文档库 最新最全的文档下载
当前位置:文档库 › 判别式教学设计一

判别式教学设计一

判别式教学设计一
判别式教学设计一

一元二次方程的根的判别式

教学过程

(一)明确目标

在前一节的“公式法”部分已经涉及到了,当b2-4ac≥0时,可以求出两个实数根.那么b2-4ac<0时,方程根的情况怎样呢?这就是本节课的目标.本节课将进一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三种情况下的一元二次方程根的情况.

(二)整体感知

在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.

在探索一元二次方程根的情况是由谁决定的过程中,要求学生从中体会转化的思想方法以及分类的思想方法,对学生思维全面性的考察起到了一个积极的渗透作用.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)平方根的性质是什么?

(2)解下列方程:

①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.

问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用.

2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将

(1)当b2-4ac>0时,方程有两个不相等的实数根.

(3)当b2-4ac<0时,方程没有实数根.

教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?

答:b2-4ac.

3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“Δ”表示.

②一元二次方程ax2+bx+c=0(a≠0).

当Δ>0时,有两个不相等的实数根;

当Δ=0时,有两个相等的实数根;

当Δ<0时,没有实数根.

反之亦然.

注意以下几个问题:

(1)∵a≠0,∴4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应向学生渗透转化和分类的思想方法.

(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.

4.例1 不解方程,判别下列方程的根的情况:

(1)2x2+3x-4=0;(2)16y2+9=24y;

(3)5(x2+1)-7x=0.

解:

(1)∵Δ=32-4×2×(-4)=9+32>0,

∴原方程有两个不相等的实数根.

(2)原方程可变形为

16y2-24y+9=0.

∵Δ=(-24)2-4×16×9=576-576=0,

∴原方程有两个相等的实数根.

(3)原方程可变形为

5x2-7x+5=0.

∵Δ=(-7)2-4×5×5=49-100<0,

∴原方程没有实数根.

学生口答,教师板书,引导学生总结步骤,(1)化方程为一般形式,确定a、b、c的值;(2)计算b2-4ac的值;(3)判别根的情况.

强调两点:(1)只要能判别Δ值的符号就行,具体数值不必计算出.(2)判别根的情况,不必求出方程的根.

练习.不解方程,判别下列方程根的情况:

(1)3x2+4x-2=0;(2)2y2+5=6y;

(3)4p(p-1)-3=0;(4)(x-2)2+2(x-2)-8=0;

学生板演、笔答、评价.

(4)题可去括号,化一般式进行判别,也可设y=x-2,判别方程y2+2y -8=0根的情况,由此判别原方程根的情况.

又∵不论k取何实数,Δ≥0,

∴原方程有两个实数根.

教师板书,引导学生回答.此题是含有字母系数的一元二次方程.注意字母的取值范围,从而确定b2-4ac的取值.

练习:不解方程,判别下列方程根的情况.

(1)a2x2-ax-1=0(a≠0);

(3)(2m2+1)x2-2mx+1=0.

学生板演、笔答、评价.教师渗透、点拨.

(3)解:Δ=(-2m)2-4(2m2+1)×1

=4m2-8m2-4

=-4m2-4.

∵不论m取何值,-4m2-4<0,即Δ<0.

∴方程无实数解.

由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值.

(四)总结、扩展

(1)判别式的意义及一元二次方程根的情况.

①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式.用“Δ”表示

②一元二次方程ax2+bx+c=0(a≠0).

当Δ>0时,有两个不相等的实数根;

当Δ=0时,有两个相等的实数根;

当Δ<0时,没有实数根.反之亦然.

(2)通过根的情况的研究过程,深刻体会转化的思想方法及分类的思想方法.

(五)布置作业

板书设计

一元二次方程根的判别式

一、定义:……三、例……

…………

练习:……

二、一元二次方程的根的情

况……

(1)…………

(2)……四、例……

(3)…………

一元二次方程根的判别式教学设计

一元二次方程根的判别式 一、教学内容分析 “一元二次方程的根的判别式”一节,它在整个中学数学中占有重要的地位,既可以根据它来判断一元二次方程的根的情况,又可以为今后研究不等式,二次三项式,二次函数,二次曲线等奠定基础,并且用它可以解决许多其它综合性问题。通过这一节的学习,培养学生的探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力,并向学生渗透分类的数学思想,渗透数学的简洁美。 教学重点:根的判别式的正确理解和运用 教学难点:根的判别式的运用。 教学关键:对根的判别使用条件的透彻理解。 二、学情分析 学生已经学过一元二次方程的四种解法,并对根的判别式的作用已经有所了解,在此基础上来进一步研究根的判别式的作用,它是前面知识的深化与总结。从思想方法上来说,学生对分类讨论、归纳总结的数学思想已经有所接触。所以可以通过让学生动手、动脑来培养学生探索精神和观察、分析、归纳的能力,以及逻辑思维能力、推理论证能力。 三、教学目标

依据教学大纲和对教材的分析,以及结合学生已有的知识基础,本节课的教学目标是: 知识和技能: 1、感悟一元二次方程的根的判别式的产生的过程; 2、能运用根的判别式,判别方程根的情况和进行有关的推理论证; 3、会运用根的判别式求一元二次方程中字母系数的取值范围; 过程和方法: 1、培养学生的探索、创新精神; 2、培养学生的逻辑思维能力以及推理论证能力。 情感态度价值观: 1、向学生渗透分类的数学思想和数学的简洁美; 2、加深师生间的交流,增进师生的情感; 3、培养学生的协作精神。 四、教学策略: 本着“以学生发展为本”的教育理念,同时也为了使学生都能积极地参与到课堂教学中,发挥学生的主观能动性,本节课主要采用了引导发现、

一元二次方程根的判别式知识点

一元二次方程根的判别 式知识点 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

一元二次方程根的判别式知识点及应用 1、一元二次方程ax2+bx+c=0(a≠0)的根的判别式定理:在一元二次方程 ax2+bx+c=0(a≠0)中,Δ=b24ac 若△>0则方程有两个不相等的实数根 若△=0则方程有两个相等的实数根 若△<0则方程没有实数根 2、这个定理的逆命题也成立,即有如下的逆定理: 在一元二次方程ax2+bx+c=0(a≠0)中,Δ=b24ac 若方程有两个不相等的实数根,则△>0 若方程有两个相等的实数根,则△=0 若方程没有实数根,则△<0 特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。 一、不解方程,判断一元二次方程根的情况。 二、例1、判断下列方程根的情况 三、2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0 二、?已知一元二次方程根的情况,求方程中字母系数所满足的条件。 例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0有两个实数根? 三、?证明方程根的性质。 例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。 四、?判断二次三项式能否在实数范围内因式分解。 例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围 内因式分解。 五、?判定二次三项式为完全平方式。 例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。 例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是

求根公式及根的判别式

加强班求根公式及根的判别式 在解一元二次方程有关问题时,最好能知道根的特点:如是否有实数根,有几个实数根,根的符号特点等。我们形象地说,判别式是一元二次方程根的“检测器”,在以下几个方面有着广泛的应用: 利用判别式,判定方程实根的个数,根的特点; 运用判别式,建立等式、不等式,求方程中参数的值或参数的取值范围; 通过判别式,证明与方程相关的代数问题; 借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题、最值问题。 例题1 (1)设a,b 是整数,方程02=++b ax x 的一根是324-,则a+b 的值是 (2)满足1)1(22=--+n n n 的整数n 有 个。(全国初中数学竞赛题) 例题2 已知0132=+-a a ,那么=++ --2219294a a a ( ) A 、3; B 、5; C 、35; D 、65 例题3 解关于x 的方程02)1(2=+--a ax x a 例题4 设方程04|12|2=---x x ,求满足该方程的所有根之和。 例题 5 设关于x 的二次方程0)2()2()1(222=+++--a a x a x a ○1及 0)2()2()1(222=+++--b b x b x b ○ 2(其中a,b 皆为正整数,且a ≠b )有一个公共根。求

a b a b b a b a --++的值。 例题6(1)关于x 的方程k x k kx 8)18(22-=++有两个不相等的实数根,则k 的取值范围是 , (2)关于x 的方程0122 23=-+--a ax ax x 只有一个实数根,则a 的取值范围是 例题7 把三个连续的正整数a,b,c 按任意次序(次序不同视为不同组)填入□2x +□x+□=0的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a,b,c ( ) A 、不存在; B 、有一组; C 、有两组; D 、多于两组; 例题8 已知关于x 的方程02)2(2=++-k x k x (1)求证:无论k 取任何实数值,方程总有实数根。 (2)若等腰三角形ABC 的一边长a=1,另两边长b,c 恰好是这个方程的两个根,求三角形ABC 的周长。(湖北省荆门市中考题) 例题9 设方程4||2=+ax x 只有3个不相等的实数根,求a 的取值和相应的3个根。(重庆市竞赛题)

根的判别式练习(答案版)

一元二次方程根的判别式练习题 (一)填空 1.方程x2+2x-1+m=0有两个相等实数根,则m=____. 2.a是有理数,b是____时,方程2x2+(a+1)x-(3a2-4a+b)=0的根也是有理数. 3.当k<1时,方程2(k+1)x2+4kx+2k-1=0有____实数根. 5.若关于x的一元二次方程mx2+3x-4=0有实数根,则m的值为____. 6.方程4mx2-mx+1=0有两个相等的实数根,则 m为____. 7.方程x2-mx+n=0中,m,n均为有理数,且方程有一个根是2 8.一元二次方程ax2+bx+c=0(a≠0)中,如果a,b,c是有理数且Δ=b2-4ac是一个完全平方数,则方程必有__.9.若m是非负整数且一元二次方程(1-m2)x2+2(1-m)x-1=0有两个实数根,则m的值为____. 10.若关于x的二次方程kx2+1=x-x2有实数根,则k的取值范围是____. 11.已知方程2x2-(3m+n)x+m·n=0有两个不相等的实数根,则m,n的取值范围是____. 12.若方程a(1-x2)+2bx+c(1+x2)=0的两个实数根相等,则a,b,c的关系式为_____. 13.二次方程(k2-1)x2-6(3k-1)x+72=0有两个实数根,则k为___. 14.若一元二次方程(1-3k)x2+4x-2=0有实数根,则k的取值范围是____. 15.方程(x2+3x)2+9(x2+3x)+44=0解的情况是_解. 16.如果方程x2+px+q=0有相等的实数根,那么方程x2-p(1+q)x+q3+2q2+q=0____实根. (二)选择 那么α= [ ]. 18.关于x的方程:m(x2+x+1)=x2+x+2有两相等的实数根,则m值为 [ ]. 19.当m>4时,关于x的方程(m-5)x2-2(m+2)x+m=0的实数根的个数为 [ ]. A.2个; B.1个; C.0个; D.不确定. 20.如果m为有理数,为使方程x2-4(m-1)x+3m2-2m+2k=0的根为有理数,则k的值为 [ ]. 则该方程 [ ]. A.无实数根; B.有相等的两实数根; C.有不等的两实数根; D.不能确定有无实数根. 22.若一元二次方程(1-2k)x2+8x=6没有实数根,那么k的最小整数值是 [ ]. A.2; B.0; C.1; D.3. 23.若一元二次方程(1-2k)x2+12x-10=0有实数根,那么k的最大整数值是 [ ]. A.1; B.2; C.-1; D.0. 24.方程x2+3x+b2-16=0和x2+3x-3b+12=0有相同实根,则b的值是 [ ]. A.4; B.-7; C.4或-7; D.所有实数. [ ]. A.两个相等的有理根; B.两个相等的实数根; C.两个不等的有理根; D.两个不等的无理根. 26.方程2x(kx-5)-3x2+9=0有实数根,k的最大整数值是 [ ]. A.-1; B.0; C.1; D.2. 29.若m为有理数,且方程2x2+(m+1)x-(3m2-4m+n)=0的根为有理数,则n的值为 [ ]. A.4; B.1; C.-2; D.-6. 30.方程x|x|-3|x|+2=0的实数根的个数是 [ ]. A.1; B.2; C.3; D. 4.

专题:一元二次方程根的判别式(含答案)-

一元二次方程根的判别式 姓名 ◆课前预习 1.一元二次方程ax 2+bx+c=0(a ≠0)的根的情况可用b 2-4ac ?来判定,?b 2-4ac ?叫做________,通常用符号“△”为表示.(1)b 2-4ac>0?方程_________;(2)b 2-4ac=0?方程_________; (3)b 2-4ac<0?方程_________. 2.使用根的判别式之前应先把方程化为一元二次方程的________形式. ◆互动课堂 【例1】不解方程,判别下列方程根的情况: (1)x 2-5x+3=0; (2)x 2;(3)3x 2+2=4x ; (4)mx 2+(m+n )x+n=0(m ≠0,m ≠n ). 【例2】若关于x 的方程(m 2-1)x 2-2(m+2)x+1=0有实数根,求m 的取值范围. 【例3】已知关于x 的一元二次方程x 2-(2k+1)x+4(k -12 )=0.(1)求证:无论k 取什么实数 值,这个方程总有实数根;(2)如果等腰△ABC 有一边长a=4,另两条边长b ,c 恰好是这个方程的两个实数根,求△ABC 的周长. 【例4】已知关于x 的方程x -2(m+1)x+m 2=0.(1)当m 取何值时,方程有两个实数根? (2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根. ◆跟进课堂 1.方程2x 2+3x -4=0的根的判别式△=________. 2.已知关于x 的一元二次方程mx 2-10x+5=0有实数根,则m 的取值范围是______. 3.如果方程x 2-2x -m+3=0有两个相等的实数根,则m 的值为_______,此时方程的根为________. 4.若关于x 的一元二次方程kx 2+2x -1=0没有实数根,则k 的取值范围是______. 5.若关于x 的一元二次方程mx 2-2(3m -1)x+9m -1=0有两个实数根,则实数m ?的取值范围是_______. 6.下列一元二次方程中,没有实数根的是( ). A .x 2+2x -1=0 B .x 2 C .x 2 D .-x 2+x+2=0 7.如果方程2x (kx -4)-x 2-6=0有实数根,则k 的最小整数是( ).A .-1 B .0 C .1 D .2 8.下列一元二次方程中,有实数根的方程是( ). A .x 2-x+1=0 B .x 2-2x+3=0 C .x 2+x -1=0 D .x 2+4=0 9.如果关于x 的一元二次方程kx 2-6x+9=0有两个不相等的实数根,那么k 的取值范围是( ). A .k<1 B .k ≠0 C .k<1且k ≠0 D .k>1 10.关于x 的方程x 2+(3m -1)x+2m 2-m=0的根的情况是( ). A .有两个实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .没有实数根 ◆课外作业 1.在下列方程中,有实数根的是( ) (A )x 2+3x+1=0 (B (C )x 2+2x+3=0 (D )1x x -=11x - 2.关于x 的一元二次方程x 2+kx -1=0的根的情况是 A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数根 C 、有两个相等的实数根 D 、没有实数根 3.关于x 的一元二次方程(a -1)x 2+x +a 2+3a -4=0有一个实数根是x =0.则a 的值为( ). A 、1或-4 B 、1 C 、-4 D 、-1或4 4.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是 . 5.若0是关于x 的方程(m -2)x 2+3x+m 2-2m -8=0的解,求实数m 的值,并讨论此方程解的情况.

《一元二次方程的根的判别式》word版 公开课一等奖教案 (2)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。 本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦! 《17.3 一元二次方程根的判别式》 教学目标: 1、感悟一元二次方程的根的判别式的产生的过程; 2、能运用根的判别式,判别方程根的情况和进行有关的推理论证; 3、会运用根的判别式求一元二次方程中字母系数的取值范围. 教学重点: 根的判别式定理. 教学难点: 根的判别式定理及逆定理的运用. 教学过程: 你们一定很想知道我的绝活是怎么回事吧?那么好,现在就请同学们用公式法解,以下三个一元二次方程;你们会很快发现我的奥秘. 用公式法解一元二次方程: ()()()2221320296103230x x x x x x ++=-+=-+= (注:找三名学生板演,其余学生在位上做) 请同学们观察这三个方程的解题过程,可以发现:在把系数代入求根公式之前,每题都是先确定了a 、b 、c 的值,然后求出它的值——2 4b ac -,为什么要这样做呢? (1)由此可见:在解()22004ax bx c a b ac ++=≠-一元二次方程时,代数式起着重要的作用,显然我们可以根据2 4b ac -的值的符号来判断方程的根的情况,因此,我们把24b ac -叫做一元二次方程的根的判别式,通常用符号“△(读作delta ,它是希腊字母)”来表示,即△=2 4b ac -.我们说在今后的数学学习中还会遇到:用一个简单的符号来表示一个数学式子的情况,同学们要逐渐适应这一点,它体现了数学的简洁美. 224b ac ≠-()注意:△而应为:△=

一元二次方程的根的判别式练习题

一元二次方程的根的判别式 1、方程2x 2+3x -k=0根的判别式是 ;当k 时,方程有实根。 2、关于x 的方程kx 2+(2k+1)x -k+1=0的实根的情况是 。 3、方程x 2+2x+m=0有两个相等实数根,则m= 。 4、关于x 的方程(k 2+1)x 2-2kx+(k 2+4)=0的根的情况是 。 5、当m 时,关于x 的方程3x 2-2(3m+1)x+3m 2-1=0有两个不相等的实数根。 6、如果关于x 的一元二次方程2x(ax -4)-x 2+6=0没有实数根,那么a 的最小整数值是 。 7、关于x 的一元二次方程mx 2+(2m -1)x -2=0的根的判别式的值等于4,则m= 。 8、设方程(x -a)(x -b)-cx=0的两根是α、β,试求方程(x -α)(x -β)+cx=0的根。 9、不解方程,判断下列关于x 的方程根的情况: (1)(a+1)x 2-2a 2x+a 3=0(a>0) (2)(k 2+1)x 2-2kx+(k 2+4)=0 10、m 、n 为何值时,方程x 2+2(m+1)x+3m 2+4mn+4n 2+2=0有实根? 11、求证:关于x 的方程(m 2+1)x 2-2mx+(m 2+4)=0没有实数根。 12、已知关于x 的方程(m 2-1)x 2+2(m+1)x+1=0,试问:m 为何实数值时,方程有实数根? 13、 已知关于x 的方程x 2-2x -m=0无实根(m 为实数),证明关于x 的方程x 2+2mx+1+2(m 2-1)(x 2+1)=0 也无实根。 14、已知:a>0,b>a+c,判断关于x 的方程ax 2+bx+c=0根的情况。 15、m 为何值时,方程2(m+1)x 2+4mx+2m -1=0。 (1)有两个不相等的实数根; (2)有两个实数根; (3)有两个相等的实数根; (4)无实数根。 16、当一元二次方程(2k -1)x 2-4x -6=0无实根时,k 应取何值? 17、已知:关于x 的方程x 2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。 18、若x 1、x 2是方程x 2+ p x+q=0的两个实根,且23x x x x 222121=++,25x 1x 12221=+求p 和q 的值。 19、设x 1、x 2是关于x 的方程x 2+px+q=0(q ≠0)的两个根,且x 2 1+3x 1x 2+x 2 2=1, 0)x 1(x )x 1(x 2211=+++,求p 和q 的值。 20、已知x 1、x 2是关于x 的方程4x 2-(3m -5)x -6m 2=0的两个实数根,且23x x 21=,求常数m 的值。 21、已知α、β是关于x 的方程x 2+px+q=0的两个不相等的实数根,且α3-α2β-αβ2+ β3=0,求证:p=0,q<0 22、已知方程(x -1)(x -2)=m 2(m 为已知实数,且m ≠0),不解方程证明: (1)这个方程有两个不相等的实数根;

中考专题:根的判别式

中考专题:根的判别式及相关运算 1.已知关于x的方程mx2+(3﹣2m)x+m﹣3=0,其中m>0.求证:方程总有两个不相等的实数根 2. 已知关于x的方程x2﹣(k+2)x+2k﹣1=0. (1)求证:方程总有两个不相等的实数根; (2)如果方程的一个根为x=3,求k的值及方程的另一根. 3. 已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0. (1)求证:无论k为何值时,该方程总有实数根; (2)若两个实数根平方和等于5,求k的值. 4. 已知关于x的一元二次方程x2﹣kx+k﹣1=0. (1)求证:此一元二次方程恒有实数根. (2)无论k为何值,该方程有一根为定值,请求出此方程的定值根. 5. 已知关于x的方程mx2+(3﹣2m)x+m﹣3=0,其中m≠0. (1)求证:方程总有两个不相等的实数根; (2)若方程的两个实数根都是整数,求整数m的值.

6. 已知关于x的方程x2﹣(2m+1)x+m(m+1)=0. (1)求证:方程总有两个不相等的实数根; (2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值). 7. 已知关于x的一元二次方程x2﹣(k+2)x+(2k﹣1)=0. (1)求证:该方程由两个不相等的实数根. (2)若此方程有一个根是1,请求出方程的另一个根,并求出以此两根为边长的等腰三角形的周长. 8. 已知关于x的方程(x﹣1)(x﹣3)=m2,求证:无论m取何值时方程总有两个不相等的实数根;a,b是此方程的两根且a2+b2=12,求m的值. 9.已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根. (1)求证:无论k为何值时,方程总有两个不相等的实数根. (2)k为何值时,△ABC是以BC为斜边的直角三角形. 10. 已知关于x的一元二次方程x2﹣4x+m=0. (1)若方程有实数根,求实数m的取值范围; (2)若方程两实数根为x1,x2,且满足5x1+2x2=2,求实数m的值.

根的判别式教案

一元二次方程根的判别式 教学目标: 1?了解用配方法求一元二次方程一般式的解的过程; 2.了解一元二次方程根的情况由b2—4ac决定; 3?会利用根的判别式判别一元二次方程根的情况; 4?能利用根的判别式解决相关问题。 教学重难点: 教学重点是会利用根的判别式判别一元二次方程根的情况;教学难点是利用根的判别式解决问题 教学过程: 一、复习一元二次方程求根公式的推导,引入新课: 1 ?回忆用配方法求一元二次方程一般式的解的过程 2?为什么要讨论b2—4ac大于0,等于0,小于0? 3?一元二次方程根的情况由什么决定? 二、师生归纳总结展示成果 当厶>0时,一元二次方程有两个不相等的实数根; 当厶=0时,一元二次方程有两个相等的实数根; 当厶<0时,一元二次方程没有实数根。 反之成立。 三、例题1: 不解方程,判别下列方程的根的情况: (1) 2x2—7x—1=0;(2) 3x(x+2)= —5;( 3) 3 —4x2=0. 生先独立思考,后小组交流:在( 2)、(3)两题中,应注意什么?在(1)、(3)两题中,发 现若a、c异号,则b2—4ac 一定大于0吗?同学们自己还能发现什么规律吗? 反馈:独立完成课本P42第4题。 例题2:求证:关于x的方程2x2+3(m —1)x+m2—4m—7=0有两个不相等的实数根. 例题3:若关于x的方程x2—2 . ax —仁0有两个不相等的实数根,求a的取值范围. 例题4:若关于x的二次方程kx2+1 = x—x2有实数根,求k的取值范围. 例题5: m取什么数时,关于x的方程(m —2) x2—2mx+m+1=0有实数根? 分析:题目只说“关于x的方程”,并没说关于x的二次方程,而m—2是否为零确定此方程的次数,因此应分类讨论.

一元二次方程判别式及韦达定理

一元二次方程判别式及韦达定理 一、选择题 1.(2013湖北黄冈)已知一元二次方程x 2-6x +c =0有一个根为2,则另一根为( ) A .2 B .3 C .4 D .8 2.(2013四川泸州)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则实数k 的取值范围是( ) A .1k >- B .1k <且0k ≠ C . 1k ≥-且0k ≠ D . 1k >-且0k ≠ 3. (2013四川泸州,)设12,x x 是方程2330x x +-=的两个实数根,则 2112 x x x x +的值为( ) A .5 B .-5 C .1 D .-1 4. (2013福建福州,)下列一元二次方程有两个相等实数根的是( ) A .x 2+3=0 B .x 2+2x =0 C .(x +1)2=0 D .(x +3)(x -1)=0 5.(2013山东滨州,)对于任意实数k ,关于x 的方程程x 2-2(k +1)x -k 2+2k -1=0的根的情况为 A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定 6.(2013广东广州)若0205<+k ,则关于x 的一元二次方程042=-+k x x 的根的情况是( ) A .没有实数根 B .有两个相等的实数根 C .有两个不相等的实数根 D .无法判断 7.(2013山东日照)已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计准确的是 A .121-<<-x B .231-<<-x C .321<

公式法与根的判别式

八 年级 数学 学科 总计 20 课时 第 5 课时 课题 求根公式与根的判别式 教学目标: 1、熟记求根公式,掌握用公式法解一元二次方程. 2、通过求根公式的推导及应用,渗透化归和分类讨论的思想. 3、通过求根公式的发现过程增强学习兴趣,培养概括能力及严谨认真的学习态度. 4、能不解方程,而根据根的判别式判断一元二次方程的根的情况. 5、培养思维的严密性、逻辑性和灵活性以及推理论证能力. 教学重点: 1、求根公式的推导和用公式法解一元二次方程. 2、会用判别式判定一元二次方程根的情况. 教学难点: 1、正确理解“当240b ac -<时,方程20(0)ax bx c a ++=≠无实数根. 2、运用判别式求出符合题意的字母的取值范围. 一、学习新知,推导公式 我们以前学过的一元一次方程0=+b ax (其中a 、b 是已知数,且a ≠0)的根唯一存在,它的根可以用已知数a 、b 表示为a b x -=,那么对于一元二次方程02=++ c bx ax (其中a 、b 、c 是已知数,且a ≠0),它的根情况怎样?能不能用已知数a 、b 、c 来表示呢?我们用配方法推导一元二次方程的求根公式. 用配方法解一元二次方程)0(02≠=++a c bx ax 解: c bx ax -=+2 移常数项 a c x a b x -=+2 方程两边同除以二次项系数(由于a ≠0,因此不需要分类讨论) 222)2()2(a b a c a b x a b x +-=++ 两边配上一次项系数一半的平方 22244)2(a ac b a b x -=+ 转化为n m x =+2)(的形式 注:在我们以前学过的一元二次方程中,会碰到有的方程没有实数解。 因此对上面这个方程要进行讨论 因为2 040a a ≠>所以

一元二次方程根的判别式专题训练

一元二次方程根的判别式专题训练 1. (2010 广西钦州市) 已知关于x 的一元二次方程x 2 +kx +1 =0有两个相等的实数根,则k = . 2. (2010 湖北省荆门市) 如果方程2210ax x ++=有两个不等实根,则实数a 的取值范围是____________. 3. (2010 江苏省苏州市) 若一元二次方程()2 220x a x a -++=的两个实数根分别是3b 、,则a b +=_________. 4. (2010 江苏省苏州市) 下列四个说法中,正确的是( ) A .一元二次方程22 452 x x ++=有实数根; B. 一元二次方程23 452 x x ++=有实数根; C. 一元二次方程25 453x x ++= 有实数根; D. 一元二次方程()2451x x a a ++=≥有实数根. 5. (2010 湖南省益阳市) 一元二次方程 )0(02≠=++a c bx ax 有两个不相等的实数根,则ac b 42 -满足的条件是 A.ac b 42 -=0 B.ac b 42->0 C.ac b 42-<0 D.ac b 42-≥0 6. (2010 山东省烟台市) 方程x2-2x-1=0的两个实数根分别为x1,x2,则(x1-1)(x2-1)= . 7. (2010 北京市) 已知关于 x 的一元二次方程 2410x x m -+-= 有两个相等的实数根, 求m 的值及方程的根. 8. 当k 是什么整数时, 方程(k2–1)x2–6(3k –1)x+72=0有两个不相等的正整数根? 9. 关于x 的一元二次方程()011222=-+--m x m x 与0544422=--+-m m mx x 的根都是整数,求m 的整数值, 并求出两方程的整数根. 10. (2010 重庆市江津区) 在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x

湘教版九年级上册数学:2.3 一元二次方程根的判别式学案(无答案)

知识像烛光,能照亮一个人,也能照亮无数的人。--培根 2.3 一元二次方程根的判别式 【学习目标】: 1.会熟练运用求根公式解一元二次方程. 2.了解 b2?4ac 的值与一元二次方程根的情况的关系. 【体验学习】: 一、新知探究 1.一元二次方程 ax2+ bx + c =0的求根公式是什么? 2.能用求根公式解一元二次方程的前提是什么?为什么? 3.阅读教材第 43、44 页的“议一议”内容,b2?4ac的值有哪几种情况?它与一元二次方程 ax2+ bx + c =0的根的情况有什么关系? 学法指导:在应用根的判别式之前,一 定要先把一元二次方程化为形式. 4.一个一元二次方程,你能不解就判断出它根的情况吗? 学法指导:我们把? = b 2?4ac 叫做一元二次方程 ax 2+ bx + c =0的根的判别式. (1)△>0?方程 ax 2+ bx + c =0在实数范围内实数根. (2)△=0?方程 ax 2+ bx + c =0在实数范围内实数根. (3)△<0?方程 ax 2+ bx + c =0在实数范围内实数根. 二、基础演练: 根据以上的探究,自主解决下列问题: 1.已知方程2x2? 3x+1 = 0 ,则b2? 4ac=. 2.已知关于x的方程x2?mx+2=0有两个相等的实数根,那么m的值是:. 3.当k时,方程 2x2? 6x? (k? 4) = 0 没有实数根. 4.不解方程,判断下列二元一次方程根的情况. (1)2x2?5x?4=0;(2)7t2?5t= ?2(3)3y2+25=10y3

知识像烛光,能照亮一个人,也能照亮无数的人。--培根 5.已知关于x的方程x2?3x+k=0,问k取何值时,这个方程: (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根? 三、综合提升: 先尝试独立解决下列问题: 6.已知:关于x的方程x2?(k+1)x+1 4k2+1= 0(1)k取什么值时,方程有两个实数根; (2)如果方程的两个实数根x1,x2满足x1=x2,求k的值. 7.已知a、b、c是?ABC的三边,且方程a(1+x2)+2bx?c(1?x2)=0有两个相等的实数根,判断此三角形的形状. 【当堂检测】: 1.方程x2?x+2=0的根的情况是() A.只有一个实数根C.有两个不相等的实数根B.有两个相等的实数根D.没有实数根 2.方程kx2?4x+1=0有两个不相等的实数根,则k的取值范围是_________________. 3.不解方程,判定下列方程的根的情况. (1)2y2+4y?3=0(2)x2+9 = 3x(3) 1 x2? 6x+ 21 = 0 42

一元二次方程的根的判别式教学案(一)

一元二次方程的根的判别式教学案(一) 一、素质教育目标 (一)知识教学点: 1.了解根的判别式的概念. 2.能用判别式判别根的情况. (二)能力训练点: 1.培养学生从具体到抽象的观察、分析、归纳的能力. 2.进一步考察学生思维的全面性. (三)德育渗透点: 1.通过了解知识之间的内在联系,培养学生的探索精神. 2.进一步渗透转化和分类的思想方法. 二、教学重点、难点、疑点及解决方法 1.教学重点:会用判别式判定根的情况. 2.教学难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.” 3.教学疑点:如何理解一元二次方程ax2+bx+c=0在实数范围内,当b2-4ac<0时,无解.在高中讲复数时,会学习当b2-4ac <0时,实系数的一元二次方程有两个虚数根. 三、教学步骤 (一)明确目标 在前一节的“公式法”部分已经涉及到了,当b2-4ac≥0时,可以求出两个实数根.那么b2-4ac<0时,方程根的情况怎样呢?

这就是本节课的目标.本节课将进一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三种情况下的一元二次方程根的情况. (二)整体感知 在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题. 在探索一元二次方程根的情况是由谁决定的过程中,要求学生从中体会转化的思想方法以及分类的思想方法,对学生思维全面性的考察起到了一个积极的渗透作用. (三)重点、难点的学习及目标完成过程 1.复习提问 (1)平方根的性质是什么? (2)解下列方程: ①x2-3x+2=0;②x2-2x+1=0;③x2+3=0. 问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用. 2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将 (1)当b2-4ac>0时,方程有两个不相等的实数根.

解一元二次方程(根的判别式)

第四课时 解一元二次方程(根的判别式) 学习目标: 1、熟练使用公式法解一元二次方程。 2、会用ac b 42 -的值来判断一元二次方程。 授课内容: 1、用公式法法解下列方程: (1)0222=--x x (2)0122=+-x x (3)0222=+-x x . 2、观察上述方程的根,方程(1)两个实数根________,方程(2)两实数根________, 方程(3)_______________。那么方程根出现不同情况是由什么来判断的呢? 3,结论:一元二次方程)0(02 ≠=++a c bx ax 的根的情况可由ac b 42-来判定: 当__________时,方程有两个不相等的实数根; 当__________时,方程有两个相等的实数根; 当__________时,,方程没有实数根。 我们把ac b 42-叫做一元二次方程)0(02 ≠=++a c bx ax 的根的判别式 说明:(1)可以不解方程求ac b 42 -的值来判别方程的根的情况。 (2)上述结论反过来也成立。 例题讲解 例1、不解方程,判别方程根的情况: (1)0132=-+x x (2)0962 =+-x x (3)04322=+-y y (4)x x 5252=+ 变式:求证:不论x 取何值时,关于x 的一元二次方程012 =--kx x 总有两个不相等的实 数根。

例2、k 取什么值时,关于x 的方程022)2(22=-++-k x k x 有两个相等的实数根?有 两个不等的实数根?无实数根? 变式1:已知关于0232 =-+-k x x 有实数根,求k 的取值范围。 例3、已知关于x 的方程220kx +-=有两个不相等的实数根.........,求k 的取值范围。 变式:关于x 的方程..2 (2)2(1)10k x k x k ---++=有实数根,求k 的取值范围。 课堂练习: 1,已知关于x 的方程222(41)210x k x k -++-=,K 取什么值时 ○ 1、方程有两个不相等的实数根; ○ 2、方程有两个相等的实数根; ○ 3、方程无实数根; 2,试说明关于x 的方程222(1)2(4)0m x mx m +-++=无实数根。

根的判别式韦达定理

一元二次方程根的判别式和韦达定理 知识点1.根的判别式 2 1.402 2.0204 3.,22ac b b ac b x x a a ? ?≠-????>???? ?=?????

1、下列方程①012=+x ;②02=+x x ;③012=-+x x ;④02 =-x x 中,无实根的 方程是 。 2、已知关于x 的方程022 =+-mx x 有两个相等的实数根,那么m 的值是 。 3、下列方程中,无实数根的是( ) A 、011=-+-x x B 、 762=+y y C 、021=++x D 、0232=+-x x 4、若关于x 的一元二次方程01)12()2(2 2 =+++-x m x m 有两个不相等的实根,则m 的取值范围是( ) A 、43< m B 、m ≤43 C 、4 3>m 且m ≠2 D 、m ≥43 且m ≠2 5、在方程02 =++c bx ax (a ≠0)中,若a 与c 异号,则方程( ) A 、有两个不等实根 B 、有两个相等实根 C 、没有实根 D 、无法确定 6、关于x 的一元二次方程x 2 +kx -1=0的根的情况是 ( ) A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数 C 、有两个相等的实数根 D 、没有实数根 7、 m 取何值时,方程()0112)2(2 2 =++--x m x m (1)有两个不相等的实数根 (2) 有两个相等的实数根;(3)没有实数根 8、试证:关于x 的方程1)2(2 -=+-x m mx 必有实根。 9、已知关于x 的方程022 =-+-n m mx x 的根的判别式为零,方程的一个根为1,求m 、 n 的值。

根的判别式练习(答案版)

一元二次方程根的判别式练习题 令狐采学 (一)填空 1.方程x2+2x-1+m=0有两个相等实数根,则m=____.2.a是有理数,b是____时,方程2x2+(a+1)x-(3a2-4a+b)=0的根也是有理数. 3.当k<1时,方程2(k+1)x2+4kx+2k-1=0有____实数根. 5.若关于x的一元二次方程mx2+3x-4=0有实数根,则m的值为____. 6.方程4mx2-mx+1=0有两个相等的实数根,则 m为____.7.方程x2-mx+n=0中,m,n均为有理数,且方程有一个根是2 8.一元二次方程ax2+bx+c=0(a≠0)中,如果a,b,c是有理数且Δ=b2-4ac是一个完全平方数,则方程必有__.9.若m是非负整数且一元二次方程(1-m2)x2+2(1-m)x-1=0有两个实数根,则m的值为____. 10.若关于x的二次方程kx2+1=x-x2有实数根,则k的取值范围是____. 11.已知方程2x2-(3m+n)x+m·n=0有两个不相等的实数根,则m,n的取值范围是____. 12.若方程a(1-x2)+2bx+c(1+x2)=0的两个实数根相等,则a,b,c的关系式为_____. 13.二次方程(k2-1)x2-6(3k-1)x+72=0有两个实数根,则k为___. 14.若一元二次方程(1-3k)x2+4x-2=0有实数根,则k的取值范围是____. 15.方程(x2+3x)2+9(x2+3x)+44=0解的情况是_解.16.如果方程x2+px+q=0有相等的实数根,那么方程x2-p (1+q)x+q3+2q2+q=0____实根. (二)选择

初中九年级数学3 一元二次方程根的判别式教案

第二十二章一元二次方程 第七课 初三( )班 姓名:_________ 学号: 一、学习内容:一元二次方程根的判别式。 二、学习目标:理解一元二次方程根的判别式,并能用判别式判定根的情况; 三、学习过程: 将一元二次方程ax 2+bx +c =0(a ≠0)用配方法将其变形为 即 (x +a b 2) 2=2244a a c b - ∵a ≠0,∴4 a 2>0。这样,我们有: (1)当b 2-4 ac >0时,方程右边是一个正数,因此,方程有 x 1=a ac b b 242-+-,x 2=a ac b b 242--- 这样两个 (相等,不相等)的实数根; (2)当b 2-4 ac =0时,方程右边是0,因此,方程有 x 1=x 2= 这样两个 (相等,不相等)的实数根; (3)当b 2-4 ac <0时,方程右边是一个 数,而方程左边(x + a b 2) 2不可能是一个 数,因此,方程 (有,没有)实数根。 综上所述,由ac b 42-=?的值可判别一元二次方程根的情况: 当0>?时,有两个不相等的实数根; 当0=?时,有两个相等的实数根; 当0=-??-=?)( 解: 16y 2 - +9=0 ∴原方程有 的实数根 ∵=? ∴原方程有 的实数根

(3) 5(x 2+1)-7x=0 (4)0.2x 2-5=2 3x 解:方程化为一般式得: 解:方程化为一般式得 ∵0)<>=?,( ∵=? ∴原方程有 的实数根 ∴原方程有 的实数根 (5) 3x 2+4x-2=0 (6) 2y 2 +5=6y (7)4p(p-1)-3=0 (8)x 2+5=25x B 组:1、试判别方程x 2 +2mx+m-1=0 的根的情况; 2、当k 取何值时,方程4x 2-(k+2)x+k-1=0有两个相等的实数根?求出这时方程的根。 3、已知关于x 的方程2x 2-(4k+1)x+2k 2-1=0 当k 取何值时,(1)方程有两个不相等的实数根;(2)方程有两个相等的实数根;(3)方程没有实数根。

一元二次方程根的判别式学案

一元二次方程根的判别式学案 一.探究新知: 填空: 1.关于x 的一元二次方程02=++c bx ax )0(≠a 的求根公式是 ; 当042>-ac b 时,=1x ,=2x ,1x 与2x 的关系是 ; 当042=-ac b 时,=1x ,=2x ,1x 与2x 的关系是 ; 若042<-ac b 呢? 总 结 : 。 二,学以致用 例1.不解方程,判断方程根的情况 1.01322=--x x , 0442=+-x x 012=++x x 22)1)(1(y y y -=-+ )13(492-=x x 012=-+bx x 0122=-+-k kx x 例2:关于x 的一元二次方程068)6(2 =+--x x a 有实数根,求a 的取值范围。

关于x 的方程068)6(2 =+--x x a 有实数根,求a 的取值范围。 关于x 的一元二次方程0112)21(2=-+--x k x k 有2个不相等的实数根,求k 的取值范围。 若关于x 的方程022)2(22=-++-m x m x 有两个相等实数根,求m 值,并求出这时方程的根 已知:关于x 的一元二次方程01)2(2=---+m x m x ,求证:不论m 取何值,这个方程总有两个不相等的实数根。

已知c b a ,,为三角形ABC 的三边,且方程 0))(())(())((=--+--+--a x c x c x b x b x a x 有两个相等实数根, 试判断该三角形的形状。 已知等腰三角形ABC 中,,8=BC AC AB ,的长是关于x 的方程0102=+-m x x 的两个根,求m 的值,并求出三角形的周长。 若代数式4)1(2)12(2+++-m x m 是完全平方式,求m 的值。 已知分式 c x x -+212中,不论x 取何值分式总是有意义,求c 的取值范围。

相关文档
相关文档 最新文档