文档库 最新最全的文档下载
当前位置:文档库 › 碰撞与动量守恒单元测试题含答案

碰撞与动量守恒单元测试题含答案

碰撞与动量守恒单元测试题含答案
碰撞与动量守恒单元测试题含答案

碰撞与动量守恒单元测试题

命题人:官桥中学高二物理备课组

一、单项选择题(共4小题,每小题4分,共16分,在每小题给出的四个选项

中,只有一个选项正确)

1、篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,

两臂随球迅速引至胸前,这样做可以()

A.减小球对手作用力的冲量

B.减小球的动量变化率

C.减小球的动量变化量

D.减小球的动能变化量

2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质

量相等的小球,不计空气阻力,当小球落地时()

A.做上抛运动的小球动量变化最大

B.三个小球动量变化大小相等

C. 做平抛运动的小球动量变化最小

D.三个小球动量变化相等

3、把一支枪水平固定在小车上,小车放在光滑的水平地面上。当枪发射子

弹时,关于枪、子弹、车,下列说法中正确的是()

A.枪和子弹组成的系统动量守恒

B.枪和车组成的系统动量守恒

C.若不计子弹和枪筒之间的摩擦,枪、车、子弹组成的系统动量近似守恒

D.枪、子弹、车组成的系统动量守恒

4、自行火炮车连同炮弹的总质量为M,火炮车在·水平路面上以1V 的速度向右匀速行驶,炮管水平发射一枚质量为m 的炮弹后,自行火炮的速度变为2V ,仍向右行驶,则炮弹相对炮筒的发射速度0V 为( )

A. m mV V V m 2

21)(+- B.m

V V M )(21- C. m mV V V m 2212)(+- D.m V V m V V m )

()(2121---

二、双项选择(共5小题,每小题5分,共25分)

5、质量为m 的物体在倾角为θ的光滑斜面顶端由静止释放,斜面高h,物体从斜面顶端滑到斜面底端过程中( )

A.物体所受支持力的冲量为零

B.物体所受支持力的冲量方向垂直于斜面向上

C.物体所受重力的冲量方向沿斜面向下

D.物体所受重力的冲量大小为θ

sin 2gh m 6、在光滑水平面上,两球沿着球心连线以相等速率相向而行,并发生碰撞,下列现象中可能发生的是( )

A.若两球质量相等,碰后以某一相等速率相互分开

B.若两球质量相等,碰后以某一相等速率同向而行

C.若两球质量不同,碰后以某一相等速率互相分开

D.若两球质量不同,碰后以某一相等速率同向而行

7、一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。若把在空中下落

的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则()

A、过程I中钢珠的动量的改变量等于重力的冲量

B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小

C、I、Ⅱ两个过程中合外力的总冲量等于零

D、过程Ⅱ中钢珠的动量的改变量等于零

8、如图所示,木块静止在光滑水平面上,子弹A、B从木块两侧同时水平

射入木块,最终都停在木块中,这一过程中木块始终保持静止.现知道子

弹A射入的深度d A大于子弹B射Array入的深度d B.若用t A、t B表示它们

在木块中运动的时间,用E kA、E kB表示它们的初动能,用v A、v B表示它们的初速度大小,用m A、m B表示它们的质量,则可判断()

A. t A>t B

B. E kA>E kB

C. v A>v B

D. m A >m B

9、如图甲所示,一轻质弹簧的两端与质量分别为m1和m2的两物块A、B

相连接,并静止在光滑的水平面上.现使A瞬时获得水平向右的速度3m/s,以此刻为计时起点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得()

A.在t1、t3时刻两物块达到共同速度1m/s,且弹簧都是处于压缩状态

B.从t3到t4时刻弹簧由压缩状态恢复到原长

C.两物体的质量之比为m1:m2=1:2

D.在t2时刻A和B的动能之比为E k1: E k2=1:8

三、实验题(每空3分,共24分)

10、某同学设计了一个用打点计时器“验证动量守恒”的实验:在小车A 的前

端粘有橡皮泥,推动小车A 使之作匀速运动.然后与原来静止在前方的小车B 相碰并粘合在一体,继续作匀速运动.他设计的具体装置如图所示,在小车A 后连着纸带,电磁打点计时器电源频率为50Hz .长木板下垫着小木片用以平衡摩擦力.

(1)若已得到打点纸带如图,并测得各计数点间距标在图上.点O 为运动起始的第一点.则应选________段来计算小车A 的碰前速度.应选________段来计算小车A 和B 碰后的共同速度.(以上两格填“OA ”或“AB ”或“BC ”或“CD ”)

(2)已测量出小车A 的质量=0.40kg ,小车B 的质量=0.20kg .由以上测量结果可得:碰前总动量=________kg ·m/s ;碰后总动量=

________kg ·m/s . v /m ?s -1 乙

B t /s 1 O A 2 3 -1 t 1 t 2 t 3 t 4 B A v 甲

11、图是用来验证动量守恒的实验装置,弹性球1用细线悬挂于O点,O点下

拉到A点,并使之静止,同时把球2放在立柱

上.释放球1,当它摆到悬点正下方时与球2

发生对心碰撞。碰后球1向左最远可摆到B点,

球2落到水平地面上的C点。测出有关数据即

可验证1、2两球碰撞时动量守恒。现已测出A点离水平桌面的距离为a,B点离水平桌面的距离为b,C点与桌子边沿间的水平距离为c。此外,还需要测量的量是_________、________________、和_____________________。

根据测量的数据,该实验中动量守恒的表达式为

__________________________。

选择题答案

实验题答案

10、,,

,。11、,,

,。

四、本题共2小题,共35分。解答应写出必要的文字说明、方程式和重要的演

算步骤。只写出最后答案不能得分。有数值计算的题,答案中必须明确写出数值和单位。

12、(15分)质量为M的气球上有一质量为m的猴子,气球和猴子静止在离地高为h

的空中。从气球上放下一架不计质量的软梯,为使猴子沿软梯安全滑至地面,则软梯至少应为多长?

13、如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放置

的半圆.一质量为M的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:子弹射入木块前瞬间速度的大小.

参考答案

1、B

2、A

3、D

4、B

5、BD

6、AD

7、选AC。【解析】由动量定理知,在过程I中,钢珠从静止自由下落,不计空气阻力,小

球所受的合外力即为重力,因此钢珠的动量的改变量等于重力的冲量,A 正确。过程Ⅱ中阻力的冲量的大小等于过程I 中重力的冲量的大小与过程Ⅱ中重力的冲量的大小之和,B 不对。在I 、Ⅱ两个过程中,钢珠动量的改变量各不为零,但它们大小相等、方向相反,但从整体看,钢珠动量的改变量为零,故合外力的总冲量等于零,C 正确D 错误。

8、BC.解析:子弹A 、B 射入木块的过程中木块始终保持静止,则两子弹和木板间的摩擦

力必定大小相等,由动量守恒定律知两子弹的初动量也大小相等,由动量定理可知,它们在木块中运动的时间t A =t B .由动能定理和子弹A 射入的深度d A 大于子弹B 射入的深

度d B 可知E kA >E kB .由动能和动量的关系式m

p E k 22

=可知m A v B .所以选项BC 正确.

9、CD.解析:由图可知t 1时刻弹簧处于压缩状态,A 、B 具有共同速度,压缩量最大; t 3

时刻弹簧处于伸长状态,A 、B 具有共同速度,伸长量最大. t 2时刻弹簧处于自然长度,

A 、

B 速度大小之比为1∶2,对系统由动量守恒得m 1×3= m 1×(-1)+ m 2×2,即m 1:m 2=1:2,则t 2时刻A 和B 的动能之比为1:8.

10、(1)AB, CD; (2)0.42kg ·m/s,0.417(或0.42)kg ·m/s

11、弹性小球1、2的质量m 1、m 2、;立柱高h ;桌面高H ;

12、11.【解析】设下降过程中,气球上升高度为H 。

由题意知猴子下落高度为h ,取猴子和气球为系统,系统所受合外力为零,在竖直方向动量守恒。由动量守恒定律得 M ·H=m ·h 解得M mh H = 所以软梯长度至少为M

h m M H h L )(+=+= 13、解:设子弹射入木块瞬间速度为v ,射入木块后的速度为v B ,到达C 点 时的速度为v C 。

子弹射入木块时,系统动量守恒,可得:()0v M m mv += ①

木块(含子弹)在BC 段运动,满足机械能守恒条件,可得

()22)(2

1)(221C B v M m g M m R v M m +++=+ ② 木块(含子弹)在C 点做圆周运动,设轨道对木块的弹力为T ,木块对轨道的压力为T ′,

可得: R

v M m g M m T C 2)()(+=++ ③ 又:T =T ′=(M+m)g ④

由①、②、③、④方程联立解得: 子弹射入木块前瞬间的速度:Rg m M m v 6)(+=

高中物理选修3-5碰撞与动量守恒经典题型计算题练习有答案

动量守恒定律 1、(16分)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。可视为质点的物块从A 点正上方某处无初速度下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道沿街至轨道末端C 处恰好没有滑出。已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。求 (1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍; (2)物块与水平轨道BC 间的动摩擦因数μ。 答案:(1)设物块的质量为m ,其开始下落处的位置距BC 的竖直高度为h ,到达B 点时的速度为v ,小车圆弧轨道半径为R 。由机械能守恒定律,有 22 1mv mgh = ① 根据牛顿第二定律,有R v m mg mg 2 9=- ② 解得h =4R ③ 即物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的4倍。 (2)设物块与BC 间的滑动摩擦力的大小为F ,物块滑到C 点时与小车的共同速度为 v ′,物块在小车上由B 运动到C 的过程中小车对地面的位移大小为s 。依题意,小车的质量为3m ,BC 长度为10R 。由滑动摩擦定律,有 mg F μ= ④ 由动量守恒定律,有'+=v m m mv )3( ⑤ 对物块、小车分别应用动能定理,有 222 1 21)10(mv mv s R F -'=+- ⑥ 0)3(2 1 2-'= v m Fs ⑦ 解得3.0=μ ⑧ 2、(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求 (1) 物块在车面上滑行的时间t; (2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。

高中物理第一章碰撞与动量守恒第1节碰撞教学案教科版

第1节碰__撞 (对应学生用书页码P1) 一、碰撞现象 1.碰撞 做相对运动的两个(或几个)物体相遇而发生相互作用,运动状态发生改变的过程。 2.碰撞特点 (1)时间特点:在碰撞过程中,相互作用时间很短。 (2)相互作用力特点:在碰撞过程中,相互作用力远远大于外力。 (3)位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。 试列举几种常见的碰撞过程。 提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。 二、用气垫导轨探究碰撞中动能的变化 1.实验器材 气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。 2.探究过程 (1)滑块质量的测量仪器:天平。 (2)滑块速度的测量仪器:挡光条及光电门。 (3)数据记录及分析,碰撞前、后动能的计算。 三、碰撞的分类 1.按碰撞过程中机械能是否损失分为: (1)弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+ E k2′。 (2)非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。 E k1′+E k2′<E k1+E k2。 (3)完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。 2.按碰撞前后,物体的运动方向是否沿同一条直线可分为: (1)对心碰撞(正碰):碰撞前后,物体的运动方向沿同一条直线。 (2)非对心碰撞(斜碰):碰撞前后,物体的运动方向不在同一直线上。(高中阶段只研究

正碰)。 (对应学生用书页码P1) 探究一维碰撞中的不变量 1.探究方案方案一:利用气垫导轨实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的 滑块(挡光片)经过光电门的时间。 (3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。 方案二:利用等长悬线悬挂等大小球实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。 (3)不同碰撞情况的实现:用贴胶布的方法增大两球碰撞时的能量损失。 方案三:利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞。 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,Δx 是纸带上两计数点间的距离,可用刻度尺测量。Δt 为小 车经过Δx 所用的时间,可由打点间隔算出。 2.实验器材 方案一:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。 方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。 方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。 3.实验步骤 不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下: (1)用天平测相关质量。 (2)安装实验装置。 (3)使物体发生碰撞。 (4)测量或读出相关物理量,计算有关速度。 (5)改变碰撞条件,重复步骤(3)、(4)。

【精品】2020届高考物理总复习第六章碰撞与动量守恒单元评估检测六含解析人教版

单元评估检测(六) (第六章) (45分钟100分) 一、选择题(本题共8小题,每小题6分,共48分。1~6题为单选题,7、8题为多选题) 1.如图所示,轻弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m的小物块从槽高h处开始自由下滑,下列说法正确的是( ) A.在下滑过程中,物块的机械能守恒 B.在下滑过程中,物块和槽的动量守恒 C.物块被弹簧反弹后,做匀速直线运动 D.物块被弹簧反弹后,能回到槽高h处 【解析】选C。在下滑的过程中,物块与弧形槽系统只有重力做功,机械能守恒,对于物块,除了重力做功外,支持力做功,则物块的机械能不守恒,故A错误。物块加速下滑,竖直方向受向下合力,物块与槽在水平方向上不受外力,所以只能在水平方向动量守恒,故B错误。因为物块与槽在水平方向上动量守恒,由于质量相等,根据动量守恒,物块离开槽时速度大小相等,方向相反,物块被弹簧反弹后,与槽的速度相同,做匀速直线运动,故C正确,D错误。 2.如图所示,竖直面内有一个固定圆环,MN是它在竖直方向上的直径。两根光滑滑轨MP、QN 的端点都在圆周上,MP>QN。将两个完全相同的小滑块a、b分别从M、Q点无初速度释放,在它们各自沿MP、QN运动到圆周上的过程中,下列说法中正确的是( ) A.合力对两滑块的冲量大小相同 B.重力对a滑块的冲量较大 C.弹力对a滑块的冲量较小

D.两滑块的动量变化大小相同 【解析】选C。这是“等时圆”,即两滑块同时到达滑轨底端。合力F=mgsin θ(θ为滑轨倾角),F a>F b,因此合力对a滑块的冲量较大,a滑块的动量变化也大;重力的冲量大小、方向都相同;弹力F N=mgcos θ,F Nam B,置于光滑水平面上,相距较远。将两个大小均为F的力,同时分别作用在A、B上经过相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( ) A.停止运动 B.向左运动 C.向右运动 D.运动方向不能确定 【解析】选C。已知两个力大小相等,m A>m B,由牛顿第二定律可知,两物体的加速度a At B,由I A=Ft A,I B=Ft B,可得I A>I B,

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告 碰撞和动量守恒 班级:信息1401 姓名:龚顺学号:201401010127 【实验目的】: 1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。 2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。 【实验原理】 当一个系统所受和外力为零时,系统的总动量守恒,即有 若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。 1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有: 取V20=0,联立以上两式有: 动量损失率: 动能损失率: 2,完全非弹性碰撞 碰撞后两物体粘在一起,具有相同的速度,即有: 仍然取V20=0,则有: 动能损失率:

动量损失率: 3,一般非弹性碰撞中 一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数: 两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有: e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。 当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

2019-2020年高中物理 碰撞与动量守恒复习学案 粤教版选修3

2019-2020年高中物理碰撞与动量守恒复习学案粤教版选修3 一、复习目标: 1.知识与技能: (1)、了解四种物理模型:弹性碰撞、非弹性碰撞、爆炸、反冲运动; (2)、理解三个概念:动量、动量的改变量、冲量,注意它们的矢量性。 (3)、掌握两个规律:动量定理、动量守恒定律的内容及其适用条件; 2.过程与方法: 逐步掌握运用“守恒”观点处理物理问题的科学思想,学会运用动量定理、动量守恒定律解题的基本思路与方法; 3、情感与价值观:了解我国先进的运载火箭系列及飞速发展的航天事业,立志献身祖国科学事业,爱国从爱科学开始。 二、知识梳理: 1、什么叫“动量的改变量△P”?△P的方向就是动量P的方向吗?请例举物体动量发生改变的三种形式。 2、什么叫“动量定理”?写出表达式; 3、“动量守恒定律”的内容是什么?写出动量守恒定律的表达式。 4、“动量守恒定律”的适用条件:在下列四种情况下,可以使用动量守恒定律的有哪些?() (A)系统不受外力或所受外力的矢量和为零; (B)系统所受外力远小于内力,如碰撞或爆炸瞬间,外力可以忽略不计; (C)系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒; (D)系统只受重力作用或只有重力做功; 5、运用“动量守恒定律”解题的一般步骤是:; ①.设定正方向,分别写出系统初、末状态的总动量; ②.确定研究对象组成的系统,分析其物理过程是否满足动量守恒的应用条件; ③.解方程,统一单位后代入数值进行运算,列出结果; ④.根据动量守恒定律列方程; 6、弹性碰撞、非弹性碰撞、爆炸三个物理过程有何共同点?有何不同点? 三、讲与练 1、动量的改变、动量定理 【例1】质量1.2Kg的篮球以10m/s的水平速度与墙壁碰撞,又以原速率弹回,(1)篮球的动量改

动量守恒定律练习题——碰撞

动量守恒定律专题——碰撞 一、选择题 1.(多选)下列关于碰撞的理解正确的是() A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B.在碰撞现象中,一般内力都远远大于外力,所以可以认为碰撞时系统的总动量守恒 C.如果碰撞过程中机械能也守恒,这样的碰撞叫做非弹性碰撞 D.微观粒子的碰撞由于不发生直接接触,所以不满足动量守恒的条件,不能应用动量守恒定律求解 2.为了模拟宇宙大爆炸初期的情景,科学家们使两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞。若要使碰撞前的动能尽可能多地转化为内能,应该设法使离子在碰撞的瞬间具有() A.相同的速率B.相同的质量C.相同的动能D.大小相同的动量 3.(多选)在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是() A.若两球质量相同,碰后以某一相等速率互相分开 B.若两球质量相同,碰后以某一相等速率同向而行 C.若两球质量不同,碰后以某一相等速率互相分开 D.若两球质量不同,碰后以某一相等速率同向而行 4.(多选)如图所示,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触,现将摆球a向左拉开一小角度后释放,若两球的碰撞是 弹性的,下列判断正确的是() A.第一次碰撞后的瞬间,两球的速度大小相等 B.第一次碰撞后的瞬间,两球的动量大小相等 C.第一次碰撞后,两球的最大摆角不相同 D.发生第二次碰撞时,两球在各自的最低点 5.如图所示,在光滑水平面上有直径相同的a、b两球,在同一直线上运动, 选定向右为正方向,两球的动量分别为p a=6 kg·m/s、p b=-4 kg·m/s。当 两球相碰之后,两球的动量可能是()

高三物理碰撞与动量守恒

《碰撞与动量守恒》复习课 一、教学目的 1、复习巩固动量定理 2、复习巩固应用动量守恒定律解答相关问题的基本思路和方法 3、掌握处理相对滑动问题的基本思路和方法 二、教学重点 1、 本节知识结构的建立 2、 物理情景分析和物理规律的选用 三、教学难点 物理情景分析和物理规律的选用 四、教学过程 本章知识结构 〖引导学生回顾本章内容,建立相关知识网络(见下表)〗 典型举例 问题一:动量定理的应用 例1:质量为m 的钢珠从高出沙坑表面H 米处由静止自由下落,不考虑空气阻力,掉入沙坑后停止,如图所示,已知钢珠在沙坑中受到沙的平均阻力是f ,则钢珠在沙内运动时间为多少? 分析:此题给学生后,先要引导学生分清两个运动过程:一是在空气中的自由落体运动,二是在沙坑中的减速运动。学生可能会想到应用牛顿运动定律和运动学公式进行分段求解,此时不急于否定学生的想法,应该给予肯定。在此基础上,可以引导学生应用全过程动量定理来答题。然后学生自己思考讨论,动手作答,老师给出答案。 设钢珠在空中下落时间为t 1,在沙坑中运动时间为t 2,则: 在空中下落,有H= 2121gt ,得t 1= g H 2, 对全过程有:mg(t 1 +t 2)-f t 2=0-0 得: mg f gH m t -= 22

巩固:蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回

到离水平网面5.0m 高处。已知运动员与网接触的时间为1.2s 。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s 2) 〖学生自练,老师巡回辅导,给出答案N 3 105.1?,学生自评〗 例2:一根弹簧上端固定,下端系着质量为m 的物体A ,物体A 静止时的位置为P 处,再用细绳将质量也为m 的物体B 挂在物体A 的下面,平衡后将细绳剪断,如果物体A 回到P 点处时的速率为V ,此时物体B 的下落速度大小为u ,不计弹簧的质量和空气阻力,则这段时间里弹簧的弹力对物体A 的冲量大小为多少? 分析:引导学生分析,绳子剪断后,B 加速下降,A 加速上升,当A 回到P 点时,A 的速度达到最大值。尤其要强调的是本题中所求的是弹簧的弹力对物体A 的冲量,所以要分析清楚A 上升过程中 A 的受力情况。 解:取向上方向为正, 对B :-mgt=-mu ○ 1 对A :I 弹-mgt=mv ○ 2 两式联立得I 弹=m (v +u ) 问题二:动量守恒定律的应用 例3:质量为 M 的气球上有一质量为 m 的猴子,气球和猴子静止在离地高为 h 的空中。从气球上放下一架不计质量的软梯,为使猴子沿软梯安全滑至地面,则软梯至少应为多长? 分析:此题为前面习题课中出现过的人船模型,注意引导学生分析物理情景,合理选择物理规律。 设下降过程中,气球上升高度为H ,由题意知猴子下落高度为h , 取猴子和气球为系统,系统所受合外力为零,所以在竖直方向动量守恒,由动量守恒定律得:M ·H=m ·h ,解得M mh H = 所以软梯长度至少为M h m M H h L )(+=+= 例4:一质量为M 的木块放在光滑的水平桌面上处于静止状态,一颗质量为m 的子弹以速度v 0沿水平方向击中木块,并留在其中与木块共同运动,则子弹对木块的冲量大小是: A 、mv 0 ; B 、m M mMv +0 ; C 、mv 0-m M mv +0 ;D 、mv 0-m M v m +02 分析:题中要求子弹对木块的冲量大小,可以利用动量定理求解,即只需求出木块获得 的动量大小即可。 对子弹和木块所组成的系统,满足动量守恒条件,根据动量守恒定律得: mv 0=(M+m )v 解得:m M mv v += ,由动量定理知子弹对木块的冲量大小为 m M Mmv Mv I += =0

大学物理仿真实验报告-碰撞与动量守恒

大学物理仿真实验报告 实验名称 碰撞与动量守恒 班级: 姓名: 学号: 日期:

碰撞和动量守恒 实验简介 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥

或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为 (5) (6) 如果v20=0,则有 (7) (8) 动量损失率为 (9) 能量损失率为 (10)

动量碰撞练习题

3-5动量碰撞练习题 一.选择题(共5小题) 1.质量为m的运动员从下蹲状态竖直向上起跳,经过时间t,身体伸直并刚好离开地面,离开地面时速度为v在时间t内() A.地面对他的平均作用力为mg B.地面对他的平均作用力为 C.地面对他的平均作用力为m(﹣g)D.地面对他的平均作用力为m(g+)2.在分析和研究生活中的现象时,我们常常将这些具体现象简化成理想模型,这样可以反映和突出事物的本质.例如人原地起跳时,先身体弯曲,略下蹲,再猛然蹬地,身体打开,同时获得向上的初速度,双脚离开地面.我们可以将这一过程简化成如下模型:如图所示,将一个小球放在竖直放置的弹簧上,用手向下压小球,将小球压至某一位置后由静止释放,小球被弹簧弹起,以某一初速度离开弹簧,不考虑空气阻力.从小球由静止释放到刚好离开弹簧的整个过程中,下列分析正确的是() A.小球的速度一直增大B.小球始终处于超重状态 C.弹簧对小球弹力冲量的大小大于小球重力冲量的大小 D.地面支持力对弹簧做的功大于弹簧弹力对小球做的功 3.下列情况中系统动量守恒的是() ①小车停在光滑水平面上,人在车上走动时,对人与车组成的系统 ②子弹水平射入放在光滑水平面上的木块中,对子弹与木块组成的系统 ③子弹射入紧靠墙角的木块中,对子弹与木块组成的系统 ④气球下用轻绳吊一重物一起加速上升时,绳子突然断开后的一小段时间内,对气球与重物组成的系统. A.只有①B.①和②C.①和③D.①和③④ 4.如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量为m(m<M)的小球从槽高h处

开始自由下滑,下列说法正确的是() A.在以后的运动全过程中,小球和槽的水平方向动量始终保持某一确定值不变B.在下滑过程中小球和槽之间的相互作用力始终不做功 C.全过程小球和槽、弹簧所组成的系统机械能守恒,且水平方向动量守恒D.小球被弹簧反弹后,小球和槽的机械能守恒,但小球不能回到槽高h处5.如图所示,光滑水平面上有质量均为m的物块A和B,B上固定一轻质弹簧,B静止,A以速度v0水平向右运动,从A与弹簧接触至弹簧被压缩到最短的过程中() A.A、B的动量变化量相同 B.A、B的动量变化率相同 C.A、B系统的总动能保持不变D.A、B系统的总动量保持不变 二.计算题(共2小题) 6.长为L、质量为M的木块在粗糙的水平面上处于静止状态,有一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出.设子弹射入木块过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,求: (i)木块与水平面间的动摩擦因数μ; (ii)子弹受到的阻力大小f. 7.如图所示,光滑水平面上质量为m1的小球,以初速度v0冲向质量为m2的静止光滑圆弧面斜劈,圆弧小于90°且足够高.求: (1)小球能上升的最大高度; (2)斜劈的最大速度.

碰撞和动量守恒

碰撞和动量守恒 一、实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2) 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为

(5) (6) 如果v20=0,则有 (7) (8) 动量损失率为 (9) 能量损失率为 (10) 2.完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 (11) 在实验中,让v20=0,则有 (12)

(13) 动量损失率 (14) 动能损失率 (15) 3.一般非弹性碰撞 牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 (16) 恢复系数e由碰撞物体的质料决定。E值由实验测定,一般情况下0

2、一般非弹性碰撞 3、完全非弹性碰撞

四、小结 1、结论:三种碰撞中动量都基本守恒,完全非弹性碰撞能量损失最大,完全弹性碰撞能量损失最小。 2、误差分析:导轨不是完全光滑导致实验误差。 3、建议:推动滑块时要果断,导轨要调节到滑块通过两光电门的时间差小于1ms。 五、思考题 1.碰撞前后系统总动量不相等,试分析其原因。 答:导轨不够光滑导致碰撞前后系统总动量不相等。 2.恢复系数e的大小取决于哪些因素? 答:恢复系数e由碰撞物体的质料决定。

《动量守恒定律》导学案2

16.3 动量守恒定律学案导学 教学目标: 能够系统内力和外力,明确动量守恒定律的内容,理解守恒条件和矢量性。理解“总动量”就是系统内各个物体动量的矢量和。 知识回顾: 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 ②相对性:这是由于速度与参考系的选择有关,通常以地球(即地面)为参考系。 ③矢量性:动量的方向与速度方向一致。运算遵循矢量运算法则(平行四边形定则)。 【例1】关于动量的概念,下列说法正确的是;( ) A.动量大的物体惯性一定大 B.动量大的物体运动一定快 C.动量相同的物体运动方向一定相同 D.动量相同的物体速度小的惯性大 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mυ1矢量差 【例2】一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?

学习新知: 1.系统内力和外力 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 注意:内力和外力随系统的变化而变化。 2.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 (2)适用条件:系统不受外力或者所受外力的和为零 (3)公式:p1/+p2/=p1+p2即m1υ1+ m2υ2= m1υ1′+ m2υ2′ 或Δp1=-Δp2或Δp总=0 (4)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力; 条件的延伸:a.当F 内>>F 外 时,系统动量可视为守恒;(如爆炸问题。) b.若系统受到的合外力不为零,但在某个方向上的合外力为零,则这个方向的动量守恒。 例如:如图所示,斜面体A的质量为M,把它置于光滑的 水平面上,一质量为m的滑块B从斜面体A的顶部由静止滑下, 与斜面体分离后以速度v在光滑的水平面上运动,在这一现象中, 物块B沿斜面体A下滑时,A与B间的作用力(弹力和可能的摩 擦力)都是内力,这些力不予考虑。但物块B还受到重力作用,这个力是A、B

碰撞与动量守恒单元测试题含答案

碰 撞 与 动 量 守 恒 单 元 测 试 题 命题人:官桥中学高二物理备课组 一、单项选择题(共4小题,每小题4分,共16分,在每小题给出的四个选项 中,只有一个选项正确) 1、篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( ) A.减小球对手作用力的冲量 B.减小球的动量变化率 C.减小球的动量变化量 D.减小球的动能变化量 2、在空间某一点以大小相等的速度分别竖直上抛、竖直下抛、水平抛出质量相等的小球,不计空气阻力,当小球落地时( ) A.做上抛运动的小球动量变化最大 B.三个小球动量变化大小相等 C. 做平抛运动的小球动量变化最小 D.三个小球动量变化相等 3、把一支枪水平固定在小车上,小车放在光滑的水平地面上。当枪发射子弹时,关于枪、子弹、车,下列说法中正确的是( ) A.枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.若不计子弹和枪筒之间的摩擦,枪、车、子弹组成的系统动量近似守恒 D.枪、子弹、车组成的系统动量守恒 4、自行火炮车连同炮弹的总质量为M,火炮车在·水平路面上以1V 的速度向右匀速行驶,炮管水平发射一枚质量为m 的炮弹后,自行火炮的速度变为2V ,仍向右行驶,则炮弹相对炮筒的发射速度0V 为( ) A. m mV V V m 2 21)(+- B.m V V M )(21- C. m m V V V m 2212)(+- D.m V V m V V m ) ()(2121--- 二、双项选择(共5小题,每小题5分,共25分) 5、质量为m 的物体在倾角为θ的光滑斜面顶端由静止释放,斜面高h,物体从斜面顶端滑到斜面底端过程中( ) A.物体所受支持力的冲量为零 B.物体所受支持力的冲量方向垂直于斜面向上 C.物体所受重力的冲量方向沿斜面向下 D.物体所受重力的冲量大小为 θsin 2gh m

大学物理仿真实验报告 碰撞与动量守恒

大学物理仿真实验报告 实验目的 利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律, 定量研究动量损失和能量损失在工程技术中有重要意义。 同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 实验中用两个质量分别为m1、m2的滑块来碰撞(图1),若忽略气流阻力,根据动量守恒有 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可 改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取 负号。 完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 由(3)、(4)两式可解得碰撞后的速度为

如果v20=0,则有 动量损失率为 能量损失率为 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。 完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 在实验中,让v20=0,则有 动量损失率 动能损失率

一般非弹性碰撞 一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 恢复系数e由碰撞物体的质料决定。E值由实验测定,一般情况下0m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个 光电门的时间Δt2,重复五次,记录所测数据,数据表格自拟,计算

高中物理第一章碰撞与动量守恒1.1物体的碰撞1.2动量动量守恒定律(1)教学案粤教选修3-5

第一节物体的碰撞 第二节(1) 动量动量守恒定律 [目标定位] 1.探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞.2.理解动量、冲量的概念,知道动量的变化量也是矢量.3.理解动量定理并能解释和解决实际问题.4.理解动量与动能、动量定理与动能定理的区别. 一、物体的碰撞 1.碰撞 碰撞就是两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程.其最主要特点是:相互作用时间短,作用力变化快和作用力峰值大等. 2.碰撞的分类 (1)按碰撞前后,物体的运动方向是否沿同一条直线可分为: ①正碰(对心碰撞):作用前后沿同一条直线. ②斜碰(非对心碰撞):作用前后不沿同一条直线. (2)按碰撞过程中机械能是否损失分为: ①弹性碰撞:碰撞前后系统的动能相等,E k1+E k2=E k1′+E k2′. ②非弹性碰撞:碰撞前后系统的动能不再相等,E k1′+E k2′<E k1+E k2. 二、动量及其改变 1.冲量 (1)定义:物体受到的力与力的作用时间的乘积. (2)定义式:I=Ft. (3)单位:在国际单位制中,冲量的单位是牛顿·秒,符号为N·s. 2.动量 (1)定义:运动物体的质量和它的速度的乘积. (2)定义式:p=mv. (3)单位:在国际单位制中,动量的单位是千克米每秒,符号为kg·m·s-1. (4)方向:动量是矢量,其方向与速度方向相同. 3.动量的变化量 物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p-p0(矢量式). 4.动量定理 (1)内容:物体所受合力的冲量,等于物体动量的改变量. (2)公式:Ft=mv t-mv0.

预习完成后,请把你疑惑的问题记录在下面的表格中 问题1 问题2 问题3 一、弹性碰撞和非弹性碰撞 1.碰撞中能量的特点:碰撞过程中,一般伴随机械能的损失,即:E k1+E k2≤E k10+E k20. 2.弹性碰撞:两个物体碰撞后形变能够完全恢复,碰撞后没有动能转化为其他形式的能,即碰撞前后两物体构成的系统的动能相等. 3.非弹性碰撞:两个物体碰撞后形变不能完全恢复,该过程有动能转化为其他形式的能,总动能减少.非弹性碰撞的特例:两物体碰撞后粘在一起以共同的速度运动,该碰撞称为完全非弹性碰撞,碰撞过程能量损失最多. 【例1】 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰,试根据以下数据,分析碰撞性质: (1)碰后小球A 、B 的速度均为2 m/s ; (2)碰后小球A 的速度为1 m/s ,小球B 的速度为4 m/s. 答案 (1)非弹性碰撞 (2)弹性碰撞 解析 碰前系统的动能E k0=12 m A v 02 =9 J. (1)当碰后小球A 、B 速度均为2 m/s 时,碰后系统的动能 E k =12m A v A 2+12m B v B 2=(12×2×22+12 ×1×22)J =6 J <E k0,故该碰撞为非弹性碰撞. (2)当碰后v A ′=1 m/s ,v B ′=4 m/s 时,碰后系统的动能 E k ′=12m A v A ′2+12m B v B ′2=(12×2×12+12 ×1×42)J =9 J =E k0,故该碰撞为弹性碰撞. 针对训练1 现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后甲滑块静止不动,乙滑块反向运动,且速度大小为2v .那么这次碰撞是( ) A .弹性碰撞 B .非弹性碰撞 C .完全非弹性碰撞 D .条件不足,无法确定 答案 A 解析 碰前总动能:E k =12·3m ·v 2+12 mv 2=2mv 2 碰后总动能:E k ′=12 mv ′2=2mv 2 ,E k =E k ′,所以A 对.

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

高三物理碰撞与动量守恒练习题(带答案)

高三物理碰撞与动量守恒练习题(带答案) 第1章碰撞与动量守恒章末练习1 1.质量M=50kg的空箱子,放在光滑的水平面上,箱中有一质量m =30kg的铁块,如图56-1所示.铁块的左侧面与箱子内壁的左侧面相距S=1m,铁块一旦碰到箱壁后不再分开,箱底与铁块间摩擦可忽略不计,现用向右的恒力F=10N作用于箱子,经过时间t=2s后撤去.求 (1)箱的左壁与铁块碰撞前铁块和箱的速度; (2)箱的左壁与铁块碰撞后箱子的速度.解析:(1)在F作用的2s内,设箱没有碰到铁块,则对于箱子2s末立,所以碰前箱的速度为0.4m/s,水平向右,铁块的速度为零. (2)箱子与铁块碰撞时,外力F已撤去,对箱子与铁块这一系统碰撞过程中总动量守恒MvM=(M+m)v',所以碰后的共同速度为v′=点拨:要善于分析不同的物理过程和应用相应物理规律,对整个运动过程,我们就箱子和铁块这一系统用动量定理有:Ft=(M+m)v',这一关系不论在何时撤去F,最终的共同速度都由此关系求出 2.质量为m,半径为R的小球,放在质量为M,半径为2R的圆柱形桶内,桶静止在光滑的水平面上,当小球从图56-2所示的位球的质量之比.点拨:在球和圆筒相互作用的过程中,系统在水平方向的动量始终不变(在竖直方向的动量先增大后减少),所以可以用水平方向的位移来表示水平方向的动量守恒. 3.从地面以速率v1竖直向上抛出一小球,小球落地时的速率为v2,若小球在运动过程中所受的空气阻力大小与其速率成正比,试求小球在空中的运动时间.解析:小球在上升阶段和下落阶段发生的位移大小相等,方向相反.位移在速度图象上是图线与时间轴所围的“面积”,冲量在力随时间变化的图象(F~t图象)上是图线与时间轴所围的“面积”,由题意空气阻力与速率成正比,可得到小球在上升阶段和下落阶段空气阻力的冲量大小相等,方向相反,即在小球的整个运动过程中,空气阻力对小球的总冲量为零.对小球在整个过程中,由动量定理得:点拨在各知识点间进行分析,类比是高考对考生能力的要求,高考考纲明文规定“能运用几何图形,函数图象进行表达、分析”. 4.总质量为M的列车以不变的牵引力匀速行驶,列车所受的阻力与其重量成正比,在行驶途中忽然质量为m的最后一节车厢脱

专题十七碰撞与动量守恒高考真题集锦.doc

学习必备 欢迎下载 专题十七 碰撞与动量守恒 35. (2013 高·考新课标全国卷Ⅰ )(2) 在粗糙的水平桌面上有两个静止的木块 A 和 B ,两者 相距为 D. 现给 A 一初速度,使 A 与 B 发生弹性正碰,碰撞时 间极短.当两木块都停止运动后,相距仍然为 D.已知两木块与桌面之间的动摩擦因数均 为 μ,B 的质量为 A 的 2 倍,重力加速度大小为 g.求 A 的初速度的大小. 解析 : (2)从碰撞时的能量和动量守恒入手,运用动能定理解决问题. 设在发生碰撞前的瞬间,木块 A 的速度大小为 v ;在碰撞后的瞬间, A 和 B 的速度分别 为 v 1 和 v 2 .在碰撞过程中,由能量和动量守恒定律,得 1 mv 2 1 2 1 2 ① 2 = mv 1+ (2m)v 2 2 2 mv = mv 1+ (2m)v 2 ② 式中,以碰撞前木块 A 的速度方向为正.由①②式得 v 1=- v 2 ③ 2 设碰撞后 A 和 B 运动的距离分别为 d 1 和 d 2,由动能定理得 μ mgd = 1 2 ④ 1 2mv 1 1 2 ⑤ μ(2m)gd 2= 2 (2m) v 2 据题意有 d = d 1+ d 2 ⑥ 设 A 的初速度大小为 v 0,由动能定理得 1 2 1 2 ⑦ μ mgd =2mv 0- 2mv 联立②至⑦式,得 v 0= 28 μ gd. 5 答案: (2) 28 5 μ gd 35.(2013 高·考新课标全国卷Ⅱ )[ 物理-选修 3-5] (2) 如图,光滑水平直轨道上有三个质量均为m 的物块 A 、B 、C.B 的左侧固定一轻弹簧 (弹 簧左侧的挡板质量不计 ).设 A 以速度 v 0 朝 B 运动,压缩弹簧;当 A 、 B 速度相等时, B 与 C 恰好相碰并粘接在一起,然后继续运动.假设 B 和 C 碰撞过程时间极短,求从 A 开始压缩弹簧直至与弹黄分离的过程中, ( ⅰ)整个系统损失的机械能; ( ⅱ)弹簧被压缩到最短时的弹性势能. 解析 :(2)A 、B 碰撞时动量守恒、 能量也守恒, 而 B 、C 相碰粘接在一块时, 动量守恒. 系 统产生的内能则为机械能的损失.当 A 、B 、 C 速度相等时,弹性势能最大. ( ⅰ)从 A 压缩弹簧到 A 与 B 具有相同速度 v 1 时,对 A 、 B 与弹簧组成的系统,由动量守恒定律得 mv 0= 2mv 1 ① 此时 B 与 C 发生完全非弹性碰撞, 设碰撞后的瞬时速度为 v 2,损失的机械能为 E.对 B 、 C 组成的系统,由动量守恒定律和能量守恒定律得

相关文档
相关文档 最新文档