文档库 最新最全的文档下载
当前位置:文档库 › 三维可视化技术在港口规划设计中的应用

三维可视化技术在港口规划设计中的应用

三维可视化技术在港口规划设计中的应用

王庆春

!中交第二航务工程勘察设计院"湖北武汉#$%%&’(

摘要)以*+,-./为主要手段由外业采集的离散资料为基础"全面阐述了数字地形的平面表示0高度真实感三维图形的绘制及系统分析功能的实现1

关键词)*+,2-3/24562三维可视化27.58-9技术

中图分类号):;<’2:;<=文献标识码)>文章编号)’%%$?$;@@!=%%#(%$?%%’’?%$

A B B C D E F G D H IH J K L M N N O P D Q N I R D H I F C S D R T F C D U F G D H IK N E L I D V T N D I

W C F I I D I XF I YP N R D X I D I XH J W H M G R

Z>8-[\]^?_‘a]

!b+5?Za‘c]4d e\^]fb g]e a h i\]^b g j k l"Za‘c]#$%%&’"b‘\]c(

A m R G M F E G)+c n\]^*+,-./c e i‘d o c p g j o d q\a o c]q r c e d q g]i‘d q\e_j d i d q c i c_g h h d_i d q s j g o s\d h q t g j n e"i‘d k c?

k d j d h c r g j c i d e_g o k j d‘d]e\u d h vi‘d k h c]\o d i j\_d w k j d e e\g]g s q\^\i c h i g k g^j c k‘v"i‘d k h g i i\]^g s$4^j c k‘\_e t\i‘

d h d u c i\g]k j d

e d]_d c]qi‘d j d c h\x c i\g]g s i‘d e v e i d o c i\_c]c h v e\e s a]_i\g]e l

y N z{H M Y R)*+,2-3/24562$4u\e a c h\x c i\g]27.58-9i d_‘]\|a d

}应用~K y!W"外业采集原始资料

在进行动态水上测量时"一台作为基准台"提供伪距改

正数"利用数据链发送出去1另一台作为船台"接收此改正

数"以消除星历误差0时钟误差以及电离层影响1进行精确

的立即寻址1加上数字式测深仪同步采集的水深"可得到原

始的水深测量资料1陆域采用*+,-./直接采集数据1

#将原始资料转换成P$%文件格式

#&}456含义

456就是用一组有序的数值数组来表示地表模型程

的模型"它是数字元元地面模型!4+6(的一种"数字元

元地面模型是描述地面形态多种信息空间分布的有序数值

数组"从数学的角度"可以用二维函数系列取值的有序集合

来表示数字元元地面模型的丰富内容和多样形式)

’()*+!,("-((!+)’"="$"."/2()’"="$"."0(

式中)’

(为第(号地面点上第+类特性信息的取值2,

("-(

为第(号地面点的坐标"可以采用任意地面投影的平面坐标2/为地面点的个数1当/)’且*对地面高程的映像" !,("-((为矩阵行列号时"上面的表达式就变成数字元元高程模型"456是4+6的一个子集1它是数字元元地形模型的基础"是各种地学分析0工程设计的重要基础性资料1

收稿日期)=%%$?’’?%#

作者简介)王庆春!’1;&2("男"高级工程师"二航院测量室主任"

从事测绘及软件开发工作1#Lj特点

与传统地形图比较"456作为地形表面的一种数字表达形式有如下特点)

!’(容易以多种形式显示地形信息1地形资料经过计算机软件处理过后"产生多种比例尺的地形图0纵横断面图和立体图1而常规地形图一经制作完成后"比例尺不容易改变或需要人工处理1

!=(精度不会损失1常规地图随着时间的推移"图纸将会变形"失掉原来的精度1而456采用数字元元媒介"因而能保持精度不变1另外"由常规的地图用人工的方法制作其它种类的地图"精度会受到损失"而由456直接输出"精度可得到控制1

!$(容易实现自动化0实时化1常规地图要增加和修改都必须重复相同的工序"劳动强度大而且周期长"而456由于是数字形式的"所以增加和修改地形信息只需将修改信息直接输入计算机"经软件处理后即可得各种地形图1

#&3456的表示方法

由于计算机对矩阵的处理比较方便"特别是以栅格为基础的-3/系统中高程矩阵已成为456最通用的形式1本文以规则格网法生成456数据文件1

规则格网法是把456表示成高程矩阵

456)456"78!6)’"=./27)’"=.0(此时"456来源于直接规则矩形格网采样点或由不规

=%%#年;月

第$期总第’$%期

中国港湾建设

9L D I F:F M m H T M$I X D I N N M D I X

;a]&"=%%#

+g i c h’$%"8g&$

则离散资料点内插产生!

本人编制了一个数据文件格式转换程序"将#$%&’文件转换为紧凑的二进制#$()*文件!()*文件格式为+文件头,)*-).()/后紧跟,)*资料体,)*,.’.!,)* ,.’.记录的是按0或1轴排序的格网点高程资料!

2’/&3’,)*-).()/4

(5&67)89:;;<=>’)2

(5&67)>9:;;<=>’)2",?@区域左下角平面坐

标A B

9"C9D

E75.’,8:;;F=>’)2

E75.’,>:;;F=>’)2"规则格网,?@在0"1轴

方向上的格网间距+G

B"G C

H I’J*:;;F=>’)2

H I’K I:;;F=>’)2"格网,?@在0"1轴方向上

的格网数+0

L"1M

N@>,)*-).()/!

O水下地形的三维可视化模型的建立

O$P=5/7.I(Q RR中的%S)I T U技术

%S)I T U是美国高级图形和高性能计算机公司V T W所开发的三维图形库!%S)I T U适合于广泛计算环境下的三维图形应用编程接口A X Y W D"目前它已成为开放的图形标准!%S)I T U不提供有关描述三维对象造型的高层命令!利用%S)I T U必须由少量几何像素来建立所要求的模型! %S)I T U提供的基本像素有点Z线Z凸多边形"位图或图像! %S)I T U的基本操作是从顶点开始的"通过流水线处理"到最后把像素值写入帧缓存的整个过程中所执行的全部操作!

在Q RR=&H7()/中%S)I T U的一切操作都是基于[Q 上的"所以如何获得[Q"是进行三维显示的前提!在Q R R=&H7()/中利用%S)I T U绘图的一般步骤为+

A\D先获取一个,Q:],Q^_Q.I‘.2ab-.I(7):

A c D调整这个,Q的像素格式A Y H8)7_5/*.’D"以便%S)I T U库进行绘制:

V)’Y H8)7_5/*.’A],Q"S E"d S E(D:

其中"S E(的具体定义为+

Y W J?U_%[@X e,?V Q[W Y e%[S E(^4

2H f)5E A Y W J?U_%[@X e,?V Q[W Y e%[D";;2H f)5E ’]H2S E(

\";;‘)/2H5II&*6)/

Y_,,[X g e%gW h,%g i;;2&S S5/’j H I(5j

Y_,V k Y Y%[e%Y?h T U i

Y_,,[X g e%=W e@X Y";;2&S l S5/’%S)I T U

;;Y_,,%k=U?=U k__?[";;(5&67) 6&E E)/)(

Y_,a e K Y?[T=X";;[T=X’>S)

c F";;c F l6H’3575/()S’]

9"9"9"9"9"9";;3575/6H’2H m I5/)(

9";;I5.7S].6&E E)/

9";;2]H E’6H’H m I5/)(

9";;I5.33&*&7.’H5I6&E E)/

9"9"9"9";;.33&*6H’2H m I5/)(

n c";;n c l6H’f l6&E E)/

9";;I52’)I3H76&E E)/

9";;I5.&8H7H./>6&E E)/

Y_,@X W h Y U X h?";;*.H I7.>)/

9";;/)2)/‘)(

9"9"9;;7.>)/*.2o2H m I5/)(

N:

A n D用,Q调用j m7Q/).’)Q5I’)8’A],Q D"建立一个[Q"并指定为当前[Q:

-T U[Q]m7/3^j m7Q/).’)Q5I’)8’A],Q D:

j m7@.o)Q&I)I’A_Q.I‘.2ab-.I(7)"]m7/3D:

A F D利用%S)I T U库绘图:各种%S)I T U绘图命令:

A p D删除此[Q:j m7,)7)’)Q5I’)8’A]m7/3D:

通过以上步骤完成三维高度真实图形的绘制工作!

O$q水下地形几何建模

根据,?@格网"将其剖分成三角形或格网构成三维立体外形!在此"考虑到三点确定一个平面"故将,?@格网剖分成成千上万的三角形片面组成!

设某一地域的,?@由M r L个格网组成:其形式如下+

s L\s L c tt s L M

tt ttt tt

tt ttt tt

s c\s c c tt s c M

s\\s\c tt s

u

v

w

x

\M

则有格网点列+y)/’)8U H2’^4s

\\"s\c"t"s c\"s c c t s L\t s L M N"各点相应的空间坐标为+

s\\^A0\\"1\\"z\\D"s\c^A0\c"1\c"z\c D"tt

s\M^A0\M"1\M"z\M D

ttt

s L\^A0L\"1L\"z L\D"s L c^A0L c"1L c"z L c D"tt

s L M^A0L M"1L M"z L M D

根据地形格网序列"将相邻格网点组成一个个的小三角形来处理"有每相邻三个邻点组成一个三角形"即,?@细化!

根据各小三角形组成空间点的位置坐标A B"C D Z高程A{D计算该三角形法向量A|}D"三角面的法向量为相交于该

点的两条边的向量叉积"而对于每一个顶点的法向量A|

9D 即为相交于该点的所有三角面的法向量的平均值!经过法向量计算"则每个格网点的法向量可知"于是利用%S)I T U 图形函数+

m7h5/*.7n E‘A|9D:

m7y)/’)8n E‘A~9D:

!

c

\

!中国港湾建设c99F年第n期

建立地形三维模型!至此"三维地形的建模工作完成"得到三维地形模型!

#$#各种变换

%&’()*使用的是三维虚拟世界坐标系"将模型定位在三维虚空间显示在屏幕上需要进行各种变换"主要包括+视图和造型变换,投影变换,剪取变换,视口变换!

#$-模型的效果处理

地形模型按上述步骤生成以后"显示在屏幕上的是黑色的一片"根本分不清地形起伏"因此需要对地形模型进行三维图形的真实感效果处理!包括+隐藏面消除,光照处理,设置颜色等基本措施!

#$-$.隐藏面的消除

消除隐藏面是三维图形绘制的最基本的操作和要求"在以前这些工作都是必须考虑的!然而技术发展以后我们不必将许多精力花在这些最基本的方面"%&’()*已经为我们提供了一种有用的操作//深度测试"这种技术完全可以用来消除隐藏面!

对于屏幕上的每一个像素"深度缓冲器都保存着该像素点所代表的物体到视点的距离!如果通过了指定的深度测试"则用当前的深度值替换深度缓冲器中已有的值!只有当比以前的目标更靠近视点时"才绘制与之相应的新的颜色的像素点!利用这种方法"当模型提交后"只有那些被其它目标遮挡的部分被保存下来!

在初始化时"将深度缓冲器中的值设置为离视点尽可能远的值"一般为0$1"以便所有物体部比它离视点近!因此"每次重画图形时"一定要清除深度缓冲器中的值!

#$-$2光照处理

真实感图形绘制是计算机图形学的一个重要组成部分"而光照则是使图形产生真实感的重要手段!尽管在

%&’()*中可以设置3个光源"但在为地形模型设置光源时"必须慎重考虑"因为每增加一个光源就会成倍地增加光线的计算量"也就会明显降低图形的显示速度!所以"除了给地形模型设置一个全局环境光以外"在显示时只采用了一个光源!

具体实施时"必须给该立体场景设置具有一定方向或位置,亮度,颜色等其它特性的光源"同时还须对场景材质特性进行设置!在光照中"必须对每一个像素设置表面法向量"只有这些特性设置完毕"所制作的三维地形才能显示出其符合人的视觉能力的场景图!#$-$#分层设色

由于水下地形起伏变化不象陆地地形那样明显"为清楚表达地形起伏"分层设色是重要手段!

具体做法是+根据已有的456资料"计算每一个456格网的高程"并按一定的分级标准"对高程处于不同等级的456格网单元选择自己喜欢的颜色"并使分层的颜色产生过度的效果"可采用以下算法+

708用户通过颜色选择对话框"动态选择两种颜色9

7:8反算出两种颜色的;)<值"并确定出分级数9

7=8计算;)<的增量9

7>8通过循环判断格网高程所处的等级"并加上相应的增量!

-高真实感地形模型的优点

运用%&’()*图形库制作高真实感地形模型的优点如下+

708处理过程简单!三维地形中建模,光照,设色,消隐等过程均是由复杂的算法完成"以往这些算法都是由电子沙盘软件开发人员设计并编程实现"不仅工作量大"而且很难对算法进行优化分析!而利用%&’()*图形库则无须考虑算法"直接调用图形库中的有关函数和过程即可!

7:8速度快!由于%&’()*已成为一个处理图形,图像的国际图形库标准"故有专门的硬件来支持%&’()*!这大大加快了利用%&’()*图形库生成三维立体地形的速度"而以前由于算法是用户自己设计的"无任何标准可言"因而也不可能有相应的硬件支持"所以生成速度慢!

7=8实时交互功能!由于%&’()*对三维算法的优化"双缓存技术以及专用图形加速卡的支持"在微机上实现了近实时的显示"通过键盘,鼠标等交互工具"客户可以自由地进入三维虚空间"对所关心的区域从不同侧面"以不同角度,方位进行实时动态观察"使观察者具有?临境@之感"为正确的分析地形创造了有利条件!

7>8三维地形显示效果好!利用%&’()*图形库制作三维地形模型"可以充分利用它所提供的融合,反走样等功能"特别是纹理映像功能"使制作的三维地形更符合实际地形的视觉效果"更为逼真!

7A8分析,量测更直观!由于许多利用地图的部门并非地图专业"采用三维地形模型这种形式可使专业部门更好地利用该工具"进行辅助决策等各方面的工作!

B

=

B

:11>年第=期王庆春+三维可视化技术在港口规划设计中的应用

三维可视化技术在港口规划设计中的应用

作者:王庆春

作者单位:中交第二航务工程勘察设计院,湖北,武汉,430071

刊名:

中国港湾建设

英文刊名:CHINA HARBOUR ENGINEERING

年,卷(期):2004,""(3)

引用次数:4次

相似文献(10条)

1.外文会议Okuno. A..Shikada. M.Application of REAL TIME GIS using remote sensing and RTK-GPS for

local government

Much local government has been using a large scale digital map with Geographic Information System (GIS). However, the updating method of a map is not established yet, and there are very few successful examples. The purpose of this study is the application of REAL TIME GIS using remote sensing and RTK-GPS for local government. REAL TIME GIS is the system for real-time mapping and updating at the field site using Real-time Kinematic Global Positioning System (RTK-GPS), GIS and cellular phone. This system has the problem that RTK-GPS positioning data is Japanese Geodetic Datum 2000 (JGD2000) of WGS-84, but most of the digital maps of local government are still Tokyo Datum of old geodetic system. It is necessary to transform an old geodetic system to a new one. We used Affine Transformation for this problem. In This work, the parameters which were calculated by Affine Transformation were named "High-Accuracy Regional Parameter (HARP)". As a result, Affine Transformation has 2 cm errors using 4 control points at the corner of unit. In conclusion, the need of HARP with Affine Transformation was indicated. It is suggested that the process of REAL TIME GIS and HARP should be introduced to the work of local government.

2.外文会议Okuno. A..Shikada. M.Application of REAL TIME GIS using remote sensing and RTK-GPS for

local government

Much local government has been using a large scale digital map with Geographic Information System (GIS). However, the updating method of a map is not established yet, and there are very few successful examples. The purpose of this study is the application of REAL TIME GIS using remote sensing and RTK-GPS for local government. REAL TIME GIS is the system for real-time mapping and updating at the field site using Real-time Kinematic Global Positioning System (RTK-GPS), GIS and cellular phone. This system has the problem that RTK-GPS positioning data is Japanese Geodetic Datum 2000 (JGD2000) of WGS-84, but most of the digital maps of local government are still Tokyo Datum of old geodetic system. It is necessary to transform an old geodetic system to a new one. We used Affine Transformation for this problem. In This work, the parameters which were calculated by Affine Transformation were named "High-Accuracy Regional Parameter (HARP)". As a result, Affine Transformation has 2 cm errors using 4 control points at the corner of unit. In conclusion, the need of HARP with Affine Transformation was indicated. It is suggested that the process of REAL TIME GIS and HARP should be introduced to the work of local government.

3.期刊论文司道民RTK技术在GIS数据采集中的应用-中国新技术新产品2009,""(6)

RTK技术是GPS测量技术发展中的一个新突破,在很多领域已得到广泛的应用,目前在GIS数据采集中也有非常好的应用前景.本文阐述了RTK技术的原理和在GIS野外数据采集中作业的实施,以及RTK应用中应注意的几个关键技术及处理方法.

4.外文会议Aki Okuno.Masaaki Shikada Real-time renewal of the digital map for local government by

using remote sensing and RTK-GPS

Much local government has been using a large scale digital map with Geographic Information System (GIS). However, the updating method of a map is not established yet. The purpose of this study is the real-time renewal of the digital map for local government by using Remote Sensing and RTK-GPS. This concept was defined as REAL TIME GIS. This system has the problem that RTK-GPS measuring data is Japanese Geodetic Datum 2000 (JGD2000) of WGS-84, but most of the digital maps of local government are still Tokyo Datum of old geodetic system. It is necessary to transform an old geodetic system to a new one. In this study, the coordinate transformation methods were compared Affine Transformation with TKY2JGD. Moreover, the number and arrangement of control points were changed, coordinates were converted by Affine Transformation. In this paper, the parameters which were calculated by Affine Transformation were called "high-Accuracy Regional Parameter (HARP)" As a result, TKY2JGD has a maximum 15cm error. Affine Transformation has 2cm errors using 4 control points at the corner of unit. It is suggested that the process of REAL TIME GIS and HARP should be introduced to the work of local government.

5.会议论文丁文胜GPS—RTK在工业厂矿地下管网GIS总图管理中的应用2008

阐述了埋地钢管的腐蚀形态、防腐蚀措施,包括管道防腐层和阴极保护,管道防腐层缺陷检测的原理、方法和仪器,防腐层缺陷的修复。

6.学位论文刘永启全球定位系统在GIS数据采集中的应用2004

全球定位系统(Global Positioning System简称GPS)利用接收到的卫星信号可以确定目标点的精确位置.目前,这种技术在世界上的许多领域都得到了成功的运用,尤其是,2001年5月1日美国取消了SA(Selective Availability)技术.自此以后的实测表明:平面精度最高可达3-15m(75%概率).取消SA后,GPS的应用在全球掀起第二次高潮.地理信息系统(Geographic Information System简称GIS)是一种采集、存储、管理、分析和描述整个或部分地球表面与空间地理分布数据的空间信息系统.其中,地理空间数据是GIS的核心.而GPS的特点使得我们能够利用它为GIS提供位置数据和属性数据,与常规的测量方法相比,GPS在精度、效率和费用上都有无可比拟的优势.同时,GIS的快速发展也促进了GPS在GIS中的应用.GPS在GIS中的应用常常分为两种情况,一是直接用GPS技术对GIS的空间数据作实时更新和采集;二是把GPS接收机的实时差分定位技术与GIS的电子地图相结合,组合成各种电子导航系统.本文基于GIS数据的前端采集,介绍了GPS的组成、定位原理、作业模式和数据处理,重点阐述了代表当今高精度GPS测量的实时动态测量技术和虚拟参考站技术.分析了GPS采集GIS数据的原理和方法,并对当前在GPS采集GIS数据过程中出现的一些技术性难题进行了深入的探讨,给出了相应的解决方案.最后,以GPS定位技术在土地利用数据库变更中的应用为例,具体对上述几个技术性难题的解决方法进行了实施,得出了有益的结论.

7.外文会议Aki OKUNO.Sota SHIMANO.Masaaki SHIKADA.International Society of Photogrammetry and

Remote Sensing(ISPRS); National Natural Science Foundation of China; ESRI China(Hong Kong)

Limited;COLLABORATION OF REAL TIME GIS AND SPATIAL DATA FOR LARGE SCALE MAP

Much local government has been using large scale digital maps with Geographic Information System (GIS). However, the updating method of a map is not established yet. The purpose of this study is the real-time renewal of the digital map for local government by collaboration of REAR TIME GIS and spatial data. In this study, spatial data means Remote Sensing imageries and Real-time Kinematic Global Positioning System (RTK-GPS). REAL TIME GIS is the system for real-time updating at the field site by using RTK-GPS, GIS and cellular phone. First, change of the city is easily found that the Remote Sensing imageries are able to overlay with digital map by using GIS. Next, position of changed area was measured by RTK-GPS. But, RTK-GPS data did not correspond with digital maps because of different geodetic system. It is necessary to transform digital maps of an old geodetic system to new ones. In

order to transform map coordinate, the parameters were calculated using Affine Transformation. In this paper, these parameters were named "High-Accuracy Regional Parameter (HARP)". Actual experiment was performed at two places in the narrow area at Kanazawa district in Japan. It was verified how far there are differences between BaseMap (BM) and RTK-GPS measuring data. As a result, the difference was 5~10cm at longitude and 30 cm at latitude. The differences at longitude are allowed in large scale digital map. It is suggested that the process of REAL TIME GIS and HARP should be introduced to the work of local government.

8.期刊论文张书华.李小显.ZHANG Shuhua.LI Xiaoxian RTK协同全站仪联合采集数据有关问题分析-地理空间信

息2007,5(5)

介绍RTK协同全站仪联合采集数据应用于GIS生产的作业流程,通过实例分析了图根控制与碎部点数据采集、分离和处理的方法.分离后的图根点数据以原始测量数据形式参与平差,获取图根点坐标.然后,对碎部点数据进行处理,经处理的数据以*.dat格式输入计算机编辑成图,避免了作业员重复进入同一作业区域,减少了工作量,提高了成果精度,方便了成图.

9.外文会议Aki Okuno.Sota Shimano.Masaaki Shikada Application of REAL TIME GIS for Local

Government and Collaboration of Spatial Information

Much local government has been using large scale digital maps with Geographic Information System (GIS). However, the updating method of a map is not established yet. The purpose of this study is the real-time renewal of the digital map for local government by using REAR TIME GIS and spatial information. REAL TIME GIS is the system for real-time updating at the field site by using RTK-GPS, GIS and cellular phone. However, RTK-GPS data did not correspond with digital maps because of different geodetic system. It is necessary to transform digital maps of an old geodetic system to new ones. In this paper, these parameters were named "High-Accuracy Regional Parameter (HARP)". Actual experiment was performed at two places in the narrow area at Kanazawa district in Japan. It was verified how far there are differences between Base Map (BM) and RTK-GPS measuring data. As a result, the difference was 5~10cm at longitude and 30 cm at latitude. The differences at longitude are allowed in large scale digital map. Collaboration of Remote Sensing, GPS and GIS contributes useful tool for local government to renew large scale map.

10.外文会议Shikada. M..Okuno. A..Tokunaga. M..Matsuda. N.The utility of renewal system for

barrier-free map by using remote sensing and RTK-GPS

Research proposed that wheelchair user uses remote sensing (RS), Real-Time Kinematic-Global Positioning System (RTK-GPS) and Geographic Information System (GIS) support to make barrier-free map. In This work, Remote Sensing means high-resolution satellite imageries. If equipment of RTK-GPS attach to wheelchair, barrier-free map can be able to revise as the imageries on computer every day. Wheelchair users always can get the latest information of urban conditions. Proposed system automatically make barrier-free map. In other words, it suggests that mapping process dose not need much labor and time. In addition, the system as mentioned above makes more useful barrier-free map using Remote Sensing imageries as a background. Combination of remote sensing, RTK-GPS and GIS applied to barrier-free map prepared by local government improve rapidly life style for wheelchair users.

引证文献(4条)

1.徐卓.陆培东.王艳红.徐敏"水道-沙洲"3D可视化模型的构建及应用——以小庙洪—三沙洪水道为例[期刊论文

]-水利水运工程学报 2008(2)

2.计三有.袁宗喜虚拟现实的集装箱码头布局规划仿真系统[期刊论文]-中国水运(理论版) 2006(3)

3.田颖辉基于虚拟现实的集装箱码头布局规划仿真系统研究[学位论文]硕士 2005

4.唐瑜坞式闸室结构可视化设计系统的开发与应用[学位论文]硕士 2005

本文链接:https://www.wendangku.net/doc/f01460692.html,/Periodical_zggwjs200403003.aspx

下载时间:2010年6月17日

相关文档