 36-x 2≥0,|x +3|-3≠0?????? -6≤x ≤6, x ≠0且x ≠-6, 故函数f (x )的定 义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.

高一数学函数的奇偶性知识及例题

高一数学函数的奇偶性 提出问题 ① 如图所示,观察下列函数的图象,总结各函数之间的共性 对于函数定义域内任意一个x,都有f(-x)=f(x). 定义: 1 ?偶函数:一般地,对于函数f(x)的定义域内的任意一个X,都有f( x) f (x),那么f (x) 就叫做偶函数. 2 ?奇函数:一般地,对于函数 f (x)的定义域的任意一个x,都有f( x) f (x),那么f (x) 就叫做奇函数. 1、如果函数y f (x)是奇函数或偶函数,我们就说函数y f (x)具有奇偶性;函数的奇偶性是函 数的整体性质; 2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函 数也不是偶函数; 3、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称) .如果一个函数的定义域不关于“0”(原点)对称,则该函数既不是奇函数也不是偶函数; 4、偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数为偶 函数且f(x) f (|x|)。奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点 对称,那么这个函数为奇函数? 且f(0)=0 5、可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法用定义判断函数奇偶性的步骤是 (1)、先求定义域,看是否关于原点对称; (2)、再判断f( x) f (x)或f ( x) f (x)是否恒成立;

(3)、作出相应结论. 若f ( x) f(x)或彳(x) f(x) 0,则f(x)是偶函数; 若 f( x) f (x)或 f ( x) f (x) 0,则 f (x)是奇函数 例?判断下列函数的奇偶性 x 3 x 2 为非奇非偶函数;(2)f (x) 为非奇非偶函数 x 1 x 1 奇函数;(4) f (x) (x 1). \ x 1 (7) f (x) .1 x 2 . x 2 1 既是奇函数又是偶函数 (8) f (x) a,a 0 为非奇非偶函数 常用结论: (1) . 两个偶函数相加所得的和为偶函数 (2) . 两个奇函数相加所得的和为奇函数 . ⑶.一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数 (4) . 两个偶函数相乘所得的积为偶函数 . (5) . 两个奇函数相乘所得的积为偶函数 . (6) . 一个偶函数与一个奇函数相乘所得的积为奇函数 . 一?分段函数奇偶性的判断 1 2 —x 2 1 (x 0) 例1.判断函数的奇偶性: g(x) 2 1 2 —X 2 1 (x 0) 2 解:当x >0时,一x v 0,于是 1 2 1 2 g( x) -( x)2 1 (-x 2 1) g(x) 2 2 当x v 0时,一x > 0,于是 1 2 1 2 1 2 g( x) ( x) 1 x 1 ( x 1) g(x) 2 2 2 综上可知, g(x)是奇函数. 2 (1)f (x) x x [ 1,2] 3 (3) f (x) x x (5)f(x) =x+ 丄; x 奇函数;(6) f (x) ■, 1 x 2 2 |x 2| 奇函数

函数奇偶性与单调性

一、函数的奇偶性 奇偶性定义:设函数()()y f x x D =∈,任取x D ∈,有()()f x f x =-,则称函数()y f x =为偶函数; ()()f x f x =--,则称函数()y x =为奇函数. 性质:(1)函数的奇偶性是函数的整体性质,是对函数的整个定义域而言; (2)由()()()()()f x f x f x f x =-=--知,若,x D ∈则x D -∈,因此,函数()f x 的定义域D 关于原点对称是函数()f x 为偶(奇)函数的必要条件(非充分) (3)若0D ∈,则()00f =是()f x 为奇函数的必要条件(非充分) (4)常数函数()()f x c x R =∈一定()0f x =是偶函数;若0c =则()f x 既是偶函数又是奇函数;函数()f x 既是偶函数又是奇函数?()0f x =(x D ∈,其中D 是关于原点对称的任何一个非空数集) (5)奇偶函数的图像特征:函数()f x 是奇函数?函数()f x 图像关于原点对称; 函数()f x 是偶函数?函数()f x 图像关于y 轴对称. (6)奇偶函数的运算性质:设()()1f x x D ∈为奇函数,()()2g x x D ∈为偶函数,12,D D D =则在D 上有:

(7)多项式函数()230123n n f x a a x a x a x a x =++++为奇函数?偶次项系数全为0; 多项式函数()230123n n f x a a x a x a x a x =++++为偶函数?奇次项系数全为0. 二、函数的单调性 单调性定义(唯一证明方法):对于区间D 上的函数()f x ,在D 上任取两个1212,,,x x x x < 若()()120,f x f x -<称()f x 在区间D 上是增函数,区间D 成为函数()f x 的单调增区间; 若()()120,f x f x ->称()f x 在区间D 上是减函数,区间D 成为函数()f x 的单调减区间. 性质:(1)函数单调性是函数的局部性质,研究函数的单调性可以在定义域的某个区间(定义域的子集)上进行(而不需要在整个定义域上);函数的定义域可以有若干个增减性不同的单调区间;若函数()f x 在整个定义域上单调,则称()f x 为单调函数. (2)函数单调性二个等价形式: ① ()() ()121200f x f x x x ->?>;若()f x 在R 上单调递减,则________. (4)设12,,x x D ∈则()()()()1212(0)x x f x f x f x -->

专题:抽象函数的单调性与奇偶性的证明.

特殊模型 抽象函数 正比例函数f(x)=kx (k≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f (x)f(y) [或) y (f )x (f )y x (f = ] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y )=f(x )f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x )=lo ga x (a 〉0且a≠1) f(xy)=f(x )+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x )=si nx f (x)=cosx f(x+T )=f(x ) 正切函数 f(x )=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=co tx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 1。已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。 证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。 2.奇函数()f x 在定义域(-1,1)内递减,求满足2 (1)(1)0f m f m -+-<的实数m 的取值范围。 解:由2 (1)(1)0f m f m -+-<得2 (1)(1)f m f m -<--,∵()f x 为函数,∴2 (1)(1)f m f m -<- 又∵()f x 在(—1,1)内递减,∴2 21111110111m m m m m -<--? 3。如果()f x =2 ax bx c ++(a 〉0)对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2 ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)〈f (4),∴f (2)〈f (1)〈f (4) 4。 已知函数f (x )对任意实数x,y ,均有f(x +y )=f (x )+f (y ),且当x >0时,f (x)>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。 分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。 解:设,∵当 ,∴ , ∵, ∴ ,即,∴f (x )为增函数. 在条件中,令y =-x ,则,再令x =y=0,则f (0)=2 f (0),∴f (0)=0,故f(-x)=f (x ),f(x )为奇函数, ∴f (1)=-f (-1)=2,又f (-2)=2 f (-1)=-4, ∴f(x )的值域为[-4,2]。

相关文档
相关文档 最新文档