文档库 最新最全的文档下载
当前位置:文档库 › (非常好)等差等比数列基础知识点以及练习题(含答案)

(非常好)等差等比数列基础知识点以及练习题(含答案)

(非常好)等差等比数列基础知识点以及练习题(含答案)
(非常好)等差等比数列基础知识点以及练习题(含答案)

2013一、等差等比数列基础知识点

(一)知识归纳: 1.概念与公式:

①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;

2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2

)

1(2)(11d n n na a a n S n n -+=+=

②等比数列:1°.定义若数列q a a a n

n n =+1

}{满足

(常数)

,则}{n a 称等比数列;2°.通项公式:;1

1k

n k n n q

a q

a a --==3°.前n 项和公式:),1(1)

1(111≠--=--=

q q

q a q q a a S n n n 当q=1时.1na S n = 2.简单性质:

①首尾项性质:设数列,,,,,:}{321n n a a a a a Λ

1°.若}{n a 是等差数列,则;23121Λ=+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121Λ=?=?=?--n n n a a a a a a

②中项及性质:

1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2

b

a A +=

2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质:

1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n

n k k

k

k

a

a a 1

2131

2,,则

组成公差为n 2d 的等差数列;

2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=n

k n

n k n

n k k

k

k

a

a a 1

21

31

2,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为

偶数时这个结论不成立)

⑤若}{n a 是等比数列,

则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,,ΛΛΛ++++组成公比这2

n q 的等比数列. ⑥若}{n a 是公差为d 的等差数列,

1°.若n 为奇数,则,,:(2

1+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶

数项的和);

2°.若n 为偶数,则.2

nd

S S =

-奇偶 (二)学习要点:

1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.

2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.

3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或

q

a

,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,33

3

2

aq aq q a q

a aq aq aq a ±±或

”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:

(Ⅰ)已知

c

b a 1

,1,1成等差数列,求证: (1)c b a b a c a c b +++,

,成等差数列; (2)2

,2,2b

c b b a ---成等比数列.

[解析]该问题应该选择“中项”的知识解决,

.

2,2,2,

)2(4)(2)2)(2)(2(;

,,.)(2)()(2)()1(),(222112222

22

2成等比数列成等差数列b

c b b a b

b c a b ac b c b a c b a b a c a c b b

c a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac b ac c a b c a ---∴-=++-=--+++∴+=++=+++=

+++=++++=?=+?=+ΘΘ

[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,.

(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为 ① ②

2128,求项数n.

[解析]设公比为242

1281024

,142531==-n n a a a a a a a q ΛΛΘ

)1(2

42

11=??-n q

a

.7,2

35

25,2)2()1(,2)(2

)1(2212810242

352

52

35

2

1

12

353211235321==∴

==??=-+??=?=-++n n q a n q a a a a a n

n n n 得代入得将而ΛΛ

(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:

,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列Λ

求数列.}{项和的前n k n

[解析],,,,1712

51751a a a a a a ?=∴成等比数列Θ

.

131

31

32}{,

132)1(2)1(323,34}{,2,00)2()16()4(111

111

115111121--=---?=-?=-+=-+=?=?=∴=+==

∴=∴≠=-?+?=+?---n n S n k k d k d d k a a d a a a d

a a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列Θ

[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:

(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.

[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d ,a ,a +d ,则有

.

9

338

,926,9250,10,2,9

26

10,388,0643231680

3232))(()4()32)((22

2

22或原三数为或得或∴===∴=+-???

???+==-+??????+-=-=++-a d d d d d a a d d d a d a a a d a d a

(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,

①②

①,②

??

?=+=-????=+=-∴+<-+-?=?==+-?=+?∈=++++-+-∴*25

21251,,,

2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与ΘΘ

解得∴==),(1262不合或a a 所求四数为47,57,67,77

[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.

1、如果一个数列既是等差数列,又是等比数列,则此数列( )

(A )为常数数列 (B )为非零的常数数列(C )存在且唯一 (D )不存在

等差数列 等比数列

?a n -a n-1=d (定义) ?2a n =a n-1+a n+1(等差中项) ?a n =a m +(n-m)d (通项公式)

?m+n=p+q a m +a n =a p +a q (通项公式) ?S 1=a 1 ?a n =S n -S n-1

?a 1+a n =a 2+a n-1=a 3+a n-2…(在等差数列中,首末两项距离相等的两项和等于首末两项的和)[e.g.? a 7+a 8=a 1+a 14?2a 10=a 5+a 15]

?S n =

?S 2n-1=(2n-1)a n

? S n , S 2n -S n , S 3n -S 2n ,…, S kn -S (k-1)n 成等差数

列,公差d=n 2d

?=q (定义)

?a n 2=a n-1a n+1 (等差中项) ?a n =a m q n-m (通项公式) ?m+n=p+q a m a n =a p a q (通项公式) ?S 1=a 1 ?a n =S n -S n-1

?S n , S 2n -S n , S 3n -S 2n ,…, S kn -S (k-1)n 成等比数列,

q=q n

2.、在等差数列

{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为( )

(A )13+=n a n

(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a

3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则

y

c

x a +的值为( ) (A )

2

1

(B )2- (C )2(D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,

y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )

(A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列

{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为( )

(A )22-=n a n

(B )28-=n a n (C )12-=n n a (D )n n a n -=2

6、已知))((4)(2z y y x x z

--=-,则( )

(A )z y x ,,成等差数列 (B )z y x ,,成等比数列(C )

z y x 1,1,1成等差数列 (D )z

y x 1

,1,1成等比数列 7、数列

{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )

①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列

(A )4 (B )3 (C )2 (D )1

8、数列1

?,16

1

7,815,413,21,前n 项和为( ) (A )1212+-n n (B )212112+-+n n (C )12

12+--n n n (D )212112

+--+n n n

9、若两个等差数列

{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=

n n B A n

n

,则

13

5135b b a a ++的值为( )

(A )

9

7

(B )

7

8

(C )

2019(D )8

7

10、已知数列

{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( )

(A )56 (B )58 (C )62 (D )60

11、已知数列

{}n a 的通项公式5+=n a n

为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列

的前n 项和为( )

(A )2)133(+n n (B )53+n

(C )23103-+n n (D )2

31031-++n n

12、下列命题中是真命题的是( )

A .数列

{}n a 是等差数列的充要条件是q pn a n

+=(0≠p )

B .已知一个数列{}n a 的前n 项和为a bn an S n

++=2,如果此数列是等差数列,那么此数列也是等比数列 C .数列

{}n a 是等比数列的充要条件1-=n n

ab a

D .如果一个数列{}n a 的前n 项和c ab S n n

+=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a

二、填空题

13、各项都是正数的等比数列

{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =

14、已知等差数列

{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18

621751a a a a a a ++++=

15、已知数列

{}n a 满足n n

a S 4

1

1+=,则n a =

16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 一、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n

b a 是公比为q 的等比数列,46,10,132

1===b b b ,求公比q 及n b 。

18、已知等差数列{}n a 的公差与等比数列{}n b 的公比相等,且都等于d )1,0(≠>d d ,11b a = ,333b a =,55

5b a =,求n n b a ,。

19、有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数。 20、已知{}n a 为等比数列,324202,3

a a a =+=,求{}n a 的通项式。

21、数列

{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥ (Ⅰ)求

{}n a 的通项公式;

(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T

22、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列

{}n a 的通项公式;

(II )若数列

{}n b 满足1

2

1114.4...4(1)()n

n

b b b b n a n N ---*=+∈,证明:{}n b 是等差数列;

数列综合题

一、选择题

二、 填空题 13.

251+14. 292615. n

)3

1(34-16. ±63 三、解答题

17.a 1b =a 1,a 2b =a 10=a 1+9d ,a 3b =a 46=a 1+45d

由{a bn }为等比数例,得(a 1+9d )2=a 1(a 1+45d )得a 1=3d ,即a b 1=3d ,a b 2=12d ,a b 3=48d . ∴q =4 又由{a bn }是{a n }中的第b n a 项,及a bn =a b 1·4n -1=3d ·4n -1,a 1+(b n -1)d =3d ·4n -1 ∴b n =3·4n -1-2

18.∴a 3=3b 3 , ∴a 1+2d =3a 1d 2 ,∴a 1(1-3d 2)=-2d ① Θa 5=5b 5, ∴a 1+4d =5a 1d 4 , ∴a 1(1-5d 4)=-4d ②

②①,得24

3151d d --=2,∴d 2=1或d 2=5

1,由题意,d =55,a 1=-5。∴a n =a 1+(n -1)d =55(n -6) b n =a 1

d n -1=-5·(55)n -1 19.设这四个数为

a aq aq a q

a

-2,,, 则??

???=-++=?36)3(216·a aq aq a aq a q a

②① 由①,得a 3=216,a =6 ③ ③代入②,得3aq =36,q =2 ∴这四个数为3,6,12,18 20.解: 设等比数列{a n }的公比为q , 则q ≠0, a 2=a 3q = 2

q , a 4=a 3q =2q

所以 2q + 2q =203 , 解得q 1=1

3

, q 2= 3,

当q 1=13, a 1=18.所以 a n =18×(13)n -1=183n -1 = 2×33-

n .

当q =3时, a 1= 29 , 所以a n =29

×3n -1=2×3n -

3.

21.解:(I)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得

()112,32n n n n n a a a a a n ++-==≥

又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3得等比数列

∴1

3n n a -=

(Ⅱ)设{}n b 的公差为d

由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+ 又1231,3,9a a a ===

由题意可得()()()2

515953d d -+++=+ 解得122,10d d ==

∵等差数列{}n b 的各项为正,∴0d > ∴2d =

∴()

213222

n n n T n n n -=+

?=+ 22(I ):*

121(),n n a a n N +=+∈Q

112(1),n n a a +∴+=+

{}1n a ∴+是以112a +=为首项,2为公比的等比数列。

12.n n a ∴+=

即 2*

21().n a n N =-∈

(II )证法一:121

11

44 (4)

(1).n n b b b b n a ---=+Q

12(...)42.n n b b b n nb +++-∴=

122[(...)],n n b b b n nb ∴+++-=①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②

②-①,得112(1)(1),n n n b n b nb ++-=+-

即1(1)20,

n n n b nb +--+=③

21(1)20.n n nb n b ++-++=④

④-③,得 2120,n n n nb nb nb ++-+=

即 2120,n n n b b b ++-+=

*211(),n n n n b b b b n N +++∴-=-∈

{}n b ∴是等差数列。

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

等差等比数列基础练习题

针对练习A1:等差数列 一、填空题 1. 等差数列8,5,2,…的第20项为___________. 2. 在等差数列中已知a 1=12, a 6=27,则d=___________ 3. 在等差数列中已知13 d =-,a 7=8,则a 1=_______________ 4. 2()a b +与2()a b -的等差中项是_______________ 5. 等差数列-10,-6,-2,2,…前___项的和是54 6. 正整数前n 个数的和是___________ 7. 数列{}n a 的前n 项和23n S n n -=,则n a =___________ 8. 已知数列{}n a 的通项公式a n =3n -50,则当n=___时,S n 的值最小,S n 的最小值是_______。 二、选择题 1. 一架飞机起飞时,第一秒滑跑 2.3米,以后每秒比前一秒多滑跑4.6米,离地的前一秒滑跑66.7米, 则滑跑的时间一共是( ) A. 15秒 B.16秒 C.17秒 D.18秒 2. 在等差数列{}n a 中31140a a +=,则45678910a a a a a a a -+++-+的值为( c ) A.84 B.72 C.60 D.48 3. 在等差数列{}n a 中,前15项的和1590S = ,8a 为(A ) A.6 B.3 C.12 D.4 4. 等差数列{}n a 中, 12318192024,78a a a a a a ++=-++=,则此数列前20下昂的和等于( ) A.160 B.180 C.200 D.220 5. 在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.45 B.75 C.180 D.300 6. 若lg2,lg(21),lg(23)x x -+成等差数列,则x 的值等于( ) A.0 B. 2log 5 C. 32 D.0或32 7. 设n S 是数列{}n a 的前n 项的和,且2n S n =,则{}n a 是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,且是等比数列 D.既不是等差数列也不是等比数列 8. 数列3,7,13,21,31,…的通项公式是( ) A. 41n a n =- B. 322n a n n n =-++ C. 21n a n n =++ D.不存在

等差等比数列的证明例举

等差等比数列的证明 在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。 一、基础知识: 1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差), 1 n n a q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =?≠(等比) (3)前n 项和:2n S An Bn =+(等差),n n S k q k =-(等比) (4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比) (2)也可利用等差等比中项来进行证明,即n N * ?∈,均有: 122n n n a a a ++=+(等差) 2 12n n n a a a ++=?(等比) 二、典型例题: 例1:已知数列{}n a 的首项1133,,521 n n n a a a n N a *+= =∈+. 求证:数列11n a ?? -? ??? 为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在 1 n a 这样的倒数,所以考虑递推公式两边同取倒数:113121 213n n n n n n a a a a a a +++= ?=+ 即 1121 33n n a a +=+ ,在考虑构造“1-”:112111111333n n n a a a +?? -=+-=- ??? 即数列11n a ??-? ??? 是公比为1 3的等比数列

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

二-等差等比数列性质练习题(含答案)以及基础知识点

一、等差等比数列基础知识点 (一)知识归纳: 1.概念与公式: ①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列; 2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2 ) 1(2)(11d n n na a a n S n n -+=+= ②等比数列:1°.定义若数列q a a a n n n =+1 }{满足 (常数),则}{n a 称等比数列;2°.通项公式:;11k n k n n q a q a a --==3°.前n 项和公式:),1(1) 1(111≠--=--= q q q a q q a a S n n n 当q=1时.1na S n = 2.简单性质: ①首尾项性质:设数列,,,,,:}{321n n a a a a a 1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =?=?=?--n n n a a a a a a ②中项及性质: 1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2 b a A += 2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质: 1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k n n k k k k a a a 1 21 31 2,,则 组成公差为n 2d 的等差数列;

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

(完整版)高二等差、等比数列基础练习题及答案

等差、等比数列基础练习题及答案 一、选择题 1.数列{a n}满足a1=a2=1,,若数列{a n}的前n项和为S n,则S2013的值为() A. 2013 B. 671 C. -671 D. 2.已知数列{a n}满足递推关系:a n+1=,a1=,则a2017=() A. B. C. D. 3.数列{a n}的前n项和为S n,若S n=2n-1(n∈N+),则a2017的值为() A. 2 B. 3 C. 2017 D. 3033 4.已知正项数列{a n}满足,若a1=1,则a10=() A. 27 B. 28 C. 26 D. 29 5.若数列{a n}满足:a1=2,a n+1=,则a7等于() A. 2 B. C. -1 D. 2018 6.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=() A. 49 B. 42 C. 35 D. 28 7.等差数列{a n}中,若a1,a2013为方程x2-10x+16=0两根,则 a2+a1007+a2012=() A. 10 B. 15 C. 20 D. 40 8.已知数列{a n}的前n项和,若它的第k项满足2<a k<5,则k=() A. 2 B. 3 C. 4 D. 5

9.在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a10,则k=() A. 45 B. 46 C. 47 D. 48 10.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=() A. 66 B. 55 C. 44 D. 33 二、填空题 1.已知数列{a n}的前n项和S n=n2+n,则该数列的通项公式 a n=______. 2.正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么 a n=______. 3.若数列{a n}满足a1=-2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=______;数列{a n}前10项的和S10=______. 4.数列{a n}中,已知a1=1,若,则a n=______,若,则a n=______. 5.已知数列{a n}满足a1=-1,a n+1=a n+,n∈N*,则通项公式a n= ______ . 6.数列{a n}满足a1=5,-=5(n∈N+),则a n= ______ . 7.等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,则数列{a n}前9项的和S9等于______.

证明或判断等差(等比)数列的常用方法

证明或判断等差(等比)数列的常用方法 湖北省 王卫华 玉芳 翻看近几年的高考题,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢且听笔者一一道来. 一、利用等差(等比)数列的定义 在数列 {} n a 中,若 1n n a a d --=(d 为常数)或 1 n n a q a -=(q 为常数),则数列{}n a 为等差(等比)数列.这是证明数列{}n a 为等差(等比)数更最主要的方法.如: 例1.(2005北京卷)设数列{}n a 的首项114a a =≠,且11 214 n n n a n a a n +???=??+??为偶数为奇数 , 记211 1234 n n b a n -=-=,,,,…. (Ⅰ)求23a a ,;(Ⅱ)判断数列{}n b 是否为等比数列,并证明你的结论. 解:(Ⅰ)213211111 44228a a a a a a =+=+==+,; (Ⅱ)43113428a a a =+=+,所以54113 2416 a a a ==+, 所以1123351111111144424444b a a b a a b a a ????=- =-=-=-=-=- ? ????? ,,, 猜想:{}n b 是公比为 1 2 的等比数列. 证明如下:因为121221111111()424242 n n n n n b a a a b n *++-??=-=-=-=∈ ???N , 所以{}n b 是首项为14a - ,公比为1 2 的等比数列. 评析:此题并不知道数列{}n b 的通项,先写出几项然后猜测出结论,再用定义证明,这是常规做法。

等差等比数列基础练习题一

等差数列练习题 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、 -101 C、101 D、-89 2.等差数列{a n}中,a15=33, a45=153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为() A、4 B、5 C、 6 D、不存在 4、等差数列{a n}中,a1+a7=42, a10-a3=21,则前10项的S10等于() A、 720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么 a :b 等于() A、 B、 C、或 1 D、 6、已知数列{a n}的前n项和S n=2n2-3n,而a1,a3,a5,a7,……组成一新数 列{C n},其通项公式为() A、 C n=4n-3 B、 C n=8n-1 C、C n=4n-5 D、C n=8n-9 7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30 若此数列的最后一项比第-10项为10,则这个数列共有() A、 6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1=25, b1=75,且a100+b100=100,则数列{a n+b n}的前100项和为() A、 0 B、 100 C、10000 D、505000

二、填空题 9、在等差数列{a n}中,a n=m,a n+m=0,则a m= ______。 10、在等差数列{a n}中,a4+a7+a10+a13=20,则S16= ______ 。 11.在等差数列{a n}中,a1+a2+a3+a4=68,a6+a7+a8+a9+a10=30,则从a15到 a30的和是 ______ 。 12.已知等差数列 110, 116, 122,……,则大于450而不大于602的各 项之和为 ______ 。 三、解答题 13.已知等差数列{a n}的公差d=,前100项的和S100=145 求: a1+a3+a5+……+a99的值。 14.已知等差数列{a n}的首项为a,记 (1)求证:{b n}是等差数列 (2)已知{a n}的前13项的和与{b n}的前13的和之比为 3 :2,求{b n}的公差。

高中数列基本公式大全

一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、 a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时, a n是一个常数。 3、等差数列的前n项和公式:S n= S n= S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。 4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n= S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则

4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{a n}为等差数列,则 (c>0)是等比数列。 12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。 13. 在等差数列中: (1)若项数为,则 (2)若数为则,, 14. 在等比数列中:

等差数列、等比数列基础题

等差、等比数列 一、选择题: 1.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d = A.-2 B.-12 C.12 D.2 2、在等比数列{n a }中,44a =,则26a a ?等于( ) A. 4 B. 8 C. 16 D. 32 3、在等比数列{n a }中,333S a =,则其公比q 的值为( ) A. 12- B. 12 C. 1或12- D.1-或12 4.已知为等差数列,,则等于 A. -1 B. 1 C. 3 D.7 5、如果-1,a,b,c,-9成等比数列,那么( ) A.b=3,ac=9 B.b=-3,ac=9 C.b=3,ac=-9 D.b=-3,ac=-9 6、设{}n a 是公比为正数的等比数列,若a 1=1,a 5=16,则数列{}n a 的前7项的和为( ) A.63 B.64 C.127 D.128 7.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 A .1 B 53 C.- 2 D 3 8、设等比数列{}n a 的公比q=2,前n 项和为n S ,则24a S 等于( ) A.2 B.4 C.215 D.2 17 9、设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( ) A.3 B.4 C.5 D.6 10、已知各项均为正数的等比数列{}n a ,123a a a =5,789a a a =10,则456a a a =( ) A. 52 B. 7 C. 6 D. 42 二、填空题: 11、已知{}n a 是等比数列,22=a ,434=-a a ,则此数列的公比=q _________; 12、设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则=k _________; 13、若数列{}n a 的前n 项和n S a n -=3,数列{}n a 为等比数列,则实数a 的值是_________;

数列公式汇总

数列公式汇总

人教版数学必修五 第二章数列重难点解析 第二章课文目录 2.1 数列的概念与简单表示法 2.2 等差数列 2.3 等差数列的前n项和 2.4 等比数列 2.5 等比数列前n项和 【重点】 1、数列及其有关概念,通项公式及其应用。 2、根据数列的递推公式写出数列的前几项。 3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。 4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。 5、等比数列的定义及通项公式,等比中项的理解与应用。 6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式 【难点】 1、根据数列的前n项观察、归纳数列的一个通项公式。 2、理解递推公式与通项公式的关系。 3、等差数列的性质,灵活应用等差数列的定义及性质 10

10 解决一些相关问题。 4、灵活应用等差数列前n 项公式解决一些简单的有关问题。 5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。 6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。 一、数列的概念与简单表示法 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. ⒊数列的一般形式: ,,,,,3 2 1 n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 ⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 注意:⑴并不是所有数列都能写出其通项公式,如上述数列④; ⑵一个数列的通项公式有时是不唯一的,如数列:

(完整版)高二等差、等比数列基础练习题及答案.doc

等差、等比数列基础练习题及答案 一、选择题 1. 数列 { a n } 满足 a 1=a 2=1, ,若数列 { a n } 的前 n 项和为 S n 2013 ) ,则 S 的值为( A. 2013 B. 671 C. -671 D. 2.已知数列 { a n } 满足递推关系: a n+1= , a 1= ,则 a 2017=( ) A. B. C. D. 3.数列 { a n } 的前 n 项和为 S n ,若 S n =2n-1(n ∈N +),则 a 2017 的值为 ( ) A. 2 B. 3 C. 2017 D. 3033 4. 已知正项数列 { a n } 满足 ,若 a 1=1,则 a 10= ( ) A. 27 B. 28 C. 26 D. 29 5. 若数列 {a n } 满足: a 1=2 ,a n+1= ,则 a 7 等于( ) A. 2 B. C. -1 D. 2018 6. 已知等差数列 { a n n 6 3 7 ) } 的前 n 项和为 S ,若 2a =a +6,则 S =( A. 49 B. 42 C. 35 D. 28 7. 等差数列 { a n } 中,若 a 1,a 2013 为方程 x 2 -10x+16=0 两根,则 a 2+a 1007+a 2012=( ) A. 10 B. 15 C. 20 D. 40 8. 已知数列 { a n } 的前 n 项和 ,若它的第 k 项满足 2<a k <5, 则 k=() A.2 B.3 C.4 D.5

9.在等差数列 { a n} 中,首项 a1=0,公差 d≠0,若 a k=a1+a2+a3+ +a10,则 k=() A. 45 B. 46 C. 47 D. 48 10.已知 S n是等差数列 { a n} 的前 n 项和,则 2(a1+a3+a5)+3(a8+a10)=36,则 S11=() A. 66 B. 55 C. 44 D. 33 二、填空题 1.已知数列 { a n} 的前 n 项和 S n=n2+n,则该数列的通项公式 a n=______. 2.正项数列 { a n} 中,满足 a1=1,a2= , = (n∈N*),那么 a n=______. 3.若数列 {a n} 满足 a1=-2,且对于任意的 m,n∈N*,都有 a m+n=a m+a n,则 a3=______;数列 { a n} 前 10 项的和 S10=______. 4. 数列 { a n} 中,已知 a1=1,若,则 a n=______,若,则 a n =______. 5.已知数列{ a n 1 n+1 n *,则通项公式a n = } 满足 a =-1 ,a =a + ,n∈N ______ . 6. 数列 { a n} 满足 a1=5,- =5(n∈N+),则 a n= ______ . 7. 等差数列 { a n} 中, a1+a4+a7=33,a3+a6+a9=21,则数列 { a n} 前 9 项的和 S9等于 ______.

等差等比数列练习题(含答案)

一、选择题 1、如果一个数列既是等差数列,又是等比数列,则此数列 ( ) (A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列 {}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( ) (A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则 y c x a +的值为 ( ) (A ) 2 1 (B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项, y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ) (A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列 {}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( ) (A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=2 6、已知))((4)(2z y y x x z --=-,则 ( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C ) z y x 1,1,1成等差数列 (D )z y x 1 ,1,1成等比数列 7、数列 {}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( ) ①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列 (A )4 (B )3 (C )2 (D )1 8、数列1 ?,16 1 7,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212 112 +--+n n n 9、若两个等差数列 {}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足 5 524-+= n n B A n n ,则 13 5135b b a a ++的值为 ( ) (A ) 9 7 (B ) 7 8 (C ) 2019 (D )8 7 10、已知数列 {}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) (A )56 (B )58 (C )62 (D )60 11、已知数列 {}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列 的前n 项和为 ( )

数列公式汇总

人教版数学必修五 第二章 数列 重难点解析 第二章 课文目录 2.1 数列的概念与简单表示法 2.2 等差数列 2.3 等差数列的前n 项和 2.4 等比数列 2.5 等比数列前n 项和 【重点】 1、数列及其有关概念,通项公式及其应用。 2、根据数列的递推公式写出数列的前几项。 3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。 4、等差数列n 项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。 5、等比数列的定义及通项公式,等比中项的理解与应用。 6、等比数列的前n 项和公式推导,进一步熟练掌握等比数列的通项公式和前n 项和公式 【难点】 1、根据数列的前n 项观察、归纳数列的一个通项公式。 2、理解递推公式与通项公式的关系。 3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。 4、灵活应用等差数列前n 项公式解决一些简单的有关问题。 5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。 6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。 一、数列的概念与简单表示法 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. ⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 ⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 注意:⑴并不是所有数列都能写出其通项公式,如上述数列④; ⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是 2 )1(11 +-+=n n a ,也可以是|21cos |π+=n a n . ⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系: 数列可以看成以正整数集N * (或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

相关文档
相关文档 最新文档