文档库 最新最全的文档下载
当前位置:文档库 › 黎曼生平

黎曼生平

黎曼生平
黎曼生平

黎曼

一、人物简介

黎曼(Georg Friedrich Bernhard Riemann,1826~1866)

1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,以便将来继承父志也当一名牧师。

由于从小酷爱数学,黎曼在学习哲学和神学的同时也听些数学课。当时的哥廷根大学是世界数学的中心之一,—些著名的数学家如高斯、韦伯、斯特尔都在校执教。黎曼被这里的数学教学和数学研究的气氛所感染,决定放弃神学,专攻数学。

1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥廷根大学攻读博士学位,成为高斯晚年的学生。

1851年,黎曼获得数学博士学位;l854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。

因长年的贫困和劳累,黎曼在1862年婚后不到一个月就开始患胸膜炎和肺结核,其后四年的大部分时间在意大利治病疗养。1866年7月20日病逝于意大利,终年39岁。

黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。

二、复变函数论的奠基人

19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。

1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。

柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西—黎曼的观点推导出来。

在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。

经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼—罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。

黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。

三、黎曼几何的创始人

黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。

1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。

为竞争巴黎科学院的奖金,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”。文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。该文在他死后收集在1876年他的《文集》中。

黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。

黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。

黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。

黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。

在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一点做关于定直线所作平行线的条数。如果只能作一条平行线,即为熟知的欧几里得几何学;如果一条都不能作,则为椭圆几何学;如果存在一组平行线,就得到第三种几何学,即罗巴切夫斯基几何学。黎曼因此继罗巴切夫斯基以后发展了空间的理论,使得一千多年来关于欧几里得平行公理的讨论宣告结束。他断言,客观空间是一种特殊的流形,预见具有某种特定性质的流形的存在性。这些逐渐被后人一一予以证实。

由于黎曼考虑的对象是任意维数的几何空间,对复杂的客观空间有更深层的实用价值。所以在高维几何中,由于多变量微分的复杂性,黎曼采取了一些异于前人的手段使表述更简洁,并最终导致张量、外微分及联络等现代几何工具的诞生。爱因斯坦就是成功地

以黎曼几何为工具,才将广义相对论几何化。现在,黎曼几何已成为现代理论物理必备的数学基础。

四、微积分理论的创造性贡献

黎曼除对几何和复变函数方面的开拓性工作以外,还以其对l9世纪初兴起的完善微积分理论的杰出贡献载入史册。

18世纪末到l9世纪初,数学界开始关心数学最庞大的分支——微积分在概念和证明中表现出的不严密性。波尔查诺、柯西、阿贝尔、狄利克莱进而到维尔斯特拉斯,都以全力的投入到分析的严密化工作中。黎曼由于在柏林大学从师狄利克莱研究数学,且对柯西和阿贝尔的工作有深入的了解,因而对微积分理论有其独到的见解。

1854年黎曼为取得哥廷根大学编外讲师的资格,需要他递交一篇反映他学术水平的论文。他交出的是《关于利用三角级数表示一个函数的可能性的》文章。这是一篇内容丰富、思想深刻的杰作,对完善分析理论产生深远的影响。

柯西曾证明连续函数必定是可积的,黎曼指出可积函数不一定是连续的。关于连续与可微性的关系上,柯西和他那个时代的几乎所有的数学家都相信,而且在后来50年中许多教科书都“证明”连续函数一定是可微的。黎曼给出了一个连续而不可微的著名反例,最终讲清连续与可微的关系。

黎曼建立了如现在微积分教科书所讲的黎曼积分的概念,给出了这种积分存在的必要充分条件。

黎曼用自己独特的方法研究傅立叶级数,推广了保证博里叶展开式成立的狄利克莱条件,即关于三角级数收敛的黎曼条件,得出关于三角级数收敛、可积的一系列定理。他还证明:可以把任一条件收敛的级数的项适当重排,使新级数收敛于任何指定的和或者发散。

五、解析数论跨世纪的成果

19世纪数论中的一个重要发展是由狄利克莱开创的解析方法和解析成果的导入,而黎曼开创了用复数解析函数研究数论问题的先例,取得跨世纪的成果。

1859年,黎曼发表了《在给定大小之下的素数个数》的论文。这是一篇不到十页的内容极其深刻的论文,他将素数的分布的问题归结为函数的问题,现在称为黎曼函数。黎曼证明了函数的一些重要性质,并简要地断言了其它的性质而未予证明。

在黎曼死后的一百多年中,世界上许多最优秀的数学家尽了最大的努力想证明他的这些断言,并在作出这些努力的过程中为分析创立了新的内容丰富的新分支。如今,除了他的一个断言外,其余都按黎曼所期望的那样得到了解决。

那个未解决的问题现称为“黎曼猜想”,即:在带形区域中的一切零点都位于去这条线上(希尔伯特23个问题中的第8个问题),这个问题迄今没有人证明。对于某些其它的域,布尔巴基学派的成员已证明相应的黎曼猜想。数论中很多问题的解决有赖于这个猜想的解决。黎曼的这一工作既是对解析数论理论的贡献,也极大地丰富了复变函数论的内容。

六、组合拓扑的开拓者

在黎曼博士论文发表以前,已有一些组合拓扑的零散结果,其中著名的如欧拉关于闭凸多面体的顶点、棱、面数关系的欧拉定理。还有一些看起来简单又长期得不到解决的问题:如哥尼斯堡七桥问题、四色问题,这些促使了人们对组合拓扑学(当时被人们称为位置几何学或位置分析学)的研究。但拓扑研究的最大推动力来自黎曼的复变函数论的工作。

黎曼在1851年他的博士论文中,以及在他的阿贝尔函数的研究里都强调说,要研究函数,就不可避免地需要位置分析学的一些定理。按现代拓扑学术语来说,黎曼事实上已经对闭曲面按亏格分类。值得提到的是,在其学位论文中,他说到某些函数的全体组成(空间点的)连通闭区域的思想是最早的泛函思想。

比萨大学的数学教授贝蒂曾在意大利与黎曼相会,黎曼由于当时病魔缠身,自身已无能力继续发展其思想,把方法传授给了贝

蒂。贝蒂把黎曼面的拓扑分类推广到高维图形的连通性,并在拓扑学的其他领域作出杰出的贡献。黎曼是当之无愧的组合拓扑的先期开拓者。

七、代数几何的开源贡献

19世纪后半叶,人们对黎曼研究阿贝尔积分和阿贝尔函数所创造的双有理变换的方法产生极大的兴趣。当时他们把代数不变量和双有理变换的研究称为代数几何。

黎曼在1857年的论文中认为,所有能彼此双有理变换的方程(或曲面)属于同一类,它们有相同的亏格。黎曼把常量的个数叫做“类模数”,常量在双有理变换下是不变量。“类模数”的概念是现在“参模”的特殊情况,研究参模上的结构是现代最热门的领域之一。

著名的代数几何学家克莱布什后来到哥廷根大学担任数学教授,他进一步熟悉了黎曼的工作,并对黎曼的工作给予新的发展。虽然黎曼英年早逝,但世人公认,研究曲线的双有理变换的第一个大的步骤是由黎曼的工作引起的。

黎曼假设2000年5月24日,美国克雷(Clay)数学研究所公布了7个千禧数学问题。每个问题的奖金均为100万美元。其中黎曼假设被公认为目前数学中(而不仅仅是这7个)最重要的猜想。黎曼假设并非第一次在社会上征寻解答,早在1900年的巴黎国际数学家大会上,德国数学家希尔伯特列出23个数学问题.其中第8问题中便有黎曼假设(还包括孪生素数猜测和哥德巴赫猜想)。

具体概述关于黎曼-希尔伯特问题是:具有给定单值群的线性微分方程的存在性证明。即:关于素数的方程的所有有意义的解都在一条直线上。

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s)的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

1730年,欧拉在研究调和级数:

Σ1/n=1+1/2+1/3+...+1/n.....。

时,发现:

Σ

1/n=(1+1/2+1/2^2+...)(1+1/3+1/3^2+...)(1+1/5+1/5^2+...)... ...=Π(1-1/p)^-1。

其中,n过所有正整数,p过所有素数,但稍加改动便可以使其收敛,将n写成n^s(s>1),即可。如果黎曼假设正确:

Π(x)=Li(x)+O(x^1/2*logx)

证明了上式,即证明了黎曼猜想。

在证明素数定理的过程中,黎曼提出了一个论断:Zeta函数的零点都在直线Res(s) =1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题至今仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函数论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。

八、在数学物理、微分方程等其他领域的丰硕成果

黎曼不但对纯数学作出了划时代的贡献,他也十分关心物理及数学与物理世界的关系,他写了一些关于热、光、磁、气体理论、流体力学及声学方面的有关论文。他是对冲击波作数学处理的第一个人,他试图将引力与光统一起来,并研究人耳的数学结构。他将物理问题抽象出的常微分方程、偏微分方程进行定论研究得到一系列丰硕成果。

黎曼在1857年的论文《对可用高斯级数表示的函数的理论的补充》,及同年写的一个没有发表而后收集在其全集中的一个片断中,他处理了超几何微分方程和讨论带代数系数的阶线性微分方程。这是关于微分方程奇点理论的重要文献。

19世纪后半期,许多数学家花了很多精力研究黎曼问题,然而都失败了,直到1905年希尔伯特和Kellogg借助当时已经发展了的积分方程理论,才第一次给出完全解。

黎曼在常微分方程理论中自守函数的研究上也有建树,在他的1858~1859年关于超几何级数的讲义和1867年发表的关于极小正曲面的一篇遗著中,他建立了为研究二阶线性微分方程而引进的自守函数理论,即现在通称的黎曼——许瓦兹定理。

在偏微分方程的理论和应用上,黎曼在1858年~1859年论文中,创造性的提出解波动方程初值问题的新方法,简化了许多物理问题的难度;他还推广了格林定理;对关于微分方程解的存在性的狄里克莱原理作了杰出的工作,……

黎曼在物理学中使用的偏微分方程的讲义,后来由韦伯以《数学物理的微分方程》编辑出版,这是一本历史名著。

不过,黎曼的创造性工作当时未能得到数学界的一致公认,一方面由于他的思想过于深邃,当时人们难以理解,如无自由移动概念非常曲率的黎曼空间就很难为人接受,直到广义相对论出现才平息了指责;另一方面也由于他的部分工作不够严谨,如在论证黎曼映射定理和黎曼—罗赫定理时,滥用了狄利克雷原理,曾经引起了很大的争议。

黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。

黎曼ζ函数

黎曼ζ函数 最小值马克斯 再保险-15年15 即时通讯-15年15 黎曼ζ函数是非常重要的特殊函数出现的数学和物理的集成和与周围很深的结果密切相关素数定理。虽然许多这个函数的性质进行了调查,仍有重要的基本猜想(最明显黎曼假设),还有待证实。黎曼ζ函数是为一个复杂的变量定义在复平面,通常表示是哪一个(而不是通常的)考虑到所使用的符号黎曼在他1859年的论文,创立了这个函数的研究(黎曼1859)。它的实现Wolfram语言作为ζ[s]。 上面的图显示了“山脊”为和。山脊的事实似乎减少单调并不是一个巧合,因为它证明,单调减少意味着黎曼假设(Zvengrowski和Saidak 2003;Borwein贝利,2003年,页95 - 96)。 在实线与,黎曼ζ函数可以定义的积分 (1)在哪里是γ函数。如果是一个整数,那么我们的身份 (2) (3)

(4)所以 (5)评估,让这和代入上述身份获得 (6) (7) (8)集成的最后表达(8)给取消的因素并给出了最常见的黎曼ζ函数, (9)这是有时被称为p系列. 黎曼ζ函数也可以定义的多重积分通过 (10)作为一个梅林变换通过 (11)为,在那里是小数部分(Balazard和赛亚于2000)。 它出现在单位平方积分 (12)有效期为(Guillera和Sondow 2005)。为一个非负整数,这个公式是由于Hadjicostas(2002),和特殊的情况和是由于Beukers(1979)。 请注意,ζ函数有一个奇点中,它可以减少发散调和级数. 黎曼ζ函数满足反射函数方程 (13) (哈代1999年,p . 14;“将军”1999,p . 160),一个类似的形式由欧拉猜想(欧拉、读取1749年,1768年出版,Ayoub 1974;Havil 2003,p . 193)。这种函数方程的对称形式给出 (14) (1974年Ayoub),证明了黎曼复杂(黎曼1859)。 如上所述,ζ函数与一个复数被定义为。然而,有一个独特的解析延拓对整个复平面,不包括,对应于一个简单的极与复杂的残渣1(“将军”1999年,p . 1999)。特别是,作为 ,遵循 (15)

2009-11-27 黎曼函数的极限

黎曼函数的极限 黎曼函数是指如下函数: *0,0,1(0,1)()1,(,,)x R x p x p q p q q q =??=?=<∈?? 或者内无理数既约分数, 容易知道R (x )的定义域为[0,1]. 因为(0,1)内任意有理数都可以表示成p /q (既约分数,p 0,使R (x )≥ε的x 只有有限个. (这里的有限个也包括0个. ) 我们只做简单分析,不做严格证明. 当x 不在[0,1]内时R (x )没有意义,从而也谈不上R (x )≥ε. 当x =0,1或者(0,1)内的无理数时,R (x )≥ε显然不成立. 当x 为(0,1)内的有理数时,x 可写成x=p /q (既约分数,p |r /s-p /q |=|(rq -sp )/sq |≥1/sq ,从而s >1/(q δ). 定理3 黎曼函数在(0,1)内任意一点的极限为0,在x =0处右极限为0,在x =1处左极限为0. 证明 (1)x 0为[0,1]内的无理数. 任给?ε>0. 若(0,1)内不存在有理数使得R (x )≥ε. 那么取δ=min{|x 0|,|1-x 0|}. 就可以得到对?x ∈U o (x 0;δ)有R (x )<ε. 这说明R (x )在x 0处的极限为0. 若(0,1)内存在有理数使得R (x )≥ε. 根据定理1知道,这样的有理数只可能有有限个,从而也是可列个. 设这些使R (x )≥ε的有理数为x 1,x 2,…,x n . 那么取δ=min{|x 0|,|1-x 0|,|x 1-x 0|,|x 2-x 0|,…,|x n -x 0|}>0. 这样就可以得到对?x ∈U o (x 0;δ)有R (x )<ε. 这说明R (x )在x 0处的极限为0. (2)x 0为(0,1)内的有理数. 设x 0=p /q (既约分数,p 0,取δ=min{ε/q ,|x 0|,|1-x 0|}. 若x 为U o (p /q ;δ)内的有理数,x =r/s (既约分数,r 1/ε, 于是R (x )=1/s <ε. 若x 为U o (p /q ;δ)内无理数,则一定有R (x )=0<ε. 综合起来就是对?x ∈U o (p /q ;δ)有R (x )<ε. 这说明R (x )在x 0处的极限为0. (3)x 0=0. 任给?ε>0, 取δ=min{ε,1}. 若x 为(0,δ)内的有理数,x =r/s (既约分数,r 1/ε, 于是R (x )=1/s <ε. 若x 为

黎曼函数

它亦可以用积分定义: 对于所有实部>1的复数s。这和上面ζ(2)的表达式一起可以用来证明两 个随机整数互质的概率是6/π2。 \frac{}{}== 函数值==

黎曼函数在s > 1的情况 ζ函数满足如下函数方程: 对于所有C\{0,1}中的s成立。这里,Γ表示Γ函数。这个公式原来用 来构造解析连续性。在s = 1,ζ函数有一个简单极点其留数为1。上 述方程中有sin函数,的零点为偶数s = 2n,这些位置是 可能的零点,但s为正偶数时,为不为零的规 则函数(Regular function),只有s为负偶数时,ζ函数才有零点, 称为平凡零点。 当s为正整数 其中B2k是伯努利数。从这个,我们可以看到ζ(2)= π2/6, ζ(4) = π4/90, ζ(6) = π6/945等等。(序列A046988/A002432列在OEIS)。 这些给出了著名的π的无穷级数。奇整数的情况没有这么简单。 拉马努金在这上面做了很多了不起的工作。为正偶数时的函数值 公式已经由欧拉计算出。但当为正奇数时,尚未找到封闭式。 这是调和级数。 (OEIS中的数列A078434)

自旋波物理。 (OEIS中的数列 A013661) 是多少? (OEIS中的数列A002117) 称为阿培里常数。 (OEIS中的数列 A0013662) 负整数[编辑] 同样由欧拉发现,ζ函数在负整数点的值是有 理数,这在模形式中发挥着重要作用,而且ζ 函数在负偶整数点的值为零。 复数值[编辑] ,x>1。 幅角[编辑] , 函数值表[编辑] , , , , ,

, , , , , , , ,

函数黎曼可积性

函数黎曼可积性深究 罗俊逸 以下的“可积”皆指“黎曼可积”。 定义1:称有界函数f 为[a,b]上的次级离散函数(简称次离散函数), 若:1、f 仅有有限个间断点; 或:2、f 有无限个间断点,所有这些间断点仅有有限个聚点。 定义2:在闭区间[a,b]上,连续函数与次离散函数统称次级函数。 定义3:称有界函数f 为[a,b]上的超级离散函数(简称超离散函数),若f 有无限个间断点且它们有无限个聚点。 性质:[a,b]上的任何有界离散函数,要么是次离散函数,要么是超离散函数。(这是显然的) 根据定义和性质,[a,b]上的所有有界函数的集合关系如下: 定理1:所有次级函数可积。 推论1:若f 为[a,b]上的连续函数,则f 在[a,b]上可积。 推论2:若f 是[a,b]上只有有限个间断点的有界函数,则f 在[a,b]上可积。 定义4:设f 为[a,b]上的超离散函数,若存在[a,b]上的次级函数g ,任取I ∈ [a,b],g 在I 上有f 上的无穷个点,则称f 在[a,b]上可聚,g 称为f 的聚集函数(简称聚函数)。 定理2(可聚性定理):任何超离散函数f 可聚,即f 至少有一个聚函数。 定理3:超离散函数f 可积的充要条件.... 是:f 唯一可聚,即f 仅有唯一的聚函数。 定理4:设f 是定义在[a,b]上的可积超离散函数,其聚函数是g , 则:= 连续函数 次级离散函数 超级离散函数 次级函数 离散函数

补充: 为方便叙述,笔者自做了些定义,若有冒犯前辈的文献,请谅解。本文的主要思想是函数的划归,点有聚点,函数也可有聚函数。

黎曼

黎曼 黎曼(G.F.B.Riemann、1826。9.17一1866.7.20)是德 国数学家,生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡 村的穷苦牧师。他6岁开始上学,14岁进入大学预科学习,19岁 按其父亲的意愿进入哥丁根大学攻读哲学和神学,以便将来继承 父志也当一名牧师。由于从小酷爱数学,他在学习哲学和神学的 同时,也听些数学课。当时的哥丁根大学是世界数学的中心之一。 —些著名的数学家,如高斯(C.F.Guass)、韦伯(H.Wcbcr)、斯 持尔(Sten)在校执教,黎曼被这里的数学教学和数学研究的气氛所 感染,决定放弃神学,专攻数学。1847年他转到柏林大学学习, 成为雅可比(C.G.J.Jacobi)、狄利克雷(P.G.L.Dirichlet)、 施泰纳(J.Steiner)、艾森斯坦(F.G.M.E1Senstein)的学生。1849年重回哥丁很大学攻读博士学位。成为高斯晚年的学生。l851年获数学博士学位。l854年被聘为哥丁根大学的编外讲师。1857年晋升为副教授,1859年接替去世的狄利克雷被聘为教授。因长年贫困、劳累,1862年婚后不到一个月患胸膜炎和肺结核,先后三次到意大利治病、疗养。1366年病逝于意大利、终年39岁。 黎曼是世界数学史上最具独创精神的数学家之一,在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。 (一)复函数论的奠基人 l9世纪数学最独特的创造是复函数理论的创立。它是18世纪人们对复数及复函数理论研究的延续。1850年以前柯西(A.L.Cauchy)、雅可比、高斯、阿贝尔(N.H.Abcl)、外尔斯特拉斯(K.T.W.Weierstrass)已对单值解析函数的理论进行了系统的研究,而对于多值函数仅柯西和皮瑟(V.Puiseux)有些孤立的结论。 1851年黎曼在高斯指导下完成的题为“单复变函数的一般理论的基础”的博士论文,以及后来在《数学杂志》上发表的四篇重要文章对其博士论文中思想的进一步阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础。并由此为几个不同方向的进展铺平了道路。柯西、黎曼和外尔斯特拉斯是世人公认的复函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,外尔斯特拉斯的思想逐渐从柯西一黎曼观点推导出来。 在黎曼对多值函数的处理个,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中。尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼一罗赫(G.Roch)定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用。将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。 (二)黎曼几何的创始人 黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何,乃至数学和科学各分支的发展产生巨大的影响。

复变函数2.1 解析函数的概念与柯西-黎曼条件

§ 1 解析函数的概念与柯西—黎曼条件 1. 复变函数的导数与微分 复变函数的导数定义,形式上和数学分析中单元函数的导数定义一致。因此, 微分学中几乎所有的求导基本公式,都可不加更改地推广到复变函数上来。 定义2.1 设函数w=f(z)在点z 0的邻域内或包含z 0的区域D 内有定义,考虑 比值: z z z f z f z w 00)()(--=??=)0()()(00≠??-?+z z f z f z z , 如果当Z 按任意方式趋于z 0时,即当z ?按任意方式趋于零时,比值z w ??的 极限都存在,且其值有限,则称此极限为函数f (z )在点z 0的导数,并记为0()f z ', 即: 00000()()()lim lim z z z f z f z w f z z z z →→-?'==?-, (2.1) 这时称函数f (z )于点z 0可导。 (2.1)的极限存在要求与z ?趋于零的方式无关,对于函数的这一限制,要 比对于实变量x 的实值函数y=)(x ?的类似限制严得多。事实上,实变函数导数 存在性的要求意味着:当点x x ?+0由左(0?x )两个方向趋 于x 0时,比值x y ??的极限都存在且相等。而复变函数导数存在性的要求意味着: 当点z z ?+0沿联接点z 0的任意路径趋于 点z 0时,比值z w ??的极限都存在, 并且这些极限都相等。 和导数的情形一样,复变函数的微分定义,形式上与实变函数的微分定义一 致。 设函数w=f(z)在点Z 可导。于是 )(lim 0z f z w z '=??→?, 即是: 0lim ,)(0=+'=??→?ηηz z f z w , ∈+?'=?z z f w )(。

解析函数柯西黎曼方程

1 引言 解析函数是复变函数论研究的主要对象.Cauchy-Riemann方程则是判断复变函数可微和解析的主要条件,它在复变函数论中的重要作用和地位是不言而喻的.文献[1]、[2]提到函数可微、解析定义及满足它们的一些条件,文献[3]、[4]、[5]给出几种Cauchy-Riemann 方程等价形式. 现在对解析函数Cauchy-Riemann方程研究的文章非常的多,这些文章已经将它们证明研究得比较深刻,但对它们作出全面的概括和总结这方面的工作还是不多,至于应用也很少提到.所以对它的进一步研究和总结还是有其积极意义的. 本文先介绍可微、解析定义,给出解析函数满足Cauchy-Riemann方程,再给出几种Cauchy-Riemann方程的等价形式.

2 基本概念与定理 定义2.1 [1] 设函数()w f z =定义于区域D , 0z D ∈.如果极限 000 ()() lim z z z D f z f z z z →∈-- 存在,则称()f z 在0z 点可导或可微,其极限值称为函数()f z 在0z 点的导数,记为0'()f z 或 (z z df z dz =) .即 000 ()() lim '()z z f z f z f z z z →-=-. 有了函数在一点可微的概念以后,下面我们引进复变函数的一个主要概念——解析函数. 定义2.2 [1] 如果函数()w f z =在区域D 内每一点都可微,则称()f z 在D 内解析, 并称()f z 是区域D 内的解析函数. 如果函数()f z 在0z 的某一邻域内解析,则称()f z 在0z 点解析.而函数()f z 在闭区域D 上解析,即存在区域G ,使D G ?,而()f z 在G 内解析. 若在区域D 内除了可能有些例外点外,函数()f z 在D 内其它各点都解析,则这些例外点称为()f z 的奇点. 例1 试证明(Re f z z z =) 在0z =点可微,但在z 平面上任何点都不解析. 证: 先证(f z )在0z =点可微.因 0 00()(0)Re lim lim lim Re 00z z z f z f z z z z z →→→-===- 故(f z )在0z =点可微,且'(0)0f =. 设00z ≠,令000z x iy =+,则0x ,0y 至少有一个不为零.又令z x iy =+,考虑极限

黎曼ζ函数

黎曼ζ函数 黎曼ζ函数是非常重要的特殊函数出现的数学和物理的集成和与周围很深的结果密切相关素数定理。虽然许多这个函数的性质进行了调查,仍有重要的基本猜想(最明显黎曼假设),还有待证实。黎曼ζ函数是为一个复杂的变量定义在复平面,通常表示是哪一个(而不是通常的)考虑到所使用的符号黎曼在他1859年的论文,创立了这个函数的研究(黎曼1859)。它的实现Wolfram语言作为ζ[s]。 上面的图显示了“山脊”为和。山脊的事实似乎减少单调并不是一个巧合,因为它证明,单调减少意味着黎曼假设(Zvengrowski和Saidak 2003;Borwein贝利,2003年,页95 - 96)。 在实线与,黎曼ζ函数可以定义的积分 (1)在哪里是γ函数。如果是一个整数,那么我们的身份 (2) (3)

(4)所以 (5)评估,让这和代入上述身份获得 (6) (7) (8)集成的最后表达(8)给取消的因素并给出了最常见的黎曼ζ函数, (9)这是有时被称为p系列. 黎曼ζ函数也可以定义的多重积分通过 (10)作为一个梅林变换通过 (11)为,在那里是小数部分(Balazard和赛亚于2000)。 它出现在单位平方积分 (12)有效期为(Guillera和Sondow 2005)。为一个非负整数,这个公式是由于Hadjicostas(2002),和特殊的情况和是由于Beukers(1979)。 请注意,ζ函数有一个奇点中,它可以减少发散调和级数. 黎曼ζ函数满足反射函数方程 (13) (哈代1999年,p . 14;“将军”1999,p . 160),一个类似的形式由欧拉猜想(欧拉、读取1749年,1768年出版,Ayoub 1974;Havil 2003,p . 193)。这种函数方程的对称形式给出 (14) (1974年Ayoub),证明了黎曼复杂(黎曼1859)。 如上所述,ζ函数与一个复数被定义为。然而,有一个独特的解析延拓对整个复平面,不包括,对应于一个简单的极与复杂的残渣1(“将 军”1999年,p . 1999)。特别是,作为 ,遵循 (15)

虚弱的天才黎曼

虚弱的天才——黎曼 仿佛天妒英才,上帝好像不想让人类过早地就拆穿了它所有的秘密。所以,人类中的天才们的生命都很短暂,而且命运崎岖。黎曼就是这样一位天才。 1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师,母亲是法庭顾问的女儿。黎曼有6个兄妹,他排行第二。汉诺威当时相当落后,农村里因为缺少牲口,还普遍在用人力拉犁。偏僻乡村小牧师的薪金少得可怜,要维持诺大的八口之家,不得不显得捉襟见肘,力不从心。 黎曼从小生性胆小、羞怯。他不敢在公众场合露面,更害怕在大庭广众中讲话。可是,在数学研究上,他却是出奇地大胆。他是个天才,他在科学研究中所表现出来的惊人智慧,他对数学发展的贡献之大、影响之深,难以用语言描述,以至于后人在介绍他时只能采用“对现代数学影响最大的数学家之一”、“19世纪最富有创造性的德国数学家、数学物理学家”等诸如此类的言辞含糊表述。除此之外,我们确实毫无办法。来看看这个天才的家伙在短短40年的一生中所取得的不可思议的辉煌成就吧! 他是黎曼几何的创始人。黎曼对数学最重要的贡献在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。1854年,黎曼在哥廷根大学作了一次历史性演讲,该演讲内容

在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。后来,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”,文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用一个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一

相关文档