文档库 最新最全的文档下载
当前位置:文档库 › 1000MW超超临界机组锅炉运行技术分析

1000MW超超临界机组锅炉运行技术分析

1000MW超超临界机组锅炉运行技术分析
1000MW超超临界机组锅炉运行技术分析

1000MW超超临界机组锅炉运行技术分析

付龙龙雷兆团赵景涛

(西安热工研究院有限公司,陕西西安710032)

Analysis of two 1000MW ultra-supercritical unit boiler operation technique

Fu Long-long Lei Zhao-tuan Zhao Jing-Tao

Xi’an Thermal Power Research Institute Co Ltd, Xi’an 710032, Shaanxi Province, PRC Abstract::The Yuhuan power plant and the Haimen power plant two 1000MW ultra supercritical unit boiler equipment separately manufacture by the Harbin boiler company limited and the Dongfang boiler guoup co., ltd. This article through analyses two power plant boiler combustion system, the water cooling wall system, the superheater and spray desuperheaters water system's similarities and differences, introduced the problem and the solution during the process of commissioning, gives some suggestions about boiler operation according to the system characteristic, may be useful as guidance for the better operation of the ultra-supercritical unit boiler.

Key words: ultra-supercritical; boiler; analysis; operation

[摘要]玉环电厂和海门电厂两种1000MW超超临界机组锅炉设备分别由哈锅厂和东锅厂制造,本文通过分析两个电厂锅炉燃烧系统、水冷壁系统、过热器及减温水系统的异同点,介绍试运过程中出现问题及解决方法,根据系统特点给出锅炉运行的一些建议,对更好的运行1000MW超超临界机组锅炉有一定的参考价值。

[关键词]超超临界;锅炉;分析;运行

1 锅炉设备简介

1.1 玉环电厂

玉环电厂锅炉系哈尔滨锅炉厂引进日本三菱重工业株式会社(MHI)技术设计制造的HG-2953/27.46-YM1型1000MW超超临界变压运行直流锅炉,采用П型布置、平衡通风、固态排渣、单炉膛、反向双切园燃烧方式、摆动式燃烧器,燃用神府东胜煤、晋北煤,锅炉主要设计技术规范见表1。

表1 主要设计技术规范1.2 海门电厂

海门电厂超超临界机组锅炉为东方锅炉厂制造的超超临界参数变压直流锅炉,锅炉型号DG3000/26.25-Ⅱ1型,机组容量1036MW,为单炉膛,一次中间再热,尾部双烟道结构。锅炉固态排渣,全钢构架,全悬吊结构半露天布置。锅炉设计燃用神府东胜烟煤,锅炉主要设计技术规范见表1。

2燃烧系统分析

2.1 玉环电厂

采用MHI的低NO X型PM主燃烧器和MACT型低NOx分级送风燃烧系统,燃烧器为摆动式,其燃烧器采用前后墙布置,共布置8组燃烧器,前、后墙各布置四组燃烧器,逆时针排列,顺序为№1~№8。八组燃烧器采用反向双切圆方式布置(见图1)。这种反向双切圆的燃烧方式可以保证燃烧室具有良好的空气动力场,并使出口温度场比较均匀。

图1 反向双切圆燃烧器布置示意图

在每组主燃烧器的上方布置有一个附加风(A-A)风箱,A-A风的设置有利于减少NO X排放量。通过调整A-A风风箱上下和水平方向的摆动角度,可调节炉膛火焰中心,减弱炉膛内空气气流的残余旋转,减少炉膛出口两侧烟温偏差。

2.2 海门电厂

燃烧系统设计采用分级燃烧和浓淡燃烧等技术,燃烧器采用日立-巴布科克公司(BHK)的低NO X旋流式煤粉燃烧器(HT-NR3),可有效降低NO X排放量和降低锅炉最低稳燃负荷。燃烧器装在炉膛的前后墙上,对冲式燃烧。每台炉配六台磨煤机,每台磨煤机对应一层煤粉燃烧器。48只HT -NR3燃烧器分前三后三层布置在炉膛前后墙上,上部共布置有20只燃尽风(OFA)风口,前后墙各10只,通过手动调节机构调节进入每个燃尽风风口的风量,燃尽风总风量通过调节风箱入口风门执行器实现调节。

2.3 两个电厂异同点

玉环电厂采用八角双切圆燃烧技术,燃烧器分六层布置,每台磨煤机对应一层8个燃烧器,磨煤机出口为4根煤粉管,装有4个可调缩孔,每根煤粉管在炉前通过三通将管道对等的一分为二,通过调节缩孔保持全部煤粉管误差在±5%内,在调平过程中发现个别煤粉管一分二后风速一大一小。海门电厂采用前后墙对冲旋流燃烧器,前后墙各三层共六层,磨煤机出口为4根煤粉管,装有4个可调缩孔,每根煤粉管在炉前采煤粉分配器将管道一分为二,在分配器上装有调节装置,可以对分配器后管道的风速进行调节,使相邻两根煤粉管的风速均匀。

两个电厂制粉系统都配置六台给煤机和六台磨煤机,给煤机都为沈阳施道克公司生产的ED3690电子称重式给煤机。磨煤机都为上海重型机器厂生产的HP型中速磨煤机,海门电厂型号稍大些。采用两种不同的燃烧器和燃烧方式,玉环电厂燃烧器为摆动式,前后墙布置,反向双切圆燃烧方式;采用PM 燃烧器具有着火能力强,低负荷稳燃性能好,能有效抑制NOX排放等优点;八角双切圆将整个炉膛作为二个大燃烧器组织燃烧,对每只燃烧器的风量控制简单。海门电厂采用前后墙对冲旋流式煤粉燃烧器,炉内火焰充满情况较好,烟气温度和速度分布比较均匀,过热器温度偏差较小;为了提高燃烧器的低负荷稳燃、防止结渣及降低Nox 排放,采用了煤粉浓缩器、火焰稳燃环及稳焰齿。3水冷壁系统分析

3.1 玉环电厂

采用内螺纹管垂直上升膜式水冷壁,其汽水流程以内置式汽水分离器为分界点,从水冷壁入口集箱到汽水分离器为水冷壁系统,从分离器出口到过热器出口集箱为过热器系统,玉环电厂水冷壁系统流程图见图2。

图2 玉环电厂水冷壁系统流程图

为了降低顶棚包墙系统阻力以保证后水冷壁的可靠性,由顶棚出口集箱引出的工质并非全部送往后烟道包墙管,而是有一部分通过旁通管直接送往后包墙出口集箱与后烟道包墙系统汇合后全部引入汽水分离器。旁路管内流量由2个调节阀进行控制,该管路在超临界时投运以降低阻力,在亚临界时关闭以保证包墙系统有足够的质量流量,保证水循环的安全性。

3.2 海门电厂

炉膛四周为螺旋盘绕、全焊式膜式水冷壁,其汽水流程以内置式汽水分离器为分界点,从水冷壁入口集箱到汽水分离器为水冷壁系统,分为下部的螺旋水冷壁和上部的垂直吹冷壁,从分离器出口到过热器出口集箱为过热器系统。

由省煤器出口集箱两端引出集中下水管进入位于锅炉左、右两侧的集中下降管分配头,在通过下水连接管进入螺旋水冷壁入口集箱。工质经螺旋水冷壁管、螺旋水冷壁出口集箱、混合集箱、垂直水冷壁入口集箱、

垂直水冷壁管、垂直水冷壁出口集箱后进入

水冷壁出口混合集箱汇集,经引入管引入汽水分离器进行汽水分离。

3.3 水冷壁系统分析

玉环电厂采用内螺纹管垂直上升膜式水冷壁,顶棚管和包墙管包括在水冷壁系统,而海门电厂炉膛四周为螺旋盘绕、全焊式膜式水冷壁,顶棚管和包墙管包括在过热器系统。

水冷壁吸热量份额受煤种、炉膛结渣程度、燃烧器投入层数等因素的影响,较高的水冷壁管内质量流速对水动力安全有利。玉环电厂采用内螺纹水冷壁,加装中间混合集箱及两级分配器,减少水冷壁偏差,防止出现汽水分离;并在水冷壁入口装有节流孔圈,提高调节流量能力。保证水冷壁出口工质温度均匀,防止个别管段产生DNB(膜态沸腾)和出现DRO(干涸)现象。垂直水冷壁和螺旋水冷壁的优缺点见表2。

4过热器及减温水系统

4.1 过热器布置型式

玉环电厂过热器系统采用四级布置,沿蒸汽流程依次低温过热器、分隔屏过热器、屏式过热器、末级过热器。再热器采用两级布置,分别为低温、高温再热器。

海门电厂过热器系统采用五级布置,依次为顶棚过热器、包墙过热器、低温过热器、屏式过热器、高温过热器。再热器系统分为两级,低温再热器和高温再热器。再热器采用两级布置,分别为低温、高温再热器。

两个电厂低温再热器和低温过热器分别布置于尾部烟道的前、后竖井中,均为逆流布置。在上炉膛、折焰角和水平烟道内分别布置了分隔屏过热器、屏式过热器、末级过热器和末级再热器,由于烟温较高均采用顺流布置。玉环电厂过热器采用四级布置,海门电厂过热器采用五级布置,顶棚管和包墙管在玉环电厂属于水冷壁系统,而在海门电厂属于过热器系统。

4.2 过热器温度调节相同之处

过热器系统采用煤/水比作为主要汽温调节手段,通过煤水比控制分离器出口过热度在合理范围,并配合喷水减温作为主汽温度的细调节,喷水减温每级左、右二点布置以消除各级过热器的左右吸热和汽温偏差。再热器事故喷水装置均采用一级两点喷水减温,左右侧喷水点可分别调节。过热器正常喷水水源来自省煤器出口;再热器喷水水源来自给水泵中间抽头。

4.3 过热器温度调节不同之处

玉环电厂过热器减温水采用三级布置,海门电厂过热器减温水采用两级布置。玉环电厂再热器调温以烟气挡板调温为主,燃烧器摆动调温为辅,事故喷水装置布置在低温再热器入口管道上。海门电厂再热器调温采用烟气挡板调温,事故喷水装置布置在低温再热器至高温再热器连接管上。玉环电厂再热器减温水布置在低温再热器入口管道上,减温水和蒸汽混合时温差更大;海门电厂再热器减温水靠近高温再热器,对再热汽温调节迅速,低再吸热相对减小。如果再热器喷水量过多,再热器入口温度低于饱和温度,为保证机组安全,应保证再热器入口蒸汽过热度,在低负荷时,禁止使用再热器减温水。

4.4 过热器温度调节方法

通过调节水煤比控制分离器出口过热度保持在合适范围内,控制减温水量在正常范围,过热度偏高导致各级过热器温度偏高,减温水量偏大,过热度偏低会导致各级过热器温度偏低,减温水量偏低,减温水偏高或偏低导致减温水的条件范围变小,减温水调门控制在40-60%范围较好,当蒸汽温度波动时减温水有较大的调节范围。

通过减温水调节各级过热器蒸汽温度响应快,通过水煤比控制分离器出口过热度响应过程慢,在煤种发生变化时,燃料的发热量变化会导致分离器出口过热度变化,这时控制系统要先通过减温水调节各级受热面蒸汽温度稳定,然后通过调节水煤比保持分离器出口过热度稳定。

5试运过程中出现问题及解决方法玉环电厂在机组满负荷试运期间,三级过热器有几点温度偏高,达到620~631℃,

报警温度为625℃;高温再热器有几点管壁温度偏高,达到630~642℃,接近报警温度648℃。针对三级过热器及高温再热器局部管壁温度偏高问题,对燃烧进行如下调整:(1)将磨煤机旋转分离器转速增至1050r/min,将磨煤机入口一次风量逐步减小至140t/h,将各台磨煤机出口温度由65℃提高至70℃,保证燃烧器区域煤粉及时着火。(2)将炉膛出口烟气含氧量由2%提高至2.2%,并将AA风小风门全开,补充后期燃烧所需空气,保证炉内煤粉射流及时燃尽,降低炉膛出口烟气温度。(3)将三级过热器出口温度设定在530℃,适当增加一级、二级减温水量,降低三级过热器入口温度,逐步降低三级减温水量,维持主蒸汽温度在595~600℃。(4)调整后三级过热器及高温过热器管壁温度在610~620℃左右。均低于壁温报警值,主要参数均达到或接近设计值,保证机组安全稳定运行。

海门电厂在满负荷试运过程中省煤器灰斗出现过堵灰现象,对灰斗的仓泵及时进行人工清理,清理时发现灰斗中有较大的灰颗粒,为减小堵灰情况,采取以下调节方法:(1)将燃烬风开大,将火焰中心下移,使大灰颗粒落入到涝渣机中,不要穿过水平烟道落入省煤器灰斗。(2)适当降低一次风压力,使燃烧提前,减少炉膛上部的飞灰。(3)对锅炉定期进行吹灰,使管壁上的积灰及时输送出去。通过以上调节方法后,省煤器灰斗再没有出现堵灰现象,运行正常。

玉环电厂和海门电厂都购买印尼煤掺烧,印尼煤挥发份高,控制参数与设计煤种有所不同,两个电厂采用了类似的方法解决这一问题。燃烧设计煤种时分离器出口温度保持在75~80℃,燃烧印尼煤时分离器出口温度保持在60~65℃,玉环电厂燃烧设计煤种和印尼煤时分离器转速设定在1100r/min 和1050r/min左右,海门电厂燃烧设计煤种和印尼煤时分离器转速设定在900r/min和850r/min左右。合适的分离器转速要使煤粉细度处于最佳值,可以提高煤粉的燃烧效率、减少飞灰和炉渣含碳量,降低磨煤机耗电量。两种不同燃烧方式的锅炉均采用等离子点火实现冷炉无油点火,节约了大量燃油。

6结论

哈锅厂和东锅厂制造的1000MW超超临界机组锅炉试运过程中运行稳定,锅炉效率均大于93.6%,保证机组安全经济运行。亚临界转换超临界过程中通过合理操作保持水动力稳定性。超超临界直流锅炉过热器蒸汽温度通过调整水煤比,控制分离器出口过热度在合适值,主蒸汽温度才容易控制。通过燃烧调整、减温水等调整方法保持各级受热面壁温均匀、偏差小。

致谢

笔者参加海门电厂和玉环电厂工程建设期间,建设单位为各参加单位创造了良好的工作氛围,为参加人员提供工作、生活上的便利。生产、施工、调试、监理等单位人员团结一致,紧密合作,高质量完成工程建设任务,在此一并表示感谢。玉环电厂和海门电厂一期工程均获得国家优质工程金奖,是对参建单位人员最好的奖励。

[参考文献]

[1]. 杨冬,于辉等.超(超)临界垂直管圈锅炉水冷壁流量分配及壁温计算[J].中国电机工程学报, 2008,28(17),32-38.

[2]. 王新生.华能玉环电厂超超临界1000MW机组锅炉特点[J].热力发电, 2008,03,1-4.

[3]. 崔凯,梁志伟等.1000MW 超超临界直流锅炉启动调试试验研究[J].电站系统工程, 2009,25(01),48-50.

超超临界火电机组燃烧控制系统设计

, 毕业论文(设计)题目:超超临界火电机组燃烧控制系统设计 姓名林逸君 学号201100170220 学院控制科学与工程学院 专业测控技术与仪器 年级 2011级 指导教师刘红波 2015年 5 月 10 日

目录 摘要 (3) ABSTRACT (4) 第一章绪论 (5) 1.1课题背景及意义 (5) 1.2 超超临界火电机组控制技术应用现状 (5) 1.3 毕业设计主要内容 (5) 第二章超超临界火电机组燃烧控制系统概述 (6) 2.1 机组工艺流程简述 (6) 2.2 机组燃烧过程控制系统任务 (7) 2.3 机组燃烧过程控制系统组成与特点 (8) 第三章超超临界火电机组燃烧控制方案设计 (9) 3.1常规控制方案 (9) 3.2改进控制方案 (10) 第四章控制方案仿真验证 (10) 4.1 MATLAB简介 (11) 4.2 控制方案的Simulink仿真验证............................... 错误!未定义书签。结论. (15) 致谢 (16) 参考文献 (17) 附录 附录1 Controller design for a 1000 MWultra super critical once-through boiler power plant 附录2 文献翻译

摘要 随着科学技术的进步,传统电厂的工作方式正在发生着革新,超超临界电厂得到了越来越广泛的应用。相比于传统电厂,超超临界电厂主要区别在于提高了锅炉内的工质,一般为水的压力,来提高电厂的发电效率。本文通过对电厂燃烧过程控制系统的改进来减少电厂控制变量之间的相互干扰,从而进一步提高电厂的发电效率。首先,根据电厂的工作原理分析出电厂各控制变量与各被控量之间的相互关系,建立电厂的简化数学模型。之后,根据各变量之间的相互作用关系采取PID增益控制、解耦等方式提出改进的控制方案。然后,根据从网上搜集到的超超临界电厂在实际工况下所采集到的数据完成数学模型的数据输入工作。最后,通过MATLAB下的Simulink工具箱对数学模型进行仿真实验,得出电厂输出量的波形图,通过对比研究改进后的控制方案的实际运行成果。 关键词:超超临界电厂, 燃烧过程控制系统, 数学模型, MATLAB, Simulink仿真

超超临界机组锅炉高温材料的选择和应用

超超临界机组锅炉高温材料的选择和应用 根据现今全球超超临界机组中百万千瓦级的动态发展情况,分析已有的机组参数。超超临界锅炉用耐高温材料与其参数是紧密联系在一起的,研究并开发应用超超临界锅炉的高效性能、方便加工和经济性新型材料,是未来发展的主要方向。 标签:超超临界锅炉;高温材料;选择及应用 在国民经济稳定持续增长的大背景中,人们不断的增加电力需求和国家实施节能减排的政策,建设容量大、效率快、参数高及节能好的机组是我国电力的发展趋势。提高锅炉的蒸汽压力、温度以及其他参数都能有效提高发电厂的发电效率,其中温度的影响效果最明显。现今国际上超超临界机组的参数为初压力24.1-31MPa,其主蒸汽/再热蒸汽的温度是580℃-600℃/580℃-610℃,用USC作表示。而其使用金属材料的耐高压、耐高温与焊接问题是如何提高蒸汽参数这个问题中所存在的首要技术难题。 1 高温材料的选择 开发具有更好耐高温性的耐热钢是发展高效超超临界火力发电机组的关键技术,让他们适用在更高的温度范围。现今全球在管道及锅炉的用钢发展可大致分为两方向: (1)发展铁素体耐热钢,马氏体、贝氏体及珠光体耐热钢都被统称作铁素体耐热钢; (2)发展奥氏体耐热钢。全球先进国家所研制推广以及普通采用新的耐热钢种有三大类:a.新型细晶强韧化铁素体耐热钢;b.新型细晶奥氏体耐热钢;c.高铬镍奥氏体钢。 2 高温材料的应用 在过热器以及再热器的用钢方面,不仅需要满足蠕变的强度,还必须满足蒸汽侧抗氧化的性能以及向火侧抗腐蚀与冲刷的性能。所有的铁素体钢几乎不能用在蒸汽温度高于565℃的过热器或者再热器中,这里使用奥氏体钢在需要耐高温的部件上。这里对几种高温材料进行详细描述。 2.1 T91/P91 T91具有良好的力学性能,其结构及性能具有较好的稳定性,焊接与工艺性能优良,具备较高的持久与抗氧化性。和TP304H作对比,T91的导热系数相对较高、热膨胀系数相对更低、持久强度中的等强温度相对较好以及等应力温度相对更高,并分别到达625℃及607℃。T91和T9钢作对比,T91的持久强度是

超临界锅炉运行技术

超临界锅炉运行技术 4. 超临界机组协调控制模式 (1)CCBF,机炉自动,机调负荷,炉调压力; 能充分利用锅炉蓄热,负荷响应快;主汽压力控制存在较大延迟,降低了主汽压稳定性。 (2)CCTF,机炉自动,炉调负荷,机调压力; 主汽压稳定性好,负荷响应慢。 (3)机炉协调; 机炉同时接受负荷和主汽压力指令,同步响应负荷和主汽压力的变化。 其中:(1)应用最广,(3)的调节器若匹配不当,机炉间容易引起震荡。 3.2.3 600MW超临界机组协调控制策略 1. 被控参数 (1)给水流量/蒸汽流量 因为给水系统和蒸汽系统是直接连通的,且由于超临界锅炉直流蓄热能力较小,给水流量和蒸汽流量比率的偏差过大将导致较大的汽压波动。 (2)煤水比 稳定运行工况时,煤水比必须维持不变,以保证过热器出口汽温为设计值。而在变动工况下,煤水比必须按一定规律改变,以便既充分利用锅炉蓄热能力,又按要求增减燃料,把锅炉热负荷调到与机组

新的负荷相适应的水平. (3)喷水流量/给水流量 超临界锅炉喷水仅能瞬时快速改变汽温.但不能始终维持汽温,因为过热受热面的长度和热焓都是不定的。为了保持通过改变喷水流量来校正汽温的能力,控制系统必须不断地把喷水流量和总给水流量之比恢复到设计值。 (4)送风量/给煤量(风煤比) 为了抑制NOx的产生,以及锅炉的经济、安全运行,需对各燃烧器的进风量进行控制,具体是通过各层燃烧器的二次风门和燃尽风门控制风量,每层风量根据负荷对应的风煤比来控制。 2 协调控制回路 超临界机组蓄热能力相对较小.锅炉跟随系统的局限性较大,对于锅炉和汽机的控制指令既考虑稳态偏差又要考虑动态偏差。为了在机组负荷变化时机炉同时响应,机组负荷指令作为前馈信号分别送到锅炉和汽机的主控系统,以便将过程控制变量维持在可接受的限度内。 汽轮机调节汽门直接控制功率,锅炉控制主汽压力(CCBF),给水流量由锅炉给水泵改变。功率指令直接发送到汽轮机调节汽门,使得功率响应较快。由于锅炉惯性大,负荷应变较慢.为防止汽机调门动作过大锅炉燃烧跟不上,设计了压力偏差拉回逻辑,当压力偏差过大时限制调门进一步动作,直到燃烧满足负荷需求。 在协调控制模式下,主汽压力偏差一直作为限制主汽调门响应负荷需

国外超超临界机组技术的发展状况

国外超超临界机组技术的发展状况 一、超超临界的定义 水的临界状态点:压力 22.115MPa,温度374.15℃;蒸汽参数超过临界点压力和温度称为超临界。锅炉、汽轮机系列(通常以汽轮机进口蒸汽初压力划分等级):次中压2.5 MPa,中压3.5 MPa,次高压6.5 MPa,高压9.0MPa,超高压13.5 MPa ,亚临界16.7 MPa,超临界24.1 MPa。 超超临界(Ultra Super-critical)(也有称高效超临界High Efficiency Supercritical))的定义:丹麦人认为:蒸汽压力27.5MPa是超临界与超超临界的分界线;日本人认为:压力>24.2MPa,或温度达到593℃(或超过 566℃)以上定义为超超临界;德国西门子公司的观点:从材料的等级来区分超临界和超超临界;我国电力百科全书:通常把蒸汽压力高于27MPa称为超超临界。 结论:其实没有统一的定义,本质上超临界与超超临界无区别。 二、国外超超临界技术发展趋势 (一)超超临界机组的发展历史 超超临界机组发展至今有50年的历史,最早的超超临界机组于1957年投产,建在美国俄亥俄州(Philo 电厂6#机组),容量为125MW,蒸汽进汽压力31MPa,进汽温度621 / 566 / 566 C(二次再热)。汽轮机制造商为美国GE公司,锅炉制造商为美国B&W公司。 世界上超超临界发电技术的发展过程一般划分为三个阶段: 第一阶段(上世纪50-70年代)

以美国为核心,追求高压/双再的超超临界参数。1959年Eddystone 电厂1#机组,容量为325MW,蒸汽压力为34.5MPa,蒸汽温度为 649 / 566 / 566 C(二次再热),热耗为8630kJ/kWh,汽轮机制造商美国WH 公司,锅炉制造商美国CE公司。其打破了最大出力、最高压力、最高温度和最高效率的4项记录。1968 年降参数(32.2MPa/610/560/560 C)运行直至今,但至今仍是世界上蒸汽压力和温度较高的机组。 结果,早期的超超临界机组,更注重提高初压(30MPa或以上),迫使采用二次再热。使结构与系统趋于复杂,运行控制难度更难,并忽视了当时技术水平和材料水平,使机组可用率不高。 第二阶段(上世纪80年代) 以材料技术发展为中心,超超临界机组处于调整期。锅炉和汽轮机材料性能大幅度提高,电厂水化学方面的认识更趋深入,美国对已投运的超临界机组进行大规模的优化和改造,形成了新的结构和新的设计方法,使可靠性和可用率指标达到甚至超过了相应的亚临界机组。其后,美国将超临界技术转让给日本,GE公司转让给东芝和日立公司,西屋公司转让给三菱公司。 第三阶段(上世纪90年代开始) 迎来了超超临界机组新一轮的发展阶段。主要原因是国际上环保要求日趋严格,新材料的开发成功,常规超临界技术的成熟。大规模发展超超临界机组的国家以日本、欧洲(德国、丹麦)为主要代表。日本以川越电厂31 MPa /654℃/566℃/566℃超超临界为代表,开拓了一条从引进到自主开发,有步骤有计划的发展之路,成为当今超超临界技术领先国家。其值得我们认真学习。 三、各国超超临界发电技术情况

国电泰州电厂2x1000MW锅炉简介

国电泰州电厂一期工程2×1000MW超超临界燃煤机组锅炉是由哈尔滨锅炉厂有限责任公司在日本三菱重工业株式会社(Mitsuibishi Heavy Industries Co. Ltd)的技术支持下,设计的超超临界变压运行直流锅炉,采用П型布置、单炉膛、改进型低NOX PM (Pollution Minimum)主燃烧器和MACT(Mitsuibishi Advanced Combustion Technology)型低NOx 分级送风燃烧系统、反向双切圆燃烧方式,炉膛采用内螺纹管垂直上升膜式水冷壁、循环泵启动系统、一次中间再热、调温方式除煤/水比外,还采用烟气分配挡板、燃烧器摆动、喷水等方式。锅炉采用平衡通风、露天布置、固态排渣、全钢构架、全悬吊结构,燃用神府东胜、兖州、同忻煤。 锅炉型号:HG-2980/26.15-YM2型。其中HG表示哈尔滨锅炉厂,2980表示该锅炉BMCR 工况蒸汽流量,单位是t/h。26.15表示该锅炉额定工况蒸汽压力,单位是MPa,YM2表示该锅炉设计煤种为烟煤,设计序列号为2。

2.1锅炉技术规范 2.2.1锅炉主要设计参数 锅炉的最大连续蒸发量(B-MCR)为2980t/h。在B-MCR工况下,锅炉出口主蒸汽参数 26.25MPa(a)/605,再热蒸汽参数为 4.85MPa/603℃,对应汽机的入口参数为 25.0MPa(a)/600/600℃ 锅炉型号:HG-2980/26.15-YM2,锅炉的主要设计参数见表2-1。 表2-1 锅炉的主要设计参数 2.2.2锅炉设计条件 锅炉的设计条件主要包括锅炉运行后主要燃用的煤种、点火及助燃用油,对锅炉给水及蒸汽品质要求,电厂的厂用电系统电压配置及配电原则,锅炉运行条件,年利用小时数和年可用小时数,机组运行模式等。 1.煤种 泰州电厂的锅炉以神华煤为设计煤种、以同忻煤和兖州煤为校核煤种进行设计和校核,各煤种的有关参数如表2-2所示: 表2-2 煤种参数

超临界600MW火电机组热力系统的火用分析

第30卷第32期中国电机工程学报V ol.30 No.32 Nov.15, 2010 8 2010年11月15日Proceedings of the CSEE ?2010 Chin.Soc.for Elec.Eng. 文章编号:0258-8013 (2010) 32-0008-05 中图分类号:TK 212 文献标志码:A 学科分类号:470?20 超临界600 MW火电机组热力系统的火用分析 刘强,段远源 (清华大学热科学与动力工程教育部重点实验室,北京市海淀区 100084) Exergy Analysis for Thermal Power System of A 600 MW Supercritical Power Unit LIU Qiang, DUAN Yuanyuan (Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Haidian district, Beijing 100084, China) ABSTRACT: The matrix equation for exergy balance of regenerative system was derived, and the mathematical model for exergy analysis of thermal power system was presented. Exergy losses and exergy efficiencies of the main components of a domestic N600-24.2/566/566 power unit were calculated by this model. The results indicate that the exergy efficiencies of low pressure heaters are lower than those of high pressure heaters, the exergy destructions in low pressure heaters are also lower. The exergy efficiency of the steam turbine is higher than relative internal efficiency, the exergy efficiencies of the high pressure turbine, intermediate pressure turbine and low pressure turbine are 93.20%, 96.18% and 89.61%, but the work of the low pressure turbine is the largest, so there is energy conservation potential for the low pressure turbine. The coefficient of exergy loss is found to be maximum in the boiler (49.47%) while much lower in condenser (1.232%). In addition, the calculated thermal efficiency of this power plant is 44.54% while the exergy efficiency of the power cycle is 43.52%. KEY WORDS: power unit; thermal power system; exergy analysis; energy conservation 摘要:提出了火电机组回热系统的火用平衡矩阵方程式,并构建了热力系统火用分析的数学模型。应用该模型,分析了国产某超临界N600–24.2/566/566机组热力系统主要部件的火用损失和火用效率。结果表明:高压加热器的火用效率高于低压加热器,但是低压加热器的火用损系数较小;除氧器的火用损系数最大;汽轮机的火用效率高于其相对内效率;高压缸、中压缸和低压缸的火用效率分别为93.20%,96.18%和89.61%,但是低压缸承担做功量最大,因此低压缸仍有一定的节能潜力;锅炉的火用损系数高达49.47%,而凝汽器的火用损系数只有1.232%,所以锅炉是节能的重点对象。此外该机组的全厂热效率为44.54%,而火用效率为43.52%。 关键词:火电机组;热力系统;火用分析;节能 0 引言 火力发电机组承担着我国约80%的发电量,是耗能和排放大户,因此准确而有效的节能理论将有助于火电机组的节能减排工作。火电机组热经济性的评价方法一般分为两类:基于热力学第一定律的热量法,如热平衡法、等效焓降法、矩阵法、循环函数法等,一般用于定量分析;基于热力学第二定律的火用分析法、熵分析法、热经济学法等,一般用于定性分析。目前,我国火电机组的热经济性分析普遍采用热量法,但节能不仅要重视量,还应注意节能潜力的挖掘以及能级匹配的改善,所以对火电机组进行火用分析可以有效评价能量利用的合理程度,科学地指导电厂节能工作。火用分析和热经济学的理论研究在我国从20世纪80年代开始发展[1-4],并得到了一定的应用[5-15],但是国内对超临界火电机组热力系统进行火用分析的工作仍较少,而目前超(超)临界600 MW及以上机组正相继投入运行,所以本文拟构建火电机组火用分析数学模型,并对某台超临界600 MW机组进行火用分析,为大型火电机组的节能提供理论依据。 1 火电机组热力系统的火用分析数学模型 1.1 火用损失和火用效率 火用损失的大小可以表明实际过程的不可逆程度,故其大小可以衡量热力过程的完善程度。但火用损失是一绝对量,无法比较不同工况火用的利用程度,因此常采用火用效率来评价热力过程或设备的热 基金项目:国家重点基础研究发展计划项目(973项目) (2009CB219805)。 Project Supported by National Basic Research Program of China (973 Program) (2009CB219805).

超临界大型火电机组安全控制技术示范文本

超临界大型火电机组安全控制技术示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

超临界大型火电机组安全控制技术示范 文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目前,国内装机容量已突破4亿千瓦,引进和建设低 煤耗、大容量的超临界大型火电机组可以提高我国发电厂 的经济性,同时也能满足节能、环保的要求,国内已投产 600 MW、800 MW、900 MW级超临界燃煤机组多台, 邹县电厂2×1000 MW超超临界燃煤机组立项在建。随着 超临界燃煤机组占国内装机容量的比重越来越大,其运行 情况将对电网安全产生很大影响。所以根据超临界大型火 电机组的特点,实施科学合理的安全控制监测,将对确保 电力安全生产发挥积极的作用。 1 超临界机组安全生产的特点 超临界大型火电机组蒸汽参数高(压力≥22.12 MPa、

温度≥540 ℃),和亚临界机组相比在运行过程中存在的问题有所不同。其主要问题有:①过热器进出口的部分管子过度磨损和水冷壁管、再热器管的泄漏,这些问题大多与燃料的含灰量和烟气流速有关;②汽机高压缸第一级叶片根部腐蚀,此种现象在机组投运6~8年后渐渐严重,蒸汽品质是主要的原因;③高压阀门的泄漏问题。 超临界大型火电机组的不可用率(包括强迫停炉、维修与计划停运)的影响因素是多方面的,超临界压力锅炉的不可用率约为汽轮机、发电机和电站辅机的3倍。水冷壁管泄漏是锅炉方面的主要问题,大部分是由于过热所致。管壁结垢和水冷壁中质量流量过低、管内紊流程度不够,使锅炉在高热负荷区发生核态沸腾所引起。造成上述问题的原因大多是锅炉水冷壁无法得到足够的冷却和缺少凝结水除盐设备或除盐设备不完善。水的品质对于超临界机组的可靠运行极为重要。

超超临界锅炉制造技术的研究

超超临界锅炉制造技术的研究 摘要:超超临界锅炉的材料以及结构有其自身的制造特点,要想能够使得超临 界锅炉的制造技术能够实现进一步的发展,就需要在有效掌握超临界锅炉制造工 艺特点的基础上,采取有效的方式来对超超临界锅炉制造技术进行改进,选取合 理的制造技术应用到超超临界锅炉的研制当中,从而使得超超临界锅炉的未来应 用范围更加的宽广。本文将对超超临界锅炉制造技术进行研究。 关键词:超超临界锅炉,螺旋管圈水冷壁,细晶粒不锈钢,集箱管座机械焊超超临界机组因其煤耗低,节约能源,我国已经把大幅度提高发电效率、加 速发展洁净煤技术的超超临界机组作为我国可持续发展、节约能源、保护环境的 重要措施。 1超超临界锅炉用钢 超超临界机组蒸汽压力和温度的提高对关键部件材料带来更高的要求,尤其 是材料的高温强度性能、抗高温腐蚀和氧化性能以及高温疲劳蠕变性能。超超临 界机组广泛采用各种低合金高强钢、耐热钢。如水冷壁采用具有优异的焊接性能 的T23和T24,联箱和蒸汽管道主要采用P91、P92、P122等马氏体高强钢,过热器、再热器主要采用P91马氏体高强钢及uper304H和TP347HFG奥氏体耐热钢。 2超超临界直流锅炉制造工艺方案 2.1 集箱制造工艺 超超临界锅炉集箱本体的材料与超临界、亚临界锅炉略有不同,主要体现在 过热器和再热器集箱选用了性能更好的 T P347H、P92 作为集箱本体材料。集箱管径较大、管壁较厚,特别是超长集箱给集箱制造、翻转、吊运及运输等均带来一 定的难度,另外,尤为关键的是所有管座与集箱连接的角焊缝均要求全焊透。根 据以上特点,我们采取了如下措施: (1)针对 TP347H、P92、P91 等钢的焊接难点,避免焊接返修,保证一次合格率,我们新研制了1 台集箱环缝对接的窄间隙自动焊机。此设备能实现不点固焊 装配、全自动氩弧焊打底及细丝窄间隙埋弧焊一次性焊妥,此技术在国内外尚无 先例,系自主创新成果。 (2)对于管径大于 108mm 的管座角焊缝,我们采用机械焊,用先进的工艺装 备保证产品质量。 (3)对于全焊透结构的小管座角焊缝,我们尽量采用自动内孔氩弧焊封底+ 手 工电弧焊焊妥工艺。对有些无法采用内孔氩弧焊设备的长管接头角焊缝,在选用 合理的焊接坡口的同时,我们采用独创的外壁自动氩弧焊打底设备焊接,保证根 部全焊透,然后用手工电弧焊焊妥。 (4)对于超长集箱的翻转、吊运及运输,除了添置必需的工艺装备之外,我们 还制定了一系列的吊运、运输工艺守则及注意事项,防止集箱碰伤、碰坏。 (5)针对 TP347H 不锈钢集箱的制造难点,我们设计制作了焊缝背面气体保护 防氧化工装,选用合理的焊接规范,控制层间温度,减少在敏化温度区域内的停 留时间,并通过焊后稳定化处理解决受焊接热循环影响出现的“贫铬区”间隙。 2.2 “三器”制造工艺 对于蛇形管的制造工艺,无论是超(超)临界机组还是亚临界机组均无明显区别,只是按锅炉容量的大小在管径、壁厚和外形尺寸上有所不同。超超临界锅炉的“三器”管排均为超长、超宽管排,且末级过热器和再热器采用 Super304H、TP347HFG 等细晶粒不锈钢,针对制造中的难点,我们采取如下措施:

第五章 超临界锅炉工作原理及基本型式

第五章超临界锅炉工作原理及基本型式 超临界锅炉的工作原理 根据锅炉蒸发系统中汽水混合物流动工作原理进行分类,锅炉可分为自然循环锅炉、强制循环锅炉和直流锅炉三种。 若蒸发受热面内工质的流动是依靠下降管中水与上升管中汽水混合物之间的密度差所形成的压力差来推动,此种锅炉为自然循环锅炉;若蒸发受热面内工质的流动是依靠锅水循环泵压头和汽水密度差来推动,此种锅炉为强制循环锅炉;若工质一次性通过各受热面,此种锅炉为直流锅炉。 直流锅炉是由许多管子并联,然后再用联箱连接串联而成。它可以适用于任何压力,通常用在工质压力≥16MPa的情况,且是超临界参数锅炉唯一可采用的炉型。 1.直流锅炉的工作原理 直流锅炉依靠给水泵的压头将锅炉给水—次通过预热、蒸发、过热各受热面而变成过热蒸汽。直流锅炉的工作原理如图5-1所示。 图5-1直流锅炉的工作原理示意图 在直流锅炉蒸发受热面中,由于工质的流动不是依靠汽水密度差来推动,而是通过给水泵压头来实现,工质一次通过各受热面,蒸发量D等于给水量G,故可认为直流锅炉的循环倍率K=G/D=1。 直流锅炉没有汽包,在水的加热受热面和蒸发受热面间,及蒸发受热面和过热受热面间无固定的分界点,在工况变化时,各受热面长度会发生变化。 沿直流锅炉管子工质的状态和参数的变化情况示于图5-2: 图5-2 直流锅炉管子工质的状态和参数的变化情况 图5-2直流锅炉管子工质的状态和参数的变化阻力,工质的压力沿受热面长度不断降低;工质的焓值沿受热面长度不断增加;工质温度在预热段不断上升,而在蒸发段由于压力不断下降,工质温度不断降低,在过热段工质温度不断上升。 2.直流锅炉的特点 2.1直流锅炉的结构特点 直流锅炉无汽包,工质一次通过各受热面,且各受热面之间无固定界限。直流锅炉的结

玉环电厂4×1000MW机组锅炉系统三年运行实践

华能玉环电厂4×1000MW机组锅炉系统运行实践 张志挺 华能玉环电厂 目录 1玉环电厂锅炉设备概况 2 玉环电厂锅炉设备运行现状 3 玉环电厂锅炉系统投产三年来的运行实践 3.1水冷壁节流孔异物堵塞或结垢 3.2 空预器排烟温度偏高 3.3磨煤机出口粉管缩孔积粉自燃

目录 3.4灰系统设计出力不足 3.5 渣系统运行可靠性较差 3.6吹灰汽源改造 3.7 再热器事故喷水位置改造 3.8 一次风机倒转 3.9 其它问题 1 玉环电厂锅炉设备概况 华能玉环电厂4×1000MW超超临界燃煤机组工程 为国家重点工程。锅炉为哈尔滨锅炉有限责任公司 引进日本三菱重工业株式会社技术制造的HG- 2953/27.46-YM1型超超临界变压运行直流锅炉与上海汽轮机有限公司和德国SIEMENS公司联合设计制造的N1000-26.25/600/600(TC4F)型超超临界凝 汽式汽轮机配套,组成单元制机组。 4台机组分别于2006年11月28日、2006年12月30日、2007年11月11日和2007年11月24日投产发电。

1 玉环电厂锅炉设备概况 ?锅炉主要技术参数 280 294 298 ℃ 省煤器进口水温度 603603603℃再热器出口蒸汽温度365366377℃再热器进口蒸汽温度 4.565.625.94MPa 再热器出口蒸汽压力 4.745.816.14MPa 再热器进口蒸汽压力187323162446t/h 再热蒸汽流量605605605℃过热蒸汽温度22.2027.3327.46MPa 过热蒸汽压力221428072953t/h 过热蒸汽流量75%BMCR BRL BMCR 单位项 目 360mg/Nm 3 NOx 排放量 88 8%空气预热器漏风率(一年后) 666%空气预热器漏风率(一年内)353535%BMCR 锅炉不投油最低稳定负荷93.65%BRL 工况锅炉保证效率(LHV)114 122125 ℃锅炉排烟温度(修正后)118127129.4℃锅炉排烟温度(未修正)305319324℃预热器出口二次风温度293305309℃预热器出口一次风温度232323℃预热器进口二次风温度292929℃预热器进口一次风温度75%BMCR BRL BMCR 单位项 目 ?锅炉主要技术参数

超超临界机组锅炉给水泵汽化的分析与处理

超超临界机组锅炉给水泵汽化的分析与处理 Final approval draft on November 22, 2020

超超临界机组锅炉给水泵汽化的分析与处理 摘要:本文以某电厂1000MW超超临界机组汽动给水泵的汽化事件为基础,结合锅炉汽动给水泵的结构特点和最小流量阀的技术特点,分析了给水泵汽蚀的原因,指出了给水热力系统中最小流量阀的关键性。 关键词:汽动给水泵,汽化,最小流量阀 概述 某电厂1000MW超超临界机组,给水系统设计为,1台30%BMCR容量的电动给水泵和2台50%BMCR 容量的汽动给水泵,正常运行时两台汽泵承担锅炉上水任务,电泵作为启动及带低负荷或当一台汽泵故障时的备用泵。其中给水泵汽轮机为东方汽轮机厂设计生产:单轴、单缸、再热冷段蒸汽外切换、变转速、冲动式、凝汽式,主机额定工况功率16397KW,额定转速5605r/min,排汽压力,电超速6380r/min。 1汽动给水泵结构特点 汽动给水泵主要由泵的芯包、内外泵壳、水力部件、中间抽头、平衡装置、轴承、轴封以及泵座等部件组成,共6级;再循环管道设计为30%流量,配备一个气动调节门,前后各有一个手动截止门,气动门后配有逆止门。

泵设计成水平、离心、多级筒体式,为便于快速检修泵,内部组件设计成可以整体从泵外筒体内抽出的芯包结构,芯包内包括泵所有的部件。相同型号的泵组芯包内所有部件都具有互换性。备用芯包可以在所提供的任何一台泵组的壳体中进行性能试验。 泵中所用的叶轮和导叶及内部流道的设计保证给水泵具有较高的水力效率,径向间隙根据效率、临界转速和轴挠度确定,保证主给水泵具有较高的运行效率和可靠性。泵轴在易磨损处有可调换的轴套。叶轮的硬度比可拆卸型的泵壳或其它静止部分高一个等级,从而保证动静部分即使发生磨损,也可保护转动部件。在磨损发生后,通过调整动静部分间隙,亦可使泵组保证高效运行。 泵的水力平衡装置为平衡鼓结构,通过平衡装置平衡大部分轴向推力,其余轴向力通过推力轴承平衡,整套平衡装置能防止主泵在任何工况下,转子轴向窜动。推力轴承在所有的稳态和暂态情况下,包括泵启动和停止时能维持纵向对中和可靠的平衡轴向推力。 2汽化现象 汽泵组在调试过程中,于11月8日,进行A小汽机单转,完成电超速试验后停机投入盘车。11月9

超临界锅炉用钢

超临界、超超临界锅炉用钢 杨富1,李为民2,任永宁2 (1. 中国电力企业联合会,北京100761;2. 北京电力建设公司北京 100024) 摘要:提高火力发电厂效率的主要途径是提高蒸汽的参数即提高蒸汽的压力和温度,而提高蒸汽参数的关键有赖于金属材料的发展。从发展超临界、超超临界机组与发展新钢种的关系以及超临界、超超临界锅炉对钢材的要求,概述了火电锅炉用钢的发展历程以及部分新钢种的性能。 关键词:临界、超超临界;锅炉;材料 2020年全国装机容量将达到9.5亿kW,其中火电装机仍然占70%,即今后17年将投产4.0亿kW左右的火电机组。火电建设将主要是发展高效率高参数的超临界(SC)和超超临界(USC)火电机组。从目前世界火力发电技术水平看,提高火力发电厂效率的主要途径是提高蒸汽的参数,即提高蒸汽的压力和温度。发展超临界和超超临界火电机组,提高蒸汽的参数对于提高火力发电厂效率的作用是十分明显的。表1给出了蒸汽参数与火电厂效率、供电煤耗关系[1]。 表1 蒸汽参数与火电厂效率、供电煤耗关系 机组类型蒸汽压力/Mpa 蒸汽温度/℃电厂效率/%供电煤耗*/kW·h 中压机组 3.5 435 27 460 高压机组9.0 510 33 390 超高压机组13.0 535/535 35 360 亚临界机组17.0 540/540 38 324 超临界机组25.5 567/567 41 300 高温超临界机组25.0 600/600 44 278 超超临界机组30.0 600/600/600 48 256 高温超超临界机组30.0 700 57 215 超700℃机组超700 60 205

超临界火电机组

火力发电革命性变革 ——超临界(超超临界)机组运用 超临界(超超临界)是一个热力学概念。对于水和水蒸气,压力超过临界压力22.129MPa的状态,即为超临界状态。同时这一状态下对应的饱和温度为374.15℃。超临界机组即指蒸汽压力达到超临界状态的发电机组。蒸汽参数达到27MPa/580℃/600℃以上的高效超临界机组,属于超超临界机组。 超临界(超超临界)机组最大的优势是能够大幅度提高循环效率,降低发电煤耗。但相应地需要提高金属材料的档次和金属部件的焊接工艺水平。现在全世界各国都非常重视超临界(超超临界)机组技术的发展。 超超临界机组蒸汽参数愈高,热效率也随之提高。热力循环分析表明,在超超临界机组参数范围的条件下,主蒸汽压力提高1MPa,机组的热耗率就可下降0.13%~0.15%;主蒸汽温度每提高10℃,机组的热耗率就可下降0.25~0.30%;再热蒸汽温度每提高10℃,机组的热耗率就可下降0.15%~0.20%。在一定的范围内,如果采用二次再热,则其热耗率可较采用一次再热的机组下降1.4%~1.6%。 超临界(超超临界)机组的发展在20世纪60~70年代曾经历过低谷时期,主要是因为当时的试验条件所限,没有认识到超临界(超超临界)压力下工质的大比热容特性对水动力特性以及传热特性的影响,因而引发了水冷壁多次爆管等事故。经过理论和技术方面的不断发展,发现了超临界压力下的工质存在类膜态沸腾导致传热恶化问题,克服了技术发展障碍。与此同时,随着金属材料工业的发展,超临界(超超临界)机组获得了新的生命。 超临界(超超临界)机组具有如下特点: (1)热效率高、热耗低。超临界机组比亚临界机组可降低热耗约 2.5%,故可节约燃料,降低能源消耗和大气污染物的排放量。 (2)超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。

660MW超超临界锅炉技术特点及分析

2010年第2期(总第59期) 2010年4月 收稿日期:2010 02 01 第一作者简介:李亚峰,1974年生,男,山西长治人,1996年毕业于太原电力高等专科学校热能与动力工程专业,工程师。 工作研究 660M W 超超临界锅炉技术特点及分析 李亚峰, 薛青鸿 (国华陈家港发电有限公司,江苏 盐城 224631) 摘 要: 介绍了国华陈家港电厂660M W 超超临界锅炉水冷系统、启动系统、低NO x 燃烧器等的主要技术特点。指出,该型号锅炉在节能减排、环境保护等方面有显著的技术优越性。关键词: 超超临界锅炉;技术特点;系统 中图分类号: T K 229 文献标识码: A 文章编号: 1674 3997 (2010)02 0018 03 Analysis on Technical C haracteristics of 660MW Ultra Supercritical Boiler LI Ya feng,XU E Qing hong (GuoHua Chenjiagang Power Generation C O.,LTD.,YanC heng 224631,Jiangsu,Chi na) Abstract:T his paper analyzed 660M W ultr a supercritical boiler technical characteristics of Guohua Chengjiag ang pow er plant.T he unit showed a more significant technical super iority on energ y saving emission r eduction,and enviro nment friendly among ul tra supercritical units throug h analyzed t he technical characteristics of water cooling system,boot,low N ox Burner etc.Key words:ultra supercr itical boiler;technical character istics;system 0 引言 中国以火电为主的电力结构,决定了节能减排的重点是煤炭的清洁利用。大力发展大容量、高参数超超临界机组是中国可持续发展、节约能源、保护环境的重要措施之一。 国华陈家港电厂一期2台660MW 超超临界锅炉是上海锅炉厂有限公司在消化吸收ALST OM 公司超超临界锅炉设计制造技术的基础上,结合超超临界机组参数、锅炉燃煤的特点及用户的特殊要求自行设计的660MW 超超临界机组锅炉。笔者在介绍该型号锅炉承压部件、燃烧系统、启动调节等方面独特技术特点基础上,指出其在节能减排、提高能效方面的优越性和发展前景。 1 总体介绍 陈家港电厂2台660M W 超超临界锅炉采用的是超超临界参数变压运行螺旋管圈与垂直管屏直流炉结合、单炉膛、一次中间再热、四角切圆燃烧方式、平衡通风、 型露天布置,固态排渣,全钢架悬吊结构。额定工况及BM CR 工况主要参数见表1。 炉膛上部布置有分隔屏过热器和后屏过热器,炉膛折焰角上方布置了高温过热器,水平烟道布置了高温再热器,尾部烟道为并联双烟道,后烟井前烟道布置 有低温再热器、后烟道布置有低温过热器,在低温再热器和低温过热器管组下方布置有省煤器,省煤器的型式与常规机组一样。 表1 额定工况及BM CR 工况主要参数 名称单位额定工况 BM CR 工况 过热蒸汽流量t/h 1940 2037 过热蒸汽出口压力M Pa 26.0326.15过热蒸汽出口温度 605605再热蒸汽流量t/h 16291716再热蒸汽进口压力M Pa 5.84 6.16再热蒸汽进口温度 377386再热蒸汽出口压力M Pa 5.66 5.97再热蒸汽出口温度 603603给水温度 294 298 锅炉燃烧系统,按中速磨冷一次风直吹式制粉系统设计。24只直流式燃烧器分6层布置于炉膛下部四角,煤粉和空气从四角送入,在炉膛中呈切圆方式燃烧。 过热器汽温通过煤水比调节和三级喷水来控制。再热器汽温采用烟气挡板调温、燃烧器摆动和过量空气系数的变化调节,两级再热器之间连接管道上设置微量喷水。 2 技术特点及分析 2.1 省煤器及水冷系统 超超临界锅炉采用一级省煤器,并联布置在后烟井中,分别在低温再热器和低温过热器的下部。给水由锅炉左侧单路经过电动闸阀和止回阀后进入省煤器 18

关于超超临界1000MW机组参数选型的报告(锅炉)

关于沙洲二期超超临界机组参数选型的报告 一、百万超超临界机组材料选型范围 1、锅炉方面 目前百万超超临界机组锅炉受热面管材选型主要考虑奥氏体钢TP347HFG、Super304、HR3C、NF709,材料方面国内外均没有新的突破。 表1-1奥氏体钢Super304、HR3C主要规格及使用条件 *数据来源于北京科技大学《新型奥氏体耐热钢HR3C的研究进展》2010.10 再热器出口管道目前百万超超临界机组全部采用P92,P92的温度使用上限为650℃。 2、汽机方面 汽轮机叶片、转子、汽缸、阀体选用材料为铁素体9-12%Cr耐热钢,目前主要形成两个等级,600℃/625℃。 上表数据来源:上海发电设备成套设计研究院《超超临界机组材料》 我公司二期工程主机参数选型目前涉及到两大方案,即600℃/600℃型和600℃/620℃型。 1)600℃的9-10%Cr耐热钢汽轮机至今已运行10年以上,无论含W或不含W都能在600℃下安全运行,属于有成熟运行业绩产品。 2)625℃的9%Cr钢已完成用于产品前的全部试验,试验数据表明“625℃的超超临界参数”汽轮机已不存在材料技术问题。但目前此参数机组国内仅有产

品订单但无投运业绩(安徽田集660MW机组)。国外德国达特尔恩有产品业绩,无投运业绩。仅日本有投运业绩,时间不长。 二、再热器出口603℃提升到623℃技术 1、技术上的实现手段主要是增加低温再热器和高温再热器的受热面面积 2、材料使用情况:从选材上可以看出,为了确保再热蒸汽温度提高至623℃后锅炉再热器的安全性,将高温再热器的出口散管由T92材料提升至SA-213 S 304H,高温段的材料仍然采用Super304、HR3C。 三、选用623℃参数后,管壁温度的运行情况分析: 1、根据AMSE的标准一般炉内管壁温度取蒸汽温度+(25 ~ 39)℃,国内计算取50℃,选用623℃参数后,高温再热器出口段平均壁温在(648 ~ 662)℃,HR3C的允许管壁温度672℃,上限壁温还有10℃的安全余量,但是由于并列管排的热偏差的存在,炉内可能有局部管壁超过672℃。 热偏差一般塔式炉比Π型炉小,热偏差系数选取1.2左右。 2、再热器汽温选用623℃,根据运行控制(-10 ~ +5)℃,炉侧再热器汽温最高628℃连续运行,考虑并列管偏差的存在,局部联箱、出口管道的温度640℃,据P92的允许管壁温度650℃,有10℃的余量。如果选用623℃炉型,考虑选用P122管道,因为600℃以上9%Cr钢的蒸汽氧化性能略显不足。 3、主汽压力的选取,一般百万超超临界机组压力等级从27.0 MPa~29.27 MPa不等,现建议主汽压力选取锅炉侧压力为29.27 MPa,相应汽机侧为28.0MPa。因为从安全、经济角度考虑,主汽压力每提高 1.0 MPa,机组热效率上升0.18%~0.29%。 不建议继续提高主汽压力的原因: a)目前主蒸汽集箱及出口管道采用的材质是P92,属于9%C钢,允许的承压为30MPa。29.27 MPa的参数选型能够充分将材料的性能发挥至极限,如果继续提高压力等级,管道的壁厚增加量过多,投资费用大幅增加,且联箱、管道管壁过厚,温差应力大,容易导致材料过早失效。 b)压力的提高不仅关系到材料强度及结构设计,而且由于汽轮机排汽湿度的原因,压力提高到某一等级后,必须采用更高的再热温度或二次再循环,目前技术上还没有成熟。

超超临界机组技术交流2013年会

超超临界机组技术交流2013年会会议报道 一年一度的超超临界机组技术交流年会11月6-8日在天津召开。会议由中国动力工程学会主办、天津国投津能发电有限公司协办、中国电力科技网承办。34位科研院所专家、生产一线技术主管和200多位与会嘉宾交流、研讨。本着宁缺毋滥,好中选好的原则,专家对会前征集的近200篇论文进行审核,精选60篇出版论文集。 中国动力工程学会名誉理事长、原机械工业部副部长陆燕荪题词祝贺:“发挥中国动力工程学会学术优势,依托中国电力科技网站交流平台,凝聚冶金机械电力综合研发成果,推动超超临界机组健康有序发展,促进国家创新驱动战略全面落地,实现装备制造由大变强之中国梦——祝第七届超超临界机组技术交流2013年会圆满成功”。他还给会议提出了宝贵建议。 超超临界机组技术交流2013年会会场 中国动力工程学会原副理事长程钧培主持开幕式。天津国投津能发电有限公司教授级高级工程师郭启刚总经理致欢迎辞并发表“打造五位一体循环经济示范模式,创建高效节能生态环保绿色电站”主题演讲:“我谨代表天津国投津能发电有限公司向大会致以热烈地祝贺,并对出席会议的各位领导、专家和科技工作者表示热烈欢迎和衷心感谢!” 国投北疆发电厂是国家循环经济试点项目,规划建设6台1000MW超超临界发电机组和60万吨/日海水淡化装置,按照三期建设。一期工程建设

2台1000MW发电机组和20万吨/日海水淡化装置,分别于2009年9月24日和11月30日投产发电,首批10万吨/日海水淡化装置于2010年4月26日全部投产,后10万吨/日海水淡化装置已于近期投运。二期扩建工程2台1000MW发电机组和30万吨/日海水淡化装置,目前正在积极筹建。 北疆一期工程投产近4年来,各子项目运行良好,各项技术经济指标都达到了国内外先进水平。截至10月底,实现了工程开工以来2411天长周期安全生产纪录,累计完成发电量454.58亿千瓦时,各项能耗环保指标均达到或高于国家标准。国投北疆发电厂先后获得中国电力优质工程奖、国家循环经济示范项目、全国循环经济工作先进单位、全国五一劳动奖状等荣誉称号。获得2012年度全国火电一千兆瓦机组竞赛一等奖。 天津国投津能发电有限公司教授级高级工程师郭启刚总经理致欢迎辞 左:王峰;右:冯德明 天津国投津能发电有限公司工程师王峰发表“北疆电厂汽轮机优化运行

相关文档
相关文档 最新文档