文档库 最新最全的文档下载
当前位置:文档库 › 一种全数字UPS逆变器锁相控制技术的研究

一种全数字UPS逆变器锁相控制技术的研究

一种全数字UPS逆变器锁相控制技术的研究

一种全数字UPS逆变器锁相控制技术的研究

1.引言

UPS,不间断电源,是指在市电正常或故障情况下均可为负载提供可靠、稳定的电源形式。多用于在一些关键性的负载如计算机机房、医院等场合,为负载提供了最多的电源故障保护。然而传统的在线UPS有多个功率部分和模拟控制器,是一个非常复杂、昂贵的系统。因此,适合现代科技发展的高质量、高可靠性全数字UPS(不间断电源)的研究就成为人们十分关注的课题。数字化控制以控制简单、灵活,输出性能更加稳定,可以实现模拟控制所难以达到的功能等诸多优势成为电源研究领域的一大热点。随着微电子技术的发展,为电力电子提供了越来越多的解决方案,使UPS电源的全数字制、各种先进控制策略的引入逐步成为现实。

本文主要讨论在基于TMS320LF2407数字化控制平台的UPS中的关键技术之一-锁相控制技术。

2.锁相意义

不间断电源工作过程中存在两次切换:

一是电源启动时由旁路向负载供电,逆变器空载运行,同时启动锁相功能,调整逆变输出跟踪电网频率和相位,当逆变输出跟踪上电网频率时切换至逆变器为负载供电;二是当逆变电路发生故障,或者当负载有冲击性(例如启动负载时)或过载时,控制系统将封锁PWM输出停止逆变器对负载的供电,同时接通旁路开关,由电网直接向负载供电。

为有效保证逆变旁路切换过程不对负载产生过大的冲击,UPS逆变输出电压必须与电网电压的频率及相位保持一致。因此,UPS系统引入了锁相控制技术,软件锁相技术是数字化UPS的重要环节之一。快速可靠的软件锁相跟踪技术可以准确地为逆变器数字化控制提供与电网电压同频同相的标准电压参考正弦波。

3.锁相环基本原理

锁相环是一个闭环的相位控制系统,能够自动跟踪输入信号的频率和相位。它由相位比较器、低通滤波器、压控振荡器三部分组成,其控制框图见图1.

电机锁相控制系统的分析与设计_赵毅

伺服技术 SERVO TECHNIQUE 电机锁相控制系统的分析与设计 赵 毅 李彦生 赵万华 卢秉恒 (西安交通大学 710049) 【摘 要】 在需要电机作高精度稳速运行的应用场合中,越来越多地采用锁相伺服控制系统。文中介绍在锁相伺服控制环中采用PI 控制,并且提出了按典型三阶期望最佳开环模型进行设计的一套系统的设计方法,较好地解决了锁相控制系统设计中存在的问题。 【叙 词】电机 锁相环控制 PI 调节器 参数 整定 ANALYSES AND DESIGN FOR MOTOR PHASE LOCK CONTROL SYSTEM 【Abstract 】In the fields o f high accur acy and speed stabilizing o per atio n fo r mot or ,phase lo ck ser vo contr ol system is mo re and mor e used.T he thesis intro duces using PI co ntro l in phase lo ck ser vo contr ol lo op and puts for th a systemat ic desig n method acco r ding to typical 3stag e ex -pected ut ility o ptimum o pen loo p model ,w hich solves the exist ing pro blem w ell in phase lock con-tro l sy stem design . 【Keywords 】electrical machine ,phase lock co ntro l PI adjuster ,param et er ,set 1 控制系统框图与数学模型 电机锁相控制系统的原理框图如图1所示。系统的输入信号为一定频率的方波信号,频率与电机的给定转速相对应,系统输出为电机的实际转速,反馈部件的作用是把转速 信号变成频率与转速成正比的方波信号,采用的方式多种多样,一般是采用光电器件,假设电机的转速为n ,电机匀速转一周时,光电器件输出N 个等距的脉冲,则反馈部件输出的方波角频率: f =2 nN / 60 图1 电机锁相控制系统的原理框图 因此系统给定信号的角频率 r 与期望 转速的关系是: r =2 nN /60(1)1.1 频率、相位转换 r 与 f 送到鉴频鉴相器内进行频率、相位比较,频率差与相位差存在如下内在关系: (t )= ∫ t t (t )d t =∫t t [ r (t )- f (t )]d t (2) 把式(2)进行拉氏变换,得: (S )=1 S [ r (S )- f (S )](3) 设积分时间是从 r 首次与 f 相等时开始,且初始相位差 0 <2 ,,则在t 0以后的时间,当 r 等于 f 时,有 (t ) <2 。1.2 M C 4046的特性与数学模型[1] 鉴频鉴相器一般采用M C4046(九门比 — 20—

四桥臂三相逆变器的控制策略

四桥臂三相逆变器的控制策略 阮新波严仰光 摘要提出了一种新型的三相四线逆变器,它有四个桥臂,第四个桥臂用来构成中点,从而省去了三相三桥臂逆变器中的中点形成变压器,减小了逆变器的体积和重量。针对这种逆变器,本文提出了一种电流调节器,它根据三相滤波电感电流和给定电流的误差值最大的那相选择逆变器的开关模态。为了消除输出相电压的静态误差,本文讨论 了一种基于PI调节器改进的电压调节方案。仿真结果表明,本文的思路是可行的。本 文为构造大功率、高效率的三相四线逆变器提供了可靠的理论基础。 关键词:三相逆变器控制策略 The Control Strategy for Three-Phase Inverter with Four Bridge Legs Ruan Xinbo Yan Yangguang (Nanjing University of Aeronaut ics & Astronautics 210016 China) Abstract A novel three phase inverter with four bridge legs i s presented in this paper.The inverter eliminates the neutral forming transforme r by adding a bridge leg to form neutral point to provide balanced voltages to a ny kinds of three phase loads.The principle of the inverter is analyzed,and a ne w current regulator,which chooses switching modes a ccording to the maximum cur rent error of filter inductance current and the reference current is proposed.Th e modified voltage regulator on the basis of PI regulator is proposed to elimina te output voltage static error under any load conditions. Keywords:Three-phase Inverters Control strategies 1 引言 三相逆变器一般是采用三个桥臂组成的拓扑结构,为了给不对称负载供电,必须在 输出端加入一个中点形成变压器(Neutral Formed Transformer,NFT),如图1所示。中点形成变压器是变比为1的自耦变压器,工作频率为输出交流电的频率,体积和重 量很大,而且体积和重量随着负载不对称的程度变化而变化,不对称度越大,NFT的体积重量也就越大。

锁相技术名词解释、简答题和计算公式

名词解释和简答题整理 第一章锁相环路的基本工作原理: 1.锁相环(PLL)---锁相环是一个能够跟踪输入信号相位的闭环自动控制系统。 2.捕获带:环路能通过捕获过程而进入同步状态所允许的最大固有频差|Δωo|max。 3.同步带:锁相环路能够保持锁定状态所允许的最大固有频差|Δωo|max。 4.快捕带:保证环路只有相位捕获一个过程的最大固有频差值|Δωo|max。 5.输入信号频率与环路自由振荡频率之差,称为环路的固有频率 环路固有角频差:输入信号角频率ωi与环路自由振荡角频率ωo之差。 瞬时角频差:输入信号频率ωi与受控压控振荡器的频率ωv之差。 控制角频差:受控压控振荡器的频率ωv与自由振荡频率ωo之差。 三者之间的关系:瞬时频差=固有频差-控制频差。 6.鉴相器是一个相位比较装置,用来检测输入信号相位θ1(t)与反馈信号相位θ2(t)之间 的相位差θe(t)。输出的误差信号u d(t)是相差θe(t)的函数。 7.锁相环路由鉴相器、环路滤波器和压控振荡器三个主要部件构成;其独特的性能有载波 跟踪特性、调制跟踪特性和低门限特性。 8.环路滤波器---即低通滤波器,滤除鉴相器输出电压中的高频分量,起平滑滤波的作用, 提高环路的稳定性。 9.压控振荡器---压控振荡器是一个电压-频率变换装置,它的振荡频率应随输入控制电压 u c(t)线性地变化。 10.环路的动态方程:pθe(t)= pθ1(t)-K o U d F(p)sin θ1(t) 11.相平面:将瞬时频差与瞬时相差的关系在平面直角坐标系中所做的图。相点:是相平面 上相轨迹上的一个点,表示环路在某一时刻的状态。 12.如果锁相环路的起始状态处于不稳定平衡点时,环路自身没有能力摆脱这种状态,只有 依靠外力(噪声或人为扰动)才能使环路偏离这个状态而进行捕获;所以一旦遇到这种情况就可能出现在不稳定平衡状态的滞留,致使捕获过程延长。这种现象称为锁相环路的延滞现象。 13.环路固有频差Δωo大于环路增益K,锁相环路处于失锁差拍状态,被控振荡器未被输 入信号锁定;但是由于锁相环路的控制作用,使锁相环路的平均频率向输入信号频率方向牵引。这种现象称为锁相环路的频率牵引现象 第二章环路跟踪性能: 1.对于输入相位阶跃而言,因为锁相环路在暂态过程中误差电压u d(t)≠0,压控振荡器的 相位已得到调整,最终并不再要求压控振荡器的频率得到调整,可以允许控制电压等于零。所以稳态时,鉴相器输出的误差电压u d(t)=0,环路的跟踪状态是可以维持的。

逆变电源控制算法哪几种

https://www.wendangku.net/doc/f119044650.html,/ 逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点:

https://www.wendangku.net/doc/f119044650.html,/ PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。

锁相技术复习重点汇总

第一章 锁相环的概念:当其输出信号频率与输入信号频率相同时,输出信号与输入信号之间的相位差同步(相位差为0,或为常数)。故称为锁相环路。简称为锁相环 一.锁相环组成 基本锁相环的组成: ⑴ 鉴相器(Phase Detector )---PD ⑵ 环路滤波器(Loop Filter )---LF ⑶ 压控振荡器(Voltage Controlled Oscillator )---VCO ()t 1θ为输入量()t u i 的瞬时相位。 ()t 2θ为输入量()t u o 的瞬时相位。 各部分分析: 1.鉴相器 是一个相位比较器,用于比较()t 1θ与()t 2θ之间的相位差 )]()(sin[2 1 )]()(2sin[21)] (cos[)](sin[)()(212121t t U U K t t t U U K t t U t t U K t u t u K o i m o o i m o o o i m o i m θθθθωθωθω-+++= ++= 再经过低通滤波器(LPF )滤除o ω2成分之后,得到误差电压 )]()(sin[2 1 )(21t t U U K t u o i m d θθ-=

令 o i m d U U K U 2 1 = 为鉴相器的最大输出电压,得到)](sin[)(t U t u e d d θ= 2.环路滤波器及其传输函数 环路滤波器是一个线性电路,在时域分析中可用一个传输算子)(p F 来表示,其中)(dt d p ≡是微分算子;在频域分析中可用传递函数)(s F 表示,其中 )(Ω+=j s α是复频率;若用Ω=j s 代入就得到它的频率响应)(Ωj F ,故环路滤 波器模型可表示为图 定义控制电压 ()()()p F t u t u d c = (1)RC 积分滤波器这是结构最简单的低通滤波器, 传输算子:1 11 )(τp p F += , RC =1τ是时间常数,这是这种滤波器唯一可调的参数。 令p=j Ω,并代入(1-18)式,即可得滤波器的频率特性:1 11 )(τΩ+= Ωj j F

离网逆变器控制策略

逆变器控制策略: 逆变器的控制目标是提高逆变器输出电压的稳态和动态性能。稳态性能主要是指输出电 压的稳态精度和提高带不平衡负载的能力;动态性能主要是指输出电压的THD 和负载突变时的动态响应水平。在这些指标中输出电压THD 要求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%。 1、离网逆变器的控制性能要求主要是使其输出电压具有良好的控制抗扰性。 离网逆变器采用输出电容电流内环和输出电压外环的双闭环控制。 电流调节器可以实现快速加减速和电流限幅作用,同时使系统的抗电源扰动和负载扰动 的能力增强。 电压调节器主要是控制输出电压的稳定。 2、基于LC 滤波器的离网型逆变器 图2 基于LC 滤波的电压型离网逆变器主电路 图3 基于LC 的VSI 输出电压单闭环控制结构 图5 基于电容电流反馈的单位调节器内环控制结构 1VD 3VD 5VD 2VD 6VD 4VD 1 V 3V 5V 4V 6V 2V U V W dc C C R L dc u + -L i o i C i L u C u i u 调节 器 PWM K 1sL R +-i u o i C *u C u L i -1sC -C i ? ? ?C u L u *Cq u cq u PI P PWM K 1sL sC 1iq u C *i C i ????oq i +----

图14 基于同步坐标系的LC-VSI 双环控制结构 PI PI P P Inv.Park Trans Inv.Clarke Trans SPWM Generator Clarke Trans Park Trans Clarke Trans Park Trans *q s U *sd U sd U q s U *sd I *q s I q s I d s I a s I βs I A U βs U a s U B U A I B I 1 1ov T s +11 e T s +1 1oi T s +PI 1Ls 1Cs P 11 oi T s +11 ov T s +*Cq u C *i iq u oq i cq u C i +-+- + -+ -电流内环

逆变电源的几种控制算法

逆变电源广泛运用于各类:电力、通讯、工业设备、卫星通信设备、军用车载、医疗救护车、警车、船舶、太阳能及风能发电领域。 在电路中将直流电转换为交流电的过程称之为逆变,这种转换通常通过逆变电源来实现。这就涉及到在逆变过程中的控制算法问题。 只有掌握了逆变电源的控制算法,才能真正意义上的掌握逆变电源的原理和运行方式,从而方便设计。在本篇文章当中,将对逆变电源的控制算法进行总结,帮助大家进一步掌握逆变电源的相关知识。 逆变电源的算法主要有以下几种。 数字PID控制 PID控制是一种具有几十年应用经验的控制算法,控制算法简单,参数易于整定,设计过程中不过分依赖系统参数,鲁棒性好,可靠性高,是目前应用最广泛、最成熟的一种控制技术。它在模拟控制正弦波逆变电源系统中已经得到了广泛的应用。将其数字化以后,它克服了模拟PID控制器的许多不足和缺点,可以方便调整PID参数,具有很大的灵活性和适应性。与其它控制方法相比,数字PID具有以下优点: PID算法蕴涵了动态控制过程中过去、现在和将来的主要信息,控制过程快速、准确、平稳,具有良好的控制效果。 PID控制在设计过程中不过分依赖系统参数,系统参数的变化对控制效果影响很小,控制的适应性好,具有较强的鲁棒性。 PID算法简单明了,便于单片机或DSP实现。 采用数字PID控制算法的局限性有两个方面。一方面是系统的采样量化误差降低了算法的控制精度;另一方面,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,造成PID控制器稳定域减少,增加了设计难度。 状态反馈控制 状态反馈控制可以任意配置闭环控制系统的极点,实现了逆变电源控制系统极点的优化配置,有利于改善系统输出的动态品质,具有良好的瞬态响应和较低的谐波畸变率。但在建立逆变器的状态模型时将负载的动态特性考虑在内,因此状态反馈控制只能针对空载和已知的负载进行建模。由于状态反馈控制对系统模型参数的依赖性很强,使得系统的参数在发生变化时易导致稳态误差的出现和以及动态特性的改变。例如对于非线性的整流负载,其控制效果就不是很理想。 重复控制

逆变器的基本知识

浅谈光伏发电系统用逆变器的基本知识 逆变器的概念 通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。 现代逆变技术是研究逆变电路理论和应用的一门科学技术。它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。 逆变器的分类 逆变器的种类很多,可按照不同的方法进行分类。 1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率一般为400Hz到十几kHz;高频逆变器的频率一般为十几kHz到MHz。 2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。 3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。 4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。 5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。 6.按直流电源分,可分为电压源型逆变器(VSI)和电流源型逆变器(CSI)。前者,直流电压近于恒定,输出电压为交变方波;后者,直流电流近于恒定,输也电流为交变方波。 7.按逆变器输出电压或电流的波形分,可分为正弦波输出逆变器和非正弦波输出逆变器。

锁相环技术

PLL(Phase Locked Loop)锁相环 锁相环的基本组成 PLL(Phase Locked Loop):为锁相回路或锁相环,用来统一整合时脉讯号,使内存能正确的存取资料。PLL用于振荡器中的反馈技术。 许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。锁相环路是一种反馈控制电路,简称锁相环(PL L,Phase-Locked Loop)。锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。锁相环通常由鉴相器(PD,Phas e Detector)、环路滤波器(LF,Loop Filter)和压控振荡器(VCO,Voltage Control led Oscillator)三部分组成,锁相环组成的原理框图如图所示。 PLL原理框图 锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。 锁相环的工作原理 锁相环是一种反馈电路,其作用是使得电路上的时钟和某一外部时钟的相位同步。P LL通过比较外部信号的相位和由压控晶振(VCXO)的相位来实现同步的,在比较的过程中,锁相环电路会不断根据外部信号的相位来调整本地晶振的时钟相位,直到两个信号的相位同步。在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。因此,所有板卡上各自的本地80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。 通过锁相环同步多块板卡的采样时钟所需要的编程技术会根据您所使用的硬件 板卡的不同而不同。对于基于PCI总线的产品(M系列数据采集卡,PCI数字化仪等),所有的同步都是通过RTSI总线上的时钟和触发线来实现的;这时,其中一块版板卡会作为主卡并且输出其内部时钟,通过RTSI线,其他从板卡就可以获得这个用于同

电压控制逆变器

电压控制逆变器 The voltage control inverter 为了获得高性能的逆变器,设计控制器的控制目标包括提高输出电压稳态和动态性能2个方面。目前,有关逆变器的控制方法除了工程应用成熟的PID控制[1-2]外,主要还有重复控制[3-4]、滑模控制[5-6]、无差拍控制[7-8]、模糊控制[9-10]及各种复合控制[11-14]等,这些控制方法在提高输出电压的稳态精度和负载变化时的动态响应方面,取得了一定的研究成果。然而以上控制方法主要从输出端考虑,很少考虑输入端对输出的影响,以电压源逆变器为例,以上控制方法在设计时一般都把直流输入电压看作恒定不变的。实际情况是,直流输入电压由于前级不可控整流或本身输入电压不稳定的影响并 不是恒定直流,另外负载电流中若含有谐波也会在直流输入电压上产生谐波电压[15]。此外,以上控制方法中除了PID控制,大部分 控制方法由于其复杂控制算法只能用数字控制来实现,且因条件限制不能很好地广泛应用于实践。为此,本文以常见的单相全桥逆变器为例,在传统电压模式基础上,提出了一种前馈型电压模式控制方案,控制原理上利用开关变换器稳态输入/输出占空比关系构造变换器 的控制方程,引入输入电压前馈使得其波动不会对输出电压产生影响,同时在无积分反馈环节下输出电压就能稳定跟踪参考信号,避免了PID控制中为提高稳态精度而引入积分环节造成系统稳定性下降和 动态性能滞后的影响。控制实现上采用输入电压积分电路来求解方程中的开关占空比,控制电路结构简单,便于用模拟电路实现。进行了

性能分析并与采用传统PID控制的逆变器模型进行比较,理论分析 表明前馈型电压模式控制逆变器具有稳态跟踪性能好、抗输入电压扰动以及对负载跳变动态响应好的优点。进行了仿真对比并设计了2种控制方法的模拟电路进行实验验证,结果表明理论分析的正确性和前馈型电压模式控制的有效性。 1前馈型电压模式控制逆变器原理 本文研究的对象为单相全桥电压源逆变器,如图1所示。4只功率开关管分为2组,其中VT1和VT4为一组,VT2和VT3为一组,输入直流电压ui经2组开关交替导通和关断,得到输出交流方波电压ud,再经LC低通滤波器后得到交流正弦输出电压uo。假设负载为纯电阻负载,同时忽略电感和电容的串联等效电阻。要使输出电压uo跟踪参考电压信号uref,最基本的控制方法是电压模式闭环反馈PID控制,一般需要引入积分环节来提高稳态精度,仅有比例环节很难实现输出电压稳定跟踪,但是引入积分环节又会带来一些问题,如降低系统稳定性和影响动态性能。此外,在输入端由于实际逆变器中直流输入电压并不是恒定不变的,在仅有反馈的情况下输出电压受输入电压波动的影响。为此,在传统电压模式结构基础上,考虑在无积分环节时仍能保证输出电压的稳态精度,同时引入输入电压前馈来消除其波动对输出电压的影响。本文所提前馈型电压模式控制原理如图2所示,在PWM时引入输入电压前馈,由于稳态时输入/输出电压在一个开关周期存在固有的占空比关系,因此由输入/输出电压可以利用PWM 比较器和积分复位电路得到稳态占空比,即稳态时可得d=g(ui,uo),

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

逆变器的下垂控制

下垂控制的原理是什么。? 下垂控制是并网逆变器的常用控制原理,但是具体下垂控制的深层原理和物理含义是什么啊?查到的几乎所有的文献对此都是基于下垂控制XXXX、仿照同步发电机下垂特性XXXX,却没有一个真正说清楚仿照哪了,电机书上对同步发电机的下垂特性也没讲清楚其物理原理。向各位知乎大神求教,我看网上也有很多问这个的却没有一个回答说清楚的。 添加评论 分享 简单来说,所谓下垂控制就是选择与传统发电机相似的频率一次下垂特性曲线(Droop Character)作为微源的控制方式,即分别通过P/f下垂控制和Q/V下垂控制来获取稳定的频率和电压,这种控制方法对微源输出的有功功率和无功功率分别进行控制,无需机组间的通信协调,实现了微源即插即用和对等控制的目标,保证了孤岛下微电网内电力平衡和频率的统一,具有简单可靠的特点。—————————————————————————————————————————— 补充说一说。 学过电机学都知道,发电机有个功角特性曲线,其中凸极同步发电机的 无功功率表达式是: 有功 功率表达式: 我们可以看出,通过控制U和功角来控制有功功率P和无功功率Q。那么反过来, 可以通过控制有功功率P和无功功率Q来控制U和功角 所以, 微电网中的常规下垂控制是通过模拟传统发电机的下垂特性,实现微电网中微电源的并联运行。其实质为:各逆变单元检测自身输出功率,通过下垂特性得到输出电压频率和幅值的指令值,然后各自反相微调其输出电压幅值和频率以达到系统有功和无功功率的合理分配。 逆变器输出电压频率和幅值的下垂特性为:

其中w0,U0分别为逆变器输出的额定角频率,额定电压。kp,kq为逆变器下垂系数。P,Q 分别为逆变器实际输出的有功功率和无功功率。P0,Q0分别为逆变器额定有功和无功功率。 由上式我们可以得到三相逆变器常规的P-f 和Q-U 下垂控制框图。 注:常规下垂控制是在系统并联逆变器的输出端等效阻抗为大电感的条件下推导得到的。然而不同电压等级的连接线路对应不同的阻感比。 在电压等级较低的线路中,阻感比相对较高。 加之每个逆变器到交流母线的距离不同,线路越长,线路电阻越大,可能会导致线路电阻相对线路感抗较大,常规下垂控制已经不能满足低压微电网控制的需求。 所以就有了一种改进型功率耦合下垂控制策略。 因为低压微电网中线路阻抗的影响已经不能完全忽视,有功功率和无功功率对电压和频率的调节存在耦合关系。 逆变电源输出的有功功率P和无功功率Q可以写为: 单台逆变器到交流母线的功率传输示意图:

一种数字控制SPWM逆变器的设计

一种数字控制SPWM逆变器的设计 王伟,尹真,黎昌浪 (西北工业大学,陕西西安710072) 摘要:研究了一种数字控制逆变器,采用智能功率模块Ps21865,减少了系统的复杂性,提高系统的可靠性。分析了单极性sPwM控制策略的优点和应用场合,给出了基于转速/电流双闭环控制的sPwM 阈制策略,完成了对直流变频空调压缩机的控制,并给出实验波形。 关键词:sPwM逆变器;单极性;智能功率模块;双闭环控制 O引言 随着电力电子技术的发展,各种逆变器在各行业中应用十分广泛。具有高速运算能力的DsP的问世,使逆变器控制的全数字化成为现实,许多先进的现代控制理论和方法在逆变器中得到应用,使逆变器的稳定性和可靠性大幅度提高。目前正弦脉宽调制技术SPwM是应用最广泛的技术。与PwM方波驱动相比,正弦波驱动时无刷直流电动机的机械特性和转矩特性并无明显变化,但是采用正弦波驱动方式的无刷直流电动机,具有效率高、转矩波动小、噪声低、响应快、调速特性好、运行可靠、控制特性优良等优点。sPwM 制驱动又可以分为单极性驱动和双极性驱动两种。双极性驱动适合于对效率没有要求的高精度伺服应用场合,而对于像家电这类对系统能效有较高要求而调速控制精度要求不是很高场合,更适合采用单极性驱动。本文设计了一种数字控制逆变器,采用智能功率模块和单极性sPwM控制策略,完成了转速/电流双闭环控制。 l逆变器电路设计 常用的电力电子全控型功率半导体器件有晶闸管、功率场效应管、双极型晶体管等。功率场效应管具有开关速度高、电压控制实现简单等优点,但是器件导通时压降较大,且电压、电流容量相对较小;双极型晶体管的优缺点则正好与功率场效应管的优缺点相反。绝缘栅一双极型复合晶体管(以下简称IGBT)是功率场效应管与双极型晶体管所形成的复合器件,综合了两者的优点,广泛应用于各种大中型电力电子装置当中。 各种分立型功率器件需要设计专门的驱动电路才能实现使器件工作在开关状态并获得较低的动静态 损耗的效果,而随着功率器件工作频率不断提高,分立元件固有的引线电感、寄生电容等对器件造成了更

锁相技术

<<频率合成技术>>报告 姓名:曹景鹏 学号:2012029040019 教师:何宗锐

报告要求: 1、锁相技术的发展历史 2、频率合成技术的应用 3、设计锁相电路 一、锁相技术的发展历史 频率源是现代电子系统的重要组成部分,被称为许多电子系统的“心脏”。在通信、雷达和导航等设备中,它既是发射机的激励信号源,又是接收机的本地振荡器;在电子对抗设备中,它可以作为干扰信号发生器;在测试设备中,它可以作为标准信号源。随着现代电工电子技术的不断发展,人们对频率源的要求越来越高。性能卓越的频率源均通过频率合成技术来实现。频率合成技术,就是将一个(或多个)基准频率变换成一个(或多个)合乎质量要求的所需频率的技术。频率合成技术的理论形成于二十世纪三十年代左右,到现在大概经历了三代的发展过程。 1、第一代一直接模拟频率合成(DAFS)技术 直接模拟频率合成(Direct Analog Frequency Synthesis)技术是一种早期的频率合成技术,原理简单,易于实现。它由模拟振荡器产生参考频率源,再经谐波发生器产生一系列谐波,然后经混频、分频和滤波等处理产生大量的离散频率。根据所使用的参考频率的数目不同可分为非相关合成方法和相关合成方法两种类型。非相关合成方法使用多个晶体参考频率源,所需的各种频率分别由这些参考源提供。它的缺点在于制作具有相同频率稳定性和精度的多个晶体参考频率源既复杂又困难,而且成本很高。相关合成方法只是用一个晶体参考频率源,所需的各种频率都由它经过分频、混频和倍频后得到,因而合成器输出频率的稳定性和精度与参考源一样。直接模拟频率合成方法的优点是频率转换时间短、相位噪声低,但由于采用大量的混频、分频、倍频和滤波等模拟硬件设备,使频率合成器的体积大、成本高、结构复杂、容易产生杂散分量,大多数硬件的非线性影响难于抑制。 2、第二代——基于锁相环(PLL)的间接频率合成技术 锁相环是间接频率合成技术中的一个关键部分,它是一个负反馈环路,是一个实现相位自动锁定的控制系统,其输出信号与参考信号相位同步,简称 PLL(Phase Locked Loop)。锁相环主要由鉴相器、低通滤波器和压控振荡器三部分组成。鉴相器通过比较压控振荡器的输出信号和参考信号从而产生相位控制信号。相位控制信号通过低通滤波器后直接控制压控振荡器的输出。当输出信号与参考信号相位一致时,锁相环输出信号锁定参考信号,环路进入“锁定”状态,此时输出信号取得和参考信号一致的频率和相位。当环路已经处于锁定状态时,如果输入参考信号的频率和相位发生变化,通过环路的控制作用,压控振荡器的频率和相位能不断跟踪输入参考信号频率的变化而变化,使环路重新进入锁定状态,这种动态过程称为环路的“跟踪”过程。基于锁相环的间接频率合成技术,又称为锁相式频率合成技术,是在四十年代初根据控制理论的线性伺服环路发展起来的,它利用锁相技术实现频率的加、减、乘、除,即把一个或多个基准频率源,通过谐波发生器、混频和分频等一系列非线性器件,产生大量的谐波或组合频率,然后用锁相环把压控振荡器的频率锁定在某一组合频率上,由压控振荡器间接产生所需要的频率输出。

逆变器控制技术中国专利现状分析

逆变器控制技术中国专利现状分析 发表时间:2019-07-08T09:45:52.650Z 来源:《电力设备》2019年第4期作者:魏小凤郑植1 [导读] 摘要:可再生能源发电并网逆变器技术是近年来的发展热点,而逆变器技术中,其控制尤为重要,包括最大功率跟踪(MPPT)、能量变换、无功补偿与谐波抑制、故障穿越、孤岛等,因此,为了更全面了解我国逆变器控制技术的发展,本文针对可再生能源发电并网逆变器技术的国内专利进行了检索,并针对其控制技术进行系统分析,以期获得相关关键技术的发展现状,进而助力我国新能源的发展。 (国家知识产权局专利局专利审查协作天津中心天津 300300)摘要:可再生能源发电并网逆变器技术是近年来的发展热点,而逆变器技术中,其控制尤为重要,包括最大功率跟踪(MPPT)、能量变换、无功补偿与谐波抑制、故障穿越、孤岛等,因此,为了更全面了解我国逆变器控制技术的发展,本文针对可再生能源发电并网逆变器技术的国内专利进行了检索,并针对其控制技术进行系统分析,以期获得相关关键技术的发展现状,进而助力我国新能源的发展。 关键词:可再生能源发电;并网逆变器;控制引言 在当今能源紧缺的严峻形式下,光伏风力等可再生能源并网发电技术已经成为不少国家大力发展的一项技术,而逆变器是其中的关键技术[1-2],分析逆变器控制技术的发展现状非常有必要。 本文针对可再生能源发电并网逆变器技术的国内外专利进行了检索,本次检索在德温特世界专利索引数据库(DWPI)中进行,检索截止日期为2018年8月21日,得到3655篇关于逆变器技术的专利申请。按照技术原创国将在华专利申请分为中国专利申请和国外来华专利申请,从控制技术方面对中国发明专利申请和国外来华专利申请进行了标引,分别从各技术分支占比以及申请趋势两方面对中国专利申请和国外来华专利申请进行对比分析,以期根据二者的差异性,得到相关的结论。 1各技术分支占比图1、2分别示出了中国专利申请和国外来华专利申请的逆变器控制分支占比。根据图1、2可以看出,二者的重点均放在MPPT、能量变换控制以及无功补偿与谐波抑制三个分支上,且国外来华专利申请中,MPPT占比稍大,而中国专利申请中,能量变换控制占比稍大,无功补偿与谐波抑制占比二者相当。其次,关于故障穿越以及孤岛检测技术方面,二者均占比较小。 2各技术分支申请趋势图3、4分别示出了中国专利申请和国外来华专利申请的逆变器控制分支专利申请趋势,由图3、4可知,中国的专利申请的各控制技术分支申请量从2011年开始到2014年为增长趋势,到2015年各分支申请量均大幅降低,从2015至2017年呈上升且波动变化;而国外来华专利申请中各拓扑技术分支从2009年到2011年为增长趋势,自2011年以后为下降波动趋势。可见,单从趋势上来看,国外关于逆变器各控制分支相关技术早于中国。而在具体到各控制技术分支中时,MPPT、能量变换控制以及无功补偿与谐波抑制是三个最受关注的研究分支。MPPT注重于发出能量的最大化,能量变换控制侧重于能量转化的效率,而无功补偿与谐波抑制则是可再生能源发出的电能能够并网到大电网系统中的基础性的关键技术,只有通过有效的无功补偿控制并滤除谐波才能将稳定性相对很差的可再生能源发出的电能馈送到电网系统当中,因此,无论是国内还是国外的申请人都在无功补偿与谐波抑制方面给予了相当的重视,国内申请人的申请量在近几年的攀升势头更是十分强劲。

锁相的意义是相位同步的自动控制

锁相的意义是相位同步的自动控制,能够完成两个电信号相位同步的自动控制闭环系统叫做锁相环,简称PLL。它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域。锁相环主要由相位比较器(PC)、压控振荡器(VCO)。低通滤波器三部分组成,如图1所示。 图1 压控振荡器的输出Uo接至相位比较器的一个输入端,其输出频率的高低由低通滤波器上建立起来的平均电压Ud大小决定。施加于相位比较器另一个输入端的外部输入信号Ui与来自压控振荡器的输出信号Uo相比较,比较结果产生的误差输出电压UΨ正比于Ui和Uo两个信号的相位差,经过低通滤波器滤除高频分量后,得到一个平均值电压Ud。这个平均值电压Ud朝着减小VCO输出频率和输入频率之差的方向变化,直至VCO输出频率和输入信号频率获得一致。这时两个信号的频率相同,两相位差保持恒定(即同步)称作相位锁定。 图2 当锁相环入锁时,它还具有“捕捉”信号的能力,VCO可在某一范围内自动跟踪输入信号的变化,如果输入信号频率在锁相环的捕捉范围内发生变化,锁相环能捕捉到输人信号频率,并强迫VCO锁定在这个频率上。锁相环应用非常灵活,如果输入信号频率f1不等于VCO输出信号频率f2,而要求两者保持一定的关系,

例如比例关系或差值关系,则可以在外部加入一个运算器,以满足不同工作的需要。过去的锁相环多采用分立元件和模拟电路构成,现在常使用集成电路的锁相环, CD4046是通用的CMOS锁相环集成电路,其特点是电源电压范围宽(为 3V -18V),输入阻抗高(约100MΩ),动态功耗小,在中心频率f0为10kHz下功耗仅为600μW,属微功耗器件。图2是CD4046的引脚排列,采用 16 脚双列直插式,各引脚功能如下: 1 脚相位输出端,环路人锁时为高电平,环路失锁时为低电平。2脚相位比较器Ⅰ的输出端。3脚比较信号输入端。4脚压控振荡器输出端。5脚禁止端,高电平时禁止,低电平时允许压控振荡器工作。6、7脚外接振荡电容。8、16脚电源的负端和正端。9脚压控振荡器的控制端。10脚解调输出端,用于FM解调。11、12脚外接振荡电阻。13脚相位比较器Ⅱ的输出端。 14脚信号输入端。15脚内部独立的齐纳稳压管负极。 图3 图3 是CD4046内部电原理框图,主要由相位比较Ⅰ、Ⅱ、压控振荡器(VCO)、

相关文档