文档库 最新最全的文档下载
当前位置:文档库 › 数理统计实验报告

数理统计实验报告

数理统计实验报告
数理统计实验报告

课程实验报告

专业年级2012级数学与应用数学 2 课程名称数理统计

指导教师夏天

学生姓名何俊

学号20122211022057

实验日期2014.06.05

实验地点A4教学楼304

实验成绩

教务处制

20 年月日

实验项目

名称

数理统计实验

实验

目的及要求

学习利用Matlab求来自某个总体的一个样本的样本均值、中位数、样本方差、

偏度、峰度、样本分位数和其它数字特征,并能由样本作出直方图,箱线图;

用Matlab做拟合分布检验;用Matlab求解一元线性回归问题。能正确使用

命令Regress,并从输出表中读懂线性回归模型中各参数的估计、回归方程、

线性假设的显著性检验结果。

实验内容画直方图,画箱线图,做拟合分布检验,能正确使用命令Regress,并从输出表中读懂线性回归模型中各参数的估计、回归方程等等。

实验步骤实验1:p.148,习题10

下面列出了30个美国NBA球员的体重(以磅计,1磅=0.0454kg)数据。这些数据是从美国NBA球队1990-1991 赛季的花名册中抽样得到的。

225 232 232 245 235 245 270 225 240 240 217 195 225 185 200 220 200 210 271 240 220 230 215 252 225 220 206 185 227 236

(1)画出这些数据的频率直方图(提示:最大和最小观察值分别为271和185,区间 [184.5,271.5] 包含所有数据,将整个区间分为5等份,为计算方便,将区间调整为(179.5,279.5)。

(2)作出这些数据的箱线图。

实验2:p.221,习题23

检查了一本书的100页,记录各页中印刷错误的个数,其结果为

错误个数

i

f0 1 2 3 4 5 6 ≥7

i

f个错误的页数36 40 19 2 0 2 1 0

问能否认为一页的印刷错误的个数服从泊松分布(取?=0.05)。

实验3: p.267,习题12

下面列出了自1952年~2004年各届奥林匹克运动会男子10000米赛跑的冠军的成绩(时间以min计):

年份(x) 1952 1956 1960 1964 1968 1972 1976

成绩(y) 29.3 28.8 28.5 28.4 29.4 27.6 27.7

年份(x) 1980 1984 1988 1992 1996 2000 2004

成绩(y) 27.7 27.8 27.4 27.8 27.1 27.3 27.1 (1)求Y关于x的线性回归方程?

??

y a bx

=+。

(2)检验假设

H:b=0,

1

H:b≠0 (显著性水平?=0.05)。

(3)求2008年冠军成绩的预测值。

实验环境Matlab

实验结果与

分析实验1:p.148,习题10:

>> x1=[225 232 232 245 235 245 270 225 240 240];

>> x2=[217 195 225 185 200 220 200 210 271 240];

>> x3=[220 230 215 252 225 220 206 185 227 236];

>> x=[x1 x2 x3];

>> y=sort(x);

>> a1=min(x);

>> b1=max(x);

>> a=179.5;b=279.5;m=5;

>> de=(b-a)/m;

>> [r,xout]=hist(x,[a:de:b])

r =

2 4 11 10 1 2

xout =

179.5000 199.5000 219.5000 239.5000 259.5000 279.5000 >> f=r./de

f =

0.1000 0.2000 0.5500 0.5000 0.0500 0.1000 >> bar(xout,r)

回车出图直方图:

>> data1=[225 232 232 245 235 245 270 225 240 240]; >> data2=[217 195 225 185 200 220 200 210 271 240]; >> data3=[220 230 215 252 225 220 206 185 227 236]; >> x=[data1 data2 data3];

>> boxplot(x)

回车出箱线图:

实验2:p.221,习题23:

>> clear

>> A=[0,1,2,3,4,5,6,7];

>> B=[36,40,19,2,0,2,1,0];

>> px=sum(A.*B)/100

>> for i=1:7

p(i)=(exp(-px))/factorial(i-1);

end

>> for i=2:7

S(1)=p(1);

S(i)=S(i-1)+p(i);

end

>> p(8)=1-S(7);

>> for i=1:8

np(i)=100*p(i);

end

>> hB=[sum(B(1:2)),B(3:5),sum(B(6:8))];

>> hnp=[sum(np(1:2)),np(3:5),sum(np(6:8))];

>> pfnp=(hB.^2)./hnp;

>> SS=sum(pfnp)

KF=chi2inv(0.95,6);

SS-100>=KF

px =

1

SS =

123.3736

ans =

1

实验3: p.267,习题12:

(1);

>> clear

>> x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14];

>> y=[29.3 28.8 28.5 28.4 29.4 27.6 27.7 27.7 27.8 27.4 27.8 27.1 27.3 27.1];

>> polyfit(x,y,1)

ans =

-0.1567 29.1681

所以线性回归方程为:=29.1681-0.1567x

(2)

>> clear

>> x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14];

>> y=[29.3 28.8 28.5 28.4 29.4 27.6 27.7 27.7 27.8 27.4 27.8 27.1 27.3 27.1];

>> n=14;

>> alpha=0.05;

>> g1=sum(x.^2);

>> g2=sum(x);

>> g3=sum(x.*y);

>> g4=sum(y);

>> g5=sum(y.^2);

>> SST=g1-(1/n)*(g2).^2;

>> SSA=g3-(1/n)*(g2*g4);

>> SSE=g5-(1/n)*(g4).^2;

>> b=(SSA)/(SST);

>> Q=(SSE)-(b)*(SSA);

>> g=Q/(n-2);

>> t=(abs(b)/sqrt(g))*sqrt(SST)

t =

5.7852

t=5.7852>2.1788(查表知),故在显著性水平 =0.05下拒绝H0,认为回归效果是显著的。

(3)

x=[1 2 3 4 5 6 7 8 9 10 11 12 13 14];

y=[29.3 28.8 28.5 28.4 29.4 27.6 27.7 27.7 27.8 27.4 27.8 27.1 27.3 27.1];

n=14;

g1=sum(x.^2);

g2=sum(x);

g3=sum(x.*y);

g4=sum(y);

SST=g1-(1/n)*(g2).^2;

SSA=g3-(1/n)*(g2*g4);

b=(SSA)/(SST);

a=(1/n)*g4-(b/n)*g2;

X=15;

Y=a+b*X

Y =

26.8176 教师评语

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

数理统计结课论文

数理统计中回归分析的探究与应用

回归分析问题探究 摘要 本文主要针对数理统计中的回归分析问题,通过对一元线性回归、多元线性回归以及非线性回归原理的探究,分别运用了SPSS和MATLAB软件进行实例分析以及进一步的学习。 首先,通过变量之间关系的概念诠释引出回归函数;其次,针 对回归函数,分别对一元线性回归原理上的学习,了解并会运用这三种线性回归模型、参数估计和回归系数的显著性检验来处理和解决实际的一元线性回归问题;接着,对多元线性回归和非线性回归进行学习,掌握它们与一元线性回归在理论和实践的联系与区别;然后,通过实际问题运用SPSS进行简单的分析,熟悉SPSS软件的使用步骤和分析方法,能够运用SPSS进行简单的数理分析;最后,用MATLAB编程来处理线性回归问题,通过多种方法进行比较,进行线性回归拟合计算并输出Logistic模型拟合曲线。 关键词:回归分析;一元线性回归;多元线性回归;非线性回归;SPSS;MATLAB

一、回归概念 一般来说,变量之间的关系大致可以分为两类:一类是确定性的,即变量之间的关系可以用函数的关系来表达;另一类是非确定性的,这种不确定的关系成为相关关系。相关关系是多种多样的,回归分析就是研究相关关系的数理统计方法。它从统计数据出发,提供建立变量之间相关关系的近似数学表达式——经验公式的方法,给出相关行的检验规则,并运用经验公式达到预测与控制的目的。 如随机变量Y与变量x(可能是多维变量)之间的关系,当自变量x确定后,因变量Y 的值并不跟着确定,而是按照一定的停机规律(随机变量Y的分布)取值。这是我们将它们之间的关系表示为 其中是一个确定的函数,称之为回归函数,为随机项,且。回归分析 的任务之一就是确定回归函数。当是一元线性函数形时,称之为一元线性回归;当 是多元线性函数形时,称之为多元线性回归;当是非线性函数形时,称之为非线性回归。 二、回归分析 2.1 一元线性回归分析 2.1.1 一元线性回归模型 设随机变量Y与x之间存在着某种相关关系,这里x是可以控制或可以精确测量的普通变量。对于取定的一组不完全相同的值做独立实验得到n对观察值 一般地,假定x与Y之间存在的相关关系可以表示为 , 其中为随机误差且,未知,a和b都是未知参数。这个数学模型成为医院 线性回归模型,称为回归方程,它所代表的直线称为回归直线,称b为回归系数。 对于一元线性回归模型,显然有。

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

数理统计结课论文

数理统计在环境监测方面的应用 班级:14研3班姓名:漆麟学号:201420001101 直线回归在分光光度法分析中起着非常重要的作用,它反应出被测物质浓度与吸光度之间的变量关系。例如在测定亚硝酸盐氮标准曲线时,由于亚硝酸盐氮不稳定在空气中可被氧化成硝酸盐氮也易被还原成氨,因此,要求测定过程快速准确。而正确绘制标准曲线是获得准确结果的必要手段。如何做到正确绘制标准,可采用数理统计中最小二乘法对每组实验数据进行线性回归,根据回归方程式 y=a+bx,求解a、b后代入回归方程即可绘出最接近真实的标准曲线。因为在理论上每组实验数据经过最小二乘法处理后都能得到一条最佳直线,这样就可避免主观选择估计的因素,使测定结果接近真值。 采用《环境监测分析方法》中N-1萘-乙二胺比色法。在pH2.0~2.5时,水中亚硝酸盐与对氨基苯磺酰胺生成重氮盐,再与N-1萘-乙二胺偶联生成红色染料,在543nm波长处有最大吸收。其色度深浅与亚硝酸盐含量成正比,可比色测定。 向标准比色管分别加入每毫升含0.5μg的亚硝酸钠标准使用液1mL、3mL、 5mL、7mL、10mL,用水稀释至50mL。然后再分别加入1.0mL对氨基苯磺酰胺盐酸盐溶液摇匀,放置2-8min,加入1.0mLN-1A萘-乙二胺盐酸盐溶液,10min后比色测定。测定结果见表1。 表1 亚硝酸盐氮标准曲线测定结果 亚硝酸(μg)x钠使用液0.5 1.5 2.5 3.5 5.0 吸光度y 0.036 0.111 0.185 0.259 0.367 线性回归设标准物浓度为x1,x2,……,x n,相应的吸光度为y1,y2,……,y n,根据回归方程y=a+bx求解方程的b和a。经计算的测定结果列于表2。 表2 用最小二乘法绘制亚硝酸盐氮标准曲线 n x x2 y y2 xy 1 0.5 0.25 0.036 0.001296 0.018 2 1.5 2.25 0.111 0.01231 0.1665 3 2.5 6.25 0.185 0.034225 0.4625

应用数理统计课后习题参考答案

习题五 1 试检验不同日期生产的钢锭的平均重量有无显著差异?(=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5. 假设样本观测值(1,2,3,4)ij y j =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= . 检验的问题:01251:,:i H H μμμμ===不全相等 . 计算结果: 表5.1 单因素方差分析表 ‘*’ . 查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异. 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(=0.05) 解 根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 . 假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= .其中

样本容量不等,i n 分别取值为6,5,3,4 . 检验的问题:012341:,:i H H μμμμμ===不全相等 . 计算结果: 表5.2 单因素方差分析表 查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05, 所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 . 3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A , 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用. 设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ij y i j ==来源于正态总体2 ~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j = .记i α?为对应于i A 的主效应;记j β?为对应于j B 的主效应; 检验的问题:(1)10:i H α?全部等于零,11 :i H α?不全等于零; (2)20:j H β?全部等于零,21:j H β?不全等于零; 计算结果: 表5.3 双因素无重复试验的方差分析表 查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值, 或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用. 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量:

概率论课程小论文

《概率论与数理统计》小论文概率与理性的发展 哈尔滨工业大学 2014年12月

《概率论与数理统计》课程小论文 概率与理性的发展 摘要概率论是一门研究事件发生的数学规律的学科。他起源于生活中的实际问题的思考,较传统的几何学等起步较晚,在伯努利、泊松等数学家的努力下,形成了现如今较为完备的理论体系。他与数理统计一起,在工程设计、自然科学、社会科学、军事等领域起着重要作用。而概率论提出后有很多人感感兴趣对其进行研究的原因之一是很多事件的主观上对概率的判 断与实际的理论概率有着很大的差异,于是有关概率的悖论有很多,也有很多与直觉相悖的概率问题,这也是概率的魅力之一。本文将从概率的发展、概率与感性的差异等方面出发对概率与感性和理性进行探讨。 关键词概率悖论直觉理性 一、概率的发展 概率论的初步发展起源于十七世纪中叶的法国。在那里出现了对赌博问题的研究,也正是对赌博问题的研究,推动了概率论的发展。最初的问题是从分赌金开始的。[1] 最初的问题大致是这样的:甲乙双方是竞技力量相当的对手,每人各拿出32枚金币,以争胜负。在竞争中,取胜一次,得一分。最先获得3分的人取得全部赎金64枚金币。可是,因某种缘故,竞争3次,赌博被迫终止。而此时,甲得2分,乙得1分,问赌金如何分配?很多问题的开端都是利益的纠纷,这也是一个例子,双方都会为自己的利益考虑而提出对这笔赌金的分法,而从直觉上看,很多理由似乎也是很有道理的。但是真相只有一个,到底理论上最公平的分法是怎样的?这个问题的当事人爱好赌博的德梅雷 向其好友著名的数学家帕斯卡请教,这个问题也受到了帕斯卡的关注。帕斯卡与其好友费尔马进行了三个月的书信往来讨论这个问题,最终得到了满意的答案:假设两赌徒中甲赢了两局,乙一局未赢,那么接下来可能出现的情况是:若甲再赢一局,得3分,将获全部赌金;若乙赢一局,出现2:1的局

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

数理统计论文

研究生课程考核试卷 科目:数理统计教师:黄光辉 姓名:张振学号:20142002036 专业:环境科学与工程类别:学术 上课时间:2014 年9 月至2014 年11 月 考生成绩: 卷面成绩平时成绩课程综合成绩 阅卷评语: 阅卷教师(签名)

某商业银行不良贷款形成原因分析 摘要 根据某商业银行多家分行业务数据,建立线性回归模型,运用SPSS数理统计软件对此商业银行不良贷款情况进行运算与分析,以不良贷款为因变量(y),运用逐步回归法对变量数据进行筛选,最后以各项贷款余额(χ1)与本年固定资产投资额(χ4)为自变量,分别建立y与χ1的一元线性回归方程和y与χ1、χ4的二元线性回归方程,并对回归线性模型进行F检验、t检验和回归系数检验。最后结合实践经验,对模型进行检验,并运用Pearson相关系数测量因变量(y)与自变量(χ1、χ4)的线性相关关系,以及两个变量之间的相关性。 一、问题提出与分析 重庆一家某商业银行其业务主要是进行基础设施建设、重点项目建设、固定资产投资等项目的贷款。最近一段时间,在贷款额平稳增长的基础上,该银行的不良贷款记录也有大比例提高。为了弄清楚不良贷款形成的原因,该银行希望利用一些数据做些定量分析。 二、数据描述 表1是项目参考的变量名称;表2给出了该银行所属20家分行在2012年的相关业务数据。 表1 项目参考变量名 y:不良贷款(亿元)χ3:贷款项目个数(个) χ1:各项贷款余额(亿元)χ4:本年固定资产投资额(亿元) χ2:本年累计应收贷款(亿元) 表2 相关业务数据 分行编号不良贷款 各项贷款余 额 本年累计应 收贷款 贷款项目个数 本年固定资产投 资额 1 0.9 2 67.5 6.78 5 51.9 2 1.1 112.5 19.8 16 91.1 3 4.81 174.2 7.9 17 74.2 4 3.18 82.1 7.3 10 14.5 5 7.8 199.7 16.4 19 63.21 6 2. 7 16.3 2.2 1 2.2 7 1.6 106.2 10.7 17 20.2

概率论与数理统计公式总结

概率论与数理统计公式总 结 Prepared on 22 November 2020

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变 量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函 数 联合密度与边缘密度 ) () ()|(B P AB P B A P = )|()()(B A P B P AB P =) |()(A B P A P =∑==n k k k B A P B P A P 1 ) |()()(∑== n k k k i i k B A P B P B A P B P A B P 1 ) |()() |()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λ λ 1)(=?+∞ ∞-dx x f ) (b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()(),(y x f ) ,(y x F 0 ),(≥y x f 1),(=??+∞∞-+∞ ∞-dxdy y x f 1 ),(0≤≤y x F } ,{),(y Y x X P y x F ≤≤=)(1 )(b x a a b x f ≤≤-= ) ()('x f x F =

数理统计论文

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:概率论与数理统计上课时间:2017.2-2017.5 姓名:刘振学号: 20160702031专业:机械工程教师:刘朝林 工作单位或所在行业:重庆大学 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师 (签名)

回归分析在数理统计中的应用 摘要:回归分析是数理统计中重要的一种数据统计分析的思想, 是处理变量间的相关关系的一种有效工具。其目的在于根据已知自变量的变化来估计或预测因变量的变化情况,或者根据因变量来对自变量做一定的控制. 它可以提供变量间相关关系的数学表达式, 且利用概率统计知识,对经验公式及有关问题进行分析、判断以确定经验公式的有效性,从众多的解释变量中,判断哪些变量对因变量的影响是显著的,哪些是不显著的. 还可以利用所得经验公式,由一个或几个变量的值去预测或控制个变量的值时的值,去预测或控制另一个变量的取值,同时还可知道这种预测和控制可以达到什么样的精度。 本文就是针对实际问题运用回归分析中一元线性回归分析的统计方法,来确定自变量与 另一个变量的相关关系,并确立出较为合理的回归方程,再对其的可信度进行统计检验. 关键词:回归分析;回归方程;F检验法

1.问题的提出 调查一下重庆大学学生的生活费与家庭收入的关系,看看是否家庭收入越高,学生的每月支出也越多,从而根据学生每月消费支出,进而估计学生的家庭收入情况,对学生的生活补助等问题有重要的参考意义 2.数据描述 根据调研的重庆大学学生家庭月收入与每月生活费的数据,确定两者关系。数据来源100多份问卷调查的抽样,取其中10份,绘制表1如下图所示序号家庭月收入每月生活费14800 500 25200 600 35420 650 45600 700 56000 750 66400 800 76800 900 87000 1000 97200 1200 108000 1500 表1-1 重庆大学学生家庭月收入与每月生活费的数据利用matlab软件画出家庭月收入与每月生活费的散点图,如图一所示

概率论与数理统计公式定理整理汇编

概率论与数理统计公式集锦 一、随机事件与概率

二、随机变量及其分布 1、分布函数性质 ()()(),()()() ()k k x x x P X x F x P X x P a X b F b F a f t dt 2、离散型随机变量及其分布 3、连续型随机变量及其分布

4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j i i j g x y P Y y p i L , 连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y 单调 三、多维随机变量及其分布 1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P X x Y y p i j L 分布函数(,)i i ij x x y y F X Y p 边缘分布律:()i i ij j p P X x p ()j j ij i p P Y y p 条件分布律:(),1,2,ij i j j p P X x Y y i p L ,(),1,2,ij j i i p P Y y X x j p L 2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数: x y dudv v u f y x F ),(),( 性质:2(,) (,)1,(,),F x y F f x y x y ((,))(,)G P x y G f x y dxdy ②边缘分布函数与边缘密度函数 分布函数: x X dvdu v u f x F ),()(密度函数: dv v x f x f X ),()( y Y dudv v u f y F ),()( du y u f y f Y ),()( ③条件概率密度 y x f y x f x y f X X Y ,)(),()(, x y f y x f y x f Y Y X ,) () ,()(

应用数理统计课程小论文数据,结果,分析过程

1 聚类分析 我们利用Matlab6.5中的cluster 命令实现,具体程序如下 x={ {n,m}=size(x); Stdr=std(x); xx=x./stdr(ones(n,1),;); % 标准化变换 y=pdist(xx); %计算各样本间距离(这里为欧氏距离) z=linkage(y); %进行聚类(这里为最短距离法) h=dendrogram(z); %画聚类谱系图 t=cluster(z,3) % 将全部样本分为3类 find(t==2); %找出属于第2类的样品编号 执行后得到所要结果 聚类谱系图见图1 t={3,1,3,1,1,2,2} 即全部样本分为3类。结果见表1 从图 1可以看出:七条河流中, 二干河、横套河、四干河属于一类, 污染 较重, 主要是CODmn 、BOD5超标多; 华妙河、盐铁塘属于一类, 污染一般, 主要是氨氮、石油类超标; 张家港河、东横河属于一类,污染较轻, 总的来说,各河流都存在不同程度的污染,因此全市应对各河流严格监督管理, 着力实施水污染防治工作, 太湖流域水污染源应限期治理达标排放, 巩固水污染防治工作成果,加大投入,新建或改、 扩建废水治理工程, 确保达标排放。 3.14 5.47 3.1 5.67 6.81 6.21 4.87 8.41 9.57 4.31 9.54 9.05 7.08 8.97 23.78 26.48 21.2 10.23 16.18 21.05 26.54 25.79 23.79 22.48 20.87 24.56 31.56 34.56 4.17 6.42 5.34 4.2 5.2 6.15 5.58 6.47 5.58 6.54 6.8 5.45 8.21 8.07 }

概率论与数理统计公式总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关 系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 ) () ()|(B P AB P B A P = )|()()(B A P B P AB P =) |()(A B P A P =∑==n k k k B A P B P A P 1 ) |()()(∑== n k k k i i k B A P B P B A P B P A B P 1 ) |()() |()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λ λ 1)(=? +∞ ∞ -dx x f ) (b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()(),(y x f ) ,(y x F 0 ),(≥y x f 1),(=?? +∞ ∞ -+∞ ∞ -dxdy y x f 1 ),(0≤≤y x F } ,{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

数理统计小论文

研究生“数理统计”课程课外作业 姓名:罗冲学号:20131002006 学院:动力工程学院专业:动力工程 类别:学术型上课时间:2013.9—2013.12 成绩:

城市供水管道长度与用水人口回归分析 摘要 为了分析城市居民供水问题,通过在国家统计局搜集数据,找到城市供水管道的长度和城市用水人口的相关数据,进行回归分析,运用参数估计、假设检验、回归分析的方法对其进行分析。讨论供水管道Y和用水人口X之间的线性关系,并讨论其在显著水平为α=0.05下,检验x和y是否具有显著线性关系。所以通过上述分析可以得到,供水管道的长度和用水人口成线性相关性。运用统计学知识,可以解决生活的问题。说明了随着人口的增长会,增加城市的供水管道的长度。 正文 一、问题提出,问题分析。 统计了有关供水的数据,通过对数据的分析,讨论供水管道Y和用水人口X 之间的线性关系,并讨论其在显著水平为α=0.05下,检验x和y是否具有显著线性关系;应用参数估计、假设检验、回归分析来解决问题。 二、数据描述(用表格表达数据信息,指出数据来源或提供原始数据) 问题中所给出的数据来源于国家统计局网站上面的相关信息,城市供水的信息。其中包括了生活、生产用水和用水人口、供水重量、管道长度等信息,选取的数据是2011年到2006年(如下表),进行相关分析。

三、模型建立: (1)提出假设条件,明确概念,引进参数; 讨论供水管道Y 和用水人口X 之间的线性关系,采用一元线性回归模型。 Y=β0+β1x+ ε ε~ N(0,2σ) 回归函数:y=β0+β1x 采用最小二乘法,求出相应的估计值: X =6 116=∑i i x =36036.4 Y =6 1 16=∑i i Y =496943.59 通过计算可以得到: l xx =6 21 ()i i x x - =-∑=34337890.49 l yy =21 ()n i i y y - =-∑=1.510297x1010 l xy =6 1 ()i i i x x y - =-∑=701606286 ^ y = ^β0+ ^ β1x (2)模型构建; 一元线性回归模型,进行求解,并会对其进行相关的验证。根据教材的相关公式进行求解。

概率论与数理统计结课论文

概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用 姓名: 学号: 专业:电子信息工程

摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与 数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式 基本知识 §1.1 概率的重要性质 1.1.1定义 设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。 概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) 1.1.2 概率的一些重要性质 (i ) 0)(=φP (ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) (iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -= (逆事件的概率) (vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=?

应用数理统计课后习题参考答案

习题五 1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g) 日期重旦量 1 5500 5800 5740 5710 2 5440 5680 5240 5600 4 5400 5410 5430 5400 9 5640 5700 5660 5700 10 5610 5700 5610 5400 试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05) 解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5. 2 假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5 检验的问题:H。:i 2 L 5, H i : i不全相等. 计算结果: 注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为 查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所 以拒绝H。,认为不同日期生产的钢锭的平均重量有显著差异 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 解 根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 . 2 假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .

日产量 操作工 查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。,认为在四种不同催化剂下平均得率无显著差异 3 试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另 一个是温度 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 ) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用 设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12. 2 假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j , ),i 1,2,3, j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应; 检验的问题:(1) H i 。: i 全部等于零,H i — i 不全等于零; (2) H 20 : j 全部等于零,H 21: j 不全等于零; 计算结果: 查表F 0.95(2,6) 5.143 ,局.95(3,6) 4.757 ,显然计算值F A , F B 分别大于查表值, 或p = 0.0005 , 0.0009均显著小于0.05,所以拒绝H i°,H 20,认为含铜量和试验温度 都会对钢的冲击值产生显著影响作用 . 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量: 检验的问题:H 0: 1 计算结果: H i : i 不全相等

数理统计参考论文

重庆市固定资产投资与房地产投资 线性关系分析 学号 20111602084 姓名陈磊 学院土木工程学院专业土木工程 成绩

重庆市固定资产投资与房地产投资 线性关系分析 摘要:我国房地产投资近年来迅猛发展,无论在规模还是在增速上都达到了前所未有的水平,房地产业作为新兴的产业,对我国的经济发展起着举足轻重的作用。房地产投资与固定资产的投资息息相关,研究两者之间的关系并作出预测显得非常有必要。借助于数理统计的知识,在实际的数据的基础上,对两者之间进行一个简单的一元线性回归分析。在建立起模型之后,通过显著性检验方法进行检验,以检查结果的正确性。并通过模型对重庆市的房地产投资作出一个大致的预测,同时对相关结论进行分析,以指导实际工作。 关键词:固定资产投资;房地产投资;线性回归 一、问题提出及分析 重庆市作为国家中心城市之一,西部惟一的直辖市,凭借特殊的政策优势、基础条件优势, 经过政府一系列积极政举,经济发展环境持续向好,直辖以来积蓄的发展势能不断释放。在大力推动“五个重庆”、统筹城乡、内陆开放、深化改革、振兴区县、改善民生等重点工作的情况下,重庆市继续加强落实了中央扩大内需的投资项目和政府主导的投资计划,不断鼓励并激活社会资本,使得固定资产投资需求不断扩大、投资力度不断增强、投资结构不断优化,基础产业、基础设施、房地产及其他第三产业的投资齐头并进,全市固定资产投资保持平稳较快增长。 固定资产是指企业使用期限超过1年的房屋、建筑物、机器、机械、运输工具以及其他与生产、经营有关的设备、器具、工具等。固定资产投资是建造和购置固定资产的经济活动。按照管理渠道分,全社会固定资产投资总额分为基本建设、更新改造、房地产开发投资和其他固定资产投资四个部分。 房地产业作为一个国计民生的大行业,其投资额牵动着整个社会的安居问题。重庆目前又在推出宜居重庆的政策,由此引发思考:房地产投资在固定资产中是否存在一定的关系,与固定资产投资的关系如何,是否可以用一定的方式进行预测? 借助统计学与软件的分析,采用散点图的描绘,可以看到固定资产投资额与房地产投资额可能存在一定的线性关系,由此借助数理统计知识,通过一元线性回归的相关知识对该问题进行分析。

研究生《应用数理统计基础》庄楚强_四五章部分课后答案

4-45. 自动车床加工中轴,从成品中抽取11根,并测得它们的直径(mm )如下: 10.52,10.41,10.32,10.18,10.64,10.77,10.82,10.67,10.59,10.38,10.49 试用W 检验法检验这批零件的直径是否服从正态分布?(显著性水平05.0=α ) (参考数据:) 4-45. 解:数据的顺序统计量为: 10.18,10.32,10.38,10.41,10.49,10.52,10.59,10.64,10.67,10.77,10.82 所以 6131.0][)()1(5 1 ) (=-= -+=∑k k n k k x x a L , 又 5264.10=x , 得 38197.0)(11 1 2=-∑=i i x x 故 984.0) (11 1 2 2 =-= ∑=i i x x L W , 又 当n = 11 时,85.005.0=W 即有 105.0<

常用数理统计公式

1. ∑ == n i i x n x 1 1 y n 2 1 2 2 1 )(x n x x x L n i i n i i xx -= -= ∑ ∑== 2 1 2 2 1 )(y n y y y L n i i n i i yy -= -= ∑ ∑== y x n y x y y x x L i n i i i n i i xy -= --= ∑ ∑ ==1 1 )()( x b y a ??-= xx xy L L b /?= )(????x x b y x b a y -+=+= 2.b 的显著性检验 0:,0:10≠=b H b H 拒 )2(-≥= n r L L L r a yy xx xy 3. b 的区间估计 ) 2(?)?(-=-= n t b b L t e xx σ )/)2(??(2 /1xx e L n t b b -±∈-ασ 2 ?? 2 --= n b L yy e σ 4. 预测y 0 )2() (11??2/12 000-→-+ + --n t L x x n y y xx e ασ 5. 控制 )??(?12/1a u y b x e -+'= '-ασ )??(?12/1a u y b x e --''=''-ασ 6. 点估计 2 σn L b L xx yy 22 ??-= σ 其他:))1( ,(? 2 2 xx L x n a N a + →σ) ,(?2 xx L b N b σ → 2 )?,?c o v (σ xx L x b a -= 0)?,c o v (=b y r i n 求i x ,2 i s ,x 方差来源(A, e, S T ) 平方和(S A , S e , S T ) 自由度(r-1, n-r ) 方差(e A S S ,)F 值(e A S S /) ),1(1r n r F ---α大否小接受 区间估计(单) 1.1 μ σ已知,求2 ) 1,0(/U N n x →-= σμ ) (2 1α σμ- ± ∈u n x 1.2 μ σ未知,求2 ) 1(/ U * -→ -= n t n s x μ )) 1((2 1* -± ∈- n t n s x α μ 2.1 2 σ μ已知,求 ) () (2 2 2 1 2 n u x n i i χσ χ →-= ∑= ) ) () (, ) () (( 2 2/2 1 02 2/12 1 02 n x u x n x u x n i i n i i αασ ∑∑=-=--∈ 2.2 2 σ μ未知,求 )1-(S 12 2 2 *2 n n χ σ χ →-=)( )) 1(S 1,)1(S 1(22/2 * 2 2/12 *2----∈-n x n n x n αασ)()( 区间估计(双) 3.1 212221,u -μσσ已知,求 ) 1,0() ()(U 2 2 21 2 1 21N n n u y x →+ ---= σσμ ) )(()(2 12 2 21 2 1 21α σσμ- + ± -∈-u n n y x u 3.2 212 22 12 u -=μσσσ,求未知 ) 2(11)()(U 212 1 21-+→+---= n n t n n S u y x W μ 2 212 *12 ) 12()1(* -+-+-= n n n S n S S W )) 2(11)(()(212 12 1 21-++ ±-∈-- n n t n n S y x u W α μ 0-1分布 B (1,p ) EX=P DX= p(1-p) {}()k n k p p k X P --==1 it x pe p -1(t)+=? 二项分布B (n ,p ) EX=nP DX=n p(1-p) {}()k n k k n p p C k X P --==1 n )pe p -1((t) it x +=? 几何分布(n 重伯努利分布) EX=1/p DX= (1-p)/p 2 {}() 1 1--==n p p n X P 泊松分布p(λ)(k=0,1,2…) EX=λ DX=λ {}λ λ -= =e k k X P k ! ))1e (exp((t)it x -=λ? 均匀分布U (a,b ) EX=(b+a )/2 DX=(b-a)2/12 {}a b X P -= 1 ) () e e ((t)ait bit x a b it --=? 指数分布 EX=1/λ DX=1/λ2 {}x e X P λλ-= 1 x ) 1((t) -- =λ ?it 正态分布N ? ?? ???-=2exp (t)2 2x t iut σ? 伽玛分布Γ分布 {}x e x X P βαα αβ --Γ= 1 ) ( αβ ?--=)1((t )x it β α= EX 2 β α=DX 2 χ分布 EX=n DX=2n {}2 2 1 2 2)2 ( x n n e n x X P - -Γ= 2 x ) 21((t)n it - -=? F 分布 )2(2 222>-=n n n EX )4() 4()2()2(2222 21212 2>---+= n n n n n n n DX

相关文档
相关文档 最新文档