文档库 最新最全的文档下载
当前位置:文档库 › 第二讲 澄清(沉淀)、过滤技术

第二讲 澄清(沉淀)、过滤技术

高效过滤器的使用和更换周期说明

过滤器使用更换周期 空气过滤器是空调净化系统的核心设备,过滤器对空气形成阻力,随着过滤器积尘的增加,过滤器阻力将随着增大。当过滤器积尘太多,阻力过高,将使过滤器通过风量降低,或者过滤器局部被穿透,所以,当过滤器阻力增大到某一规定值时,过滤器将报废。因此,使用过滤器,要掌握合适的使用周期。在过滤器没有损坏的情况下,一般以阻力判定使用寿命。 过滤器的使用寿命除了取决于其本身的优劣,如:过滤材料、过滤面积、结构设计、初始阻力等,还与空气中的含尘浓度,实际使用风量,终阻力的设定等因素有关。 掌握合适的使用周期,必须了解其阻力的变化情况,首先必须了解如下定义: 1.额定初阻力:在额定风量下,过滤器样本、过滤器特性曲线或过滤器检测 报告所提供的初阻力。 2.设计初阻力:系统设计风量下,过滤器阻力(应由空调系统设计师提供)。 3.运行初阻力:系统运行之初,过滤器的阻力,如果没有测量压力的仪表, 就只能取设计风量下的阻力作为运行初阻力(实际运行的风量不可能完全等于设计风量); 运行中应定期检查过滤器的阻力超出初阻力的情况,以决定何时更换过滤器。过滤器更换周期,见下表(仅供参考):

特别说明:低效率过滤器一般使用粗纤维滤料,纤维间空隙大,过大的阻力有可能将过滤器上的积尘吹散,这种情况下,过滤器阻力不再增高,但过滤效率降到几乎为零,因此要严格控制粗效过滤器的终阻力值! 确定终阻力要综合考虑几种因素。终阻力定的低,使用寿命短,长期更换费用(过滤器费用、人工费用,和废弃处理费用)相应就高,但运行能耗低,因此每种过滤器应该有最经济的终阻力值。 终阻力建议值: 过滤器越脏,阻力增长越快。过高的终阻力不意味着过滤器使用寿命会延长,过高阻力会使空调系统风量锐减。过高的终阻力是不可取的。 建议贵院洁净室过滤器清洗及更换周期表:

高效过滤器

高效过滤器 高效过滤器主要用于捕集0.5um以下的颗粒灰尘及各种悬浮物,作为各种过滤系统的末端过滤。采用超细玻璃纤维纸作滤料,胶板纸、铝箔板等材料折叠作分割板,新型聚氨酯密封胶密封,并以镀锌板、不锈钢板、铝合金型材为外框制成。 高效过滤器主要用于捕集0.5um以下的颗粒灰尘及各种悬浮物。采用超细玻璃纤维纸作滤料,胶版纸、铝膜等材料作分割板,与木框铝合金胶合而成。 每台均经纳焰法测试,具有过滤效率高、阻力低、容尘量大等特点。高效空气过滤器可广泛用于光学电子、LCD液晶制造,生物医药、精密仪器、饮料食品,PCB印刷等行业无尘净化车间的空调末端送风处。高效和超高效过滤器均用于洁净室末端,以其结构形式可分为有:有隔板高效过滤器、无隔板高效过滤器、大风量 高效过滤器,超高效过滤器等。高效过滤器正面图 另外还有三种高效过滤器,一种是超高效过滤器,能做得到净化99.9995%。一种是抗菌型无隔板高效空气过滤器,具有抗菌作用,阻止细菌进入洁净车间,一种是亚高效过滤器,价格便宜以前多用于要求不高的净化空间。 高效过滤器检漏: 高效过滤器检漏常用的仪器有:尘埃粒子计数器和5C气溶胶发生器。 尘埃粒子计数器 用于测量洁净环境中单位体积空气内的尘埃粒子大小及数目,可直接检测洁净度等级为十级至三十万级的洁净环境。体积小、重量轻、检测精度高、功能操作简单明了,微处理器控制,可贮存、打印测量结果,测试洁净环境十分便利。 5C 气溶胶发生器 TDA-5C气溶胶发生器能产生一致的多种直径分布的气溶胶粒子,TDA-5C气溶胶发生器与TDA-2G或TDA-2H 等气溶胶光度计配合使用时能提供足够的挑战粒子去测量高效过滤系统。 高效过滤器的检漏方法 高效空气过滤器泄漏测试基本上是把挑战微粒施放在高效空气过滤器上游,然后在高效空气过滤器表面与边框用微粒探测仪器搜寻有无泄漏。泄漏测试有几种不同的方式,适用在不同的场合。 PAO检漏属于气溶胶光度计测试法:PAO气溶胶原液是一种专门用于高效过滤器检漏测试中的产生挑战性气溶胶的原液,CAS(美国化学物质产品登记号)为68649-12-7,化学成分为1-Decene, tetramer mixed with 1-decene,中文对应的名称氢化-1-癸烯四聚体与1-癸烯三聚体;又名聚阿尔法烯烃是poly-alfa-olefins.?原液的浓度为100% 。美国FDA推荐PAO 代替DOP用于高效过滤器的测试,PAO无毒无味,物理和化学特性如下: 闪点:754oF 密度:0.819 @ 60oF 挥发 @ 20oC:不挥发挥发物密度:没有与水溶解性:不溶外观:无色气味:无味冻点:没有 pH @ 5%:没有 气溶胶光度计: 气胶光度计测试法是最早期的测试方式,但是因为效果非常好,到今天仍旧沿用。 气胶光度计(Aerosol Photometer)是微粒计数器的一种,也是使用雷射科技,但是它在扫描空气样本的微粒之后,所给的是微粒的总体强度,不是微粒数目。DOP是一种油性化学物质,加压或加热雾化之后,可以产生次微米等级的微粒,可用来仿真无尘室的微粒,因此被当成验证微粒。泄漏的定义是泄漏出上游

高效过滤器的使用寿命

高效过滤器的使用寿命 对于运行中的洁净室,末端高效过滤器的价值并不高,全部加起来可能还不到用户两个小时的产值,但更换过滤器的风险和间接费用会很高。更换过滤器时要停产,停产损失只有业主自己能算出来,这笔损失肯定比过滤器的备件费用高。更换过滤器是十分仔细的操作,洁净室内的任何东西都经不起折腾,碰坏一个不起眼的设备,其损失可能会高于全部过滤器的费用。更换过滤器后要由专业人员进行检测,有时还要对空调系统进行调试,然后还要经过一段时间的试运行。检测、调试、试运行,三项费用加到一起,可能会与过滤器价格不相上下。聪明的业主总是希望尽可能地延长高效过滤器的使用寿命,不是为了省过滤器那几个钱,他们是想避免因更换过滤器而产生的一堆麻烦。举个极端的例子,当代芯片厂洁净室末端高效过滤器的设计使用寿命为“一辈子”,即:投入运行后永远不操高效过滤器的心。那种工厂的技术日新月异,一个新项目投产后5~7年就落后了,工艺必须更新,厂房要改造,高效过滤器也同时报废。在那里,高效过滤器的“一辈子”也就是7年,为了保险,设计师将过滤器的设计使用寿命定为10~20年。高效过滤器上积灰过多时阻力增大,大到影响正常送风时,高效过滤器就该报废。增大高效过滤器的过滤面积或增加过滤器的数量,都能延长过滤器的使用寿命。但那些做法的游戏空间不大,你不可能无限地增大过滤面积,要延长高效过滤器的使用寿命,最根本的办法是将灰尘挡在预过滤器。更换预过滤器一般无须停产,无须调试,所以有经验的业主会把注意力和金钱花在预过滤器上。对于10000级和100000级洁净厂房,预过滤可选用F8过滤器(比色法95%),这样,末端高效过滤器的使用寿命一般可达5年。在国外项目中和国内新建项目中,F8过滤器是非均匀流洁净室最常见的预过滤器。对于芯片厂100级、10级或更高级别的洁净厂房,预过滤器的常见效率级别为H10(MPPS 85%),许多新建项目索性选用HEPA(对0.3mm粒子的效率≥99.97%)。设计师号称保证末端高效过滤器使用“一辈子”,其方法不过如此。在国内过去的洁净室空调系统设计中,过滤器的常见配置为:粗效→中效→高效。那时末端高效过滤器的使用寿命仅为1~3年,最差的也就几个月。有些场合,对高效过滤器使用寿命的规定不是出于对阻力的考虑,而是其它因素。若厂房中有氢氟酸,而车间空调又不是全新风系统,高效过滤器中的玻璃纤维滤纸会受到回风的腐蚀,为了安全,必须定期更换高效过滤器。有些财大气粗的制药厂,每年雨季过后要更换高效过滤器,为的是防止过滤器上任何可能的霉菌污染。有些生物实验室和与危险品打交道的实验室,在开展一项新的重要课题前,为了可靠,上司会要求使用新的高效过滤器。!!!转载 过滤器的过滤机理 撞上→粘住空气中的尘埃粒子,或随气流作惯性运动,或作无规则运动,或受某种场力的作用而移动。当运动中的粒子撞到障碍物时,粒子与障碍物表面间的引力使它粘在障碍物上。纤维过滤材料过滤材料应能:既有效地拦截尘埃粒子,又不对气流形成过大的阻力。非织造纤维材料和特制的纸张符合这一要求。杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。惯性碰撞与扩散碰撞效率随尘粒大小而异过滤器捕集粉尘的量与未过滤空气中的粉尘量之比为“过滤效率”。小于0.1mm(微米)的粒子主要作扩散运动,粒子越小,效率越高;大于0.5mm的粒子主要作惯性运动,粒子越大,效率越高。在0.1mm与0.5mm之间,效率有一处最低点。阻力纤维使气流绕行,产生微小阻力。无数纤维的阻力之和就是过滤器的阻力。过滤器阻力随气流量的增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,以减小过滤器阻力。动态性能被捕捉的粉尘对气流产生附加阻力,于是,使用中过滤器的阻力逐渐增加。被捕捉到的粉尘形成新的障碍物,于是,过滤效率略有改善。被捕捉的粉尘大都聚集在过滤材料的迎风面

沉淀过滤洗涤

第五章重量分析法 实训一重量分析基本操作 一、目的要求 1、学习样品溶解、沉淀、过滤、洗涤、干燥和灼烧等重量分析的基本操作。 二、步骤 重量分析的基本操作包括样品溶解、沉淀、过滤、洗涤、干燥和灼烧等步骤,分别介绍如下。 (一)溶解样品 样品称于烧杯中,沿杯壁加溶剂,盖上表皿,轻轻摇动,必要时可加热促其溶解,但温度不可太高,以防溶液溅失。 如果样品需要用酸溶解且有气体放出时,应先在样品中加少量水调成糊状,盖上表皿,从烧杯嘴处注入溶剂,待作用完了以后,用洗瓶冲洗表皿凸面并使之流入烧杯内。 (二)沉淀 重量分析对沉淀的要求是尽可能地完全和纯净,为了达到这个要求,应该按照沉淀的不同类型选择不同的沉淀条件,如沉淀时溶液的体积、温度,加入沉淀剂的浓度、数量、加人速度、搅拌速度、放置时间等等。因此,必须按照规定的操作手续进行。 一般进行沉淀操作时,左手拿滴管,滴加沉淀剂,右手持玻璃棒不断搅动溶液,搅动时玻璃棒不要碰烧杯壁或烧杯底,以免划损烧杯。溶液需要加热,一般在水浴或电热板上进行,沉淀后应检查沉淀是否完全,检查的方法是:待沉淀下沉后,在上层澄清液中,沿杯壁加1滴沉淀剂,观察滴落处是否出现浑浊,无浑浊出现表明已沉淀完全,如出现浑浊,需再补加沉淀剂,直至再次检查时上层清液中不再出现浑浊为止。然后盖上表皿。 (三)过滤和洗涤 1.用滤纸过滤 (1)滤纸的选择 滤纸分定性滤纸和定量滤纸两种,重量分析中常用定量滤纸(或称无灰滤纸)进行过滤。定量滤纸灼烧后灰分极少,其重量可忽略不计,如果灰分较重,应扣除空白。定量滤纸一般为圆形,按直径分有11cm、9cm、7cm等几种;按滤纸孔隙大小分有“快速”、:“中速”和“慢速”3种。根据沉淀的性质选择合适的滤纸,如BaSO4、CaC2O4·2H2O 等细晶形沉淀,应选用“慢速”滤纸过滤;Fe2O3·n H2O为胶状沉淀.,应选用“快速”滤纸过滤;MgNH4PO4等粗晶形沉淀,应选用“中速”滤纸过滤。根据沉淀量的多少,选择滤纸的大小。表5-1是常用国产定量滤纸的灰分质量,表5-2是国产定量滤纸的类型。

高效过滤器操作使用维护说明书

高效过滤器操作使用维护说明书 1. 基本参数 1.1 运行滤速:8m/h 1.2 进水浊度: <5mg/L 1.3 出水浊度: <1mg/L 1.4 反洗强度:8L/㎡·S 1.5 气洗强度:12L/㎡·S 1.6 反洗时间:4-6min 1.7 工作温度:5-40℃ 1.8 工作压力:≤0.6MPa 1.9 滤料高度:1200mm 1.10 填料成分:石英砂、无烟煤、鹅卵石 2. 结构及工作原理 原水在管道内加入絮凝剂,絮凝剂在水中发生离子水解和聚合过程,水中胶体粒子对水解及聚集的各种产物进行强烈的吸附,使粒子表面电荷和扩散厚度同时降低,因而粒子间相互排斥能降低,相互接近而凝聚,水解产生的聚合物被两个以上的胶体吸附后,在粒子间产生架桥联接,逐步形成较大的絮凝体,经过高效过滤器时,为滤料载留。 高效过滤器是以成层状的石英砂、无烟煤作为床层.床的顶层由最轻和最粗品级的材料组成,而最重和最细品级的材料放在床的低部。其原理为

按深度过滤--水中较大的颗粒在顶层被去除,较小的颗粒在过滤器介质的较深处被去除。从而使水质达到粗过滤后的标准。多介质过滤器可去除水中水中的悬浮物、有机物、胶质颗粒、微生物、氯、嗅味及部分重金属离子等,并降低水的SDI值,满足深层净化的水质要求。该设备具有造价低廉,运行费用低,操作简单;滤料有石英砂、无烟煤、鹅卵石,经过反洗,可多次使用,滤料使用寿命长等特点。 高效过滤器的吸附是一种物理吸附,按滤料的填装方式大体可分为松散区(粗砂)、紧密区(细砂),悬浮物质在松散区主工通过流动接触产生接触凝聚作用,所以该区域截留较大颗粒的悬浮物质,在紧密区主要是惯性碰撞及悬浮颗粒间的吸附作用,所以该区域是截留较小颗粒的悬浮物质。 当高效过滤器因截留过量的机械杂质而影响其正常工作,则可用反冲洗的方法来进行清洗。利用逆向进水,同时通入压缩空气,进行气水混合擦洗,使过高效过滤器内滤层松动,可使粘附于石英砂表面的截留物剥离并被反冲水流带走,有利于排除滤层中的沉渣、悬浮物等,并防止滤料板结,使其充分恢复截污能力,从而达到清洗的目的。反洗以进出口压差参数设置来控制反冲洗周期,经验得知一般为一天,具体须视原水浊度而定。 高效过滤器采用蝶阀操作阀组,高效过滤器的启运、正洗、反洗、停机等工序均是自动控制进行操作。 当高效过滤器运行至进出口压差为0.07MPa时,必须进行反洗。 3.反洗的必要性 高效过滤器在过滤过程中,原水中的悬浮物等被滤料层截留吸附并不断地在滤料层中积累,于是滤层孔隙逐渐被污物堵塞,在滤层表面形成滤

初中高效过滤器清洗及更换标准操作规程

初/中/高效过滤器清洗及更换标准操作规程 1.目的:建立一个初、中、高效空气过滤处理更换标准操作规程,使空调系统卫 生符合医疗器械生产质量管理规范。 2.范围:适用于空调系统的采风口粗过滤网(凹凸网)、初效过滤网、中效过滤 器、高效空气过滤器清洗及更换。 3.责任:空调操作人员对实施本规程负责。 4.内容: 4.1初效过滤网、中效过滤器、高效过滤器使用更换必须符合生产工艺条件对生产空调系统基本要求,同时达到必须的生产条件。 4.2采风口凹凸网过滤器(采风口粗过滤网) 4.2.1采风口粗过滤网每30个工作日必须更换(清洗)一次,更换下采风口粗过滤网进行清洗(自来水冲洗,不得用刷子、高压水枪),并全面检查采风口粗过滤网有无破损(如有破损即不得再次使用),当采风口粗过滤网清洗完毕应统一放置相对密封房间阴干,待滤网干透后,工作人员再逐一检查一遍采风口粗过滤网有无破损,查验合格后方可安装使用,如采风口粗过滤网有破损及时更换。 4.2.2采风口粗过滤网根据破损情况进行更换,但最长使用年限不得超过2年。 4.2.3在春秋多风尘季节相应增加采风口粗过滤网清洗次数。 4.2.4当供风量不足时及时清洗采风口粗过滤网上尘埃。 4.2.5拆卸采风口粗过滤网可以在不停机组情况下进行,但须及时安装新采风口粗过滤网。 4.2.6每次清洗更换采风口过滤网,须填写《采风口过滤网清洗更换记录表》。 4.3初效过滤网: 4.3.1要求每季度必须打开机箱检查,查看各初效过滤网框有无破损,并对初效过滤网全面清洗一次。

4.3.2每次清洗初效过滤网,必须将初效过滤网拆卸下来(严禁框架上用水直接清洗),放置于专用清洗间,用清水(自来水)反复清洗,清洗同时检查滤网有无破损,如有破损及时更换(清洗时不得使用高温水、高压水),当滤网清洗完毕应统一放置相对密封房间阴干,待滤网干透后,工作人员再逐一检查一遍过滤器有无破损,查验合格后方可安装使用,如初效过滤网有破损及时更换。 4.3.3在初效过滤网拆下清洗时,工作人员应同时将空调机箱内部反复用清水清洗,可拆洗的部位要拆下清洗,将设备表面清理干净,最后用干布(布不得掉毛)统一清擦一遍,直至箱体内达到无尘要求,方可安装初效过滤网。 4.3.4初效过滤网更换时间根据破损情况进行更换,但最长使用年限不得超过2年。 4.3.5每次更换、清洗初效过滤网、机箱应及时填写《初效过滤器清洗更换记录表》,并备档待查。 4.4 中效过滤器: 4.4.1中效过滤器要求每季度必须打开机箱全面检查,中效框架的固定及密封,并对中效全面检查一次,查看中效袋体有无破损,并全面吸尘一次。 4.4.2每次中效吸尘必须将中效过落袋拆卸下来用专用吸尘器吸尘,在吸尘操作中,工作人员需注意吸尘器吸管不得将中效袋弄破,并逐一检查每条袋体颜色是否正常,袋体是否有开线、破漏现象等,如袋体出现破损,灰尘过多工作人员应及时更换。 4.4.3在中效拆卸下吸尘时,工作人员应及时清扫其框架、擦洗干净,以达到无尘要求,方可安装中效过滤器。 4.4.4安装中效过滤器,应将袋体与框架压平,并固定防止出现缝隙。 4.4.5中效过滤器更换时间,根据袋体破损和容尘情况进行更换,但最长使用年限不得超过二年。 4.4.6每次清洗更换中效过滤器应及时填写《中效过滤器清洗更换记录表》。 4.5高效过滤器的更换 4.5.1对于高效过滤器,当过滤器的阻力值大于450Pa时;或当出风面气流速度降到最低限度,即使更换粗效、中效过滤器后,气流速度仍不能增大;或当高效过滤器表面出现无法修补的渗漏情况,均须更换新的高效过滤器;如没有上

高效空气过滤器更换标准

高效空气过滤器更换标准(整理版) 2011-05-14 高效空气过滤器的更换标准(整理版) 本文取自某公司的内部管理规范,仅供参考: 1.每年定期检测洁净区域的风量、以及其他环境参数,在测定的同时对高效进行检测。 2.主要检测风速、终阻力以及泄露率。 3.当高效空气过滤器的风量下降为额定风量的75%需要更换高效。 4.当终阻力为初阻力的2倍时需要进行更换。 5.当风速低于0.35m/s时需要进行更换 6.DOP pao等我司无法自测的项目可外请测试。 高效过滤器更换 相关解答如下: 1 高效过滤器的使用寿命影响因素太多(如生产车间的湿度、粉尘情况、空调系统的持续/间歇运行模式、厂房设施的维护保养情况等),笼统的制定更换周期确实难,GMP标准好像也没有具体要求。建议根据验证结果确定,HVAC属于

药品生产的关键系统,每年要进行一次再验证,根据测定的风速、高效过滤器的检漏等情况确定是否更换,不堵、不漏、不霉,尘埃粒子、沉降菌(浮游菌)监测符合要求则无需更换。 3 高效过滤器要下降到额定风量的75%更换的问题,没有哪个规定里有这一条,理论上你们先检测洁净度,洁净度不合格时才对高效进行扫描,风速也可以用风速仪测试,GMP规定高效风速小于0.35时高效必须更换,一般洁净室设计时的送风量是额定风量的60%-80%,另外一个参数就是阻力了,阻力测试比较麻烦,要到技术夹层将送风口钻一个孔,因为安装时不会每个高效送风口都装压差表,这样测试阻力大于初阻力2倍就要更换,如果设计时用484*484*220的过滤器,那设计时就有问题,按你们房间大小回风量算,也许320*320*220就够。 3 <洁净厂房设计规范>所规定的高效过滤器更换条件: 1) 气流速度降到最低限. 2) 阻力达初阻值2倍 3) 出现无法修补的渗漏. 4 关于第3条的解答:无论是高效还是初/中效,当投入使用,并在系统中调节符合我们使用要求时(如阀门开启量、送风机送风量回风量等参数确定)我们测定并记录下这是初中高效过滤器的各项参数,如风速、阻力,然后再下次检测时,我们在确定系统没有变化后,才再次检测他们的风速、阻力,从而才能判断是否更换空气过滤器。但现实中,我们很可能没有确定和固定过这些参数(如在每个阀门上标记其开启大小),而是看到压差不合格,就随意调节回风窗大小,有时甚至调节送风阀门的开启度,从而破坏了整个系统的平衡。有点扯远了,回来继续说高效,最实用的检测方法是1.扫描风速,确定高效没有堵,且风速均匀并达到需要值;2,然后进行泄露测试,确定没渗漏就基本上算检测合格了。这是目前国内比较认可的做法。但DOP价格很高,所以不太可能每半年测一次,另外还有堵塞高效的风险。所以才提出测阻力的方法。也就是在每个高效目端安装压差计,或者开测试孔。然后通过阻力变化来确定是否需要更换高效。并且可是实现自动化监控。这据说是国外目前的做法。他们这样做后,高效过滤器的使用寿命可以达到3年以上。而我们国内高效寿命基本上可能不到1年。原因除了高效本身质量外,还与我们使用方法、检测方法等关系极大。

高效空气过滤器更换规程

副本编号:***制药厂

一.目的: 建立高效空气过滤器更换规程,以明确为生产环境提供洁净空气的高效空气过滤器技术要求、购买与验收、安装及检漏、洁净度测试,最终保证空气洁净度符合规定要求。 二.范围: 1、本标准适用于***制药厂精烘包车间药品生产过程中,用于为生产环境提供洁净空气的空气过滤系统中高效空气过滤器的更换规定,包括以下部位: 1.1HVAC系统(又叫空气净化系统); 1.2医药喷雾干燥塔进风过滤系统; 1.3医药气流粉碎进风过滤系统。 三.职责: 1、提取车间维修人员:按本标准要求,负责对高效空气过滤器的验收、存放,更换前的卫生清洁和更换,并配合检测人员检漏测试工作。 2、洁净区操作人员:按本标准要求,负责配合维修人员对洁净区卫生清洁和高效空气过滤器更换工作。 3、HVAC系统操作人员:负责按本标准要求,对高效空气过滤器安装前的空吹工作。 4、QC人员:负责对已安装的高效过滤器检漏、风量测试、洁净度检测,并出具测试记录。 5、医药工段长、提取车间主任:按本标准要求,负责对高效空气过滤器的购买计划申报,并组织验收、存放、安装、检漏、洁净度测试工作。 6、设备科:负责高效空气过滤器计划审核,并报公司设备部审批,记录收集与存档管理。 7、质量科:负责按本标准要求,对高效空气过滤器实行全过程监督管理。 四.引用文件 1、高效空气过滤器国家标准 GB13554-92 2、洁净厂房设计规范 GB50073-2001 3、洁净室施工及验收规范 JGJ71 90 五.定义: 1、高效空气过滤器(HEPA):由滤芯、框架和密封垫组成。在额定风量下,对粒径大于等于0.3um粒子的捕集效率在99.9%以上及气流阻力在250Pa以下的空气过滤器。 2、有分隔板过滤器:滤芯是按所需深度将滤料往返折叠制成,在被折叠的滤料之间靠波纹分隔板支撑着,形成空气通道的过滤器。 3、无分隔板过滤器:滤芯是按所需深度将滤料往返折叠制成,但在被折叠的滤料之间是用纸带(或线、线状粘结剂或其他支撑物)支撑着,形成空气通道的过滤器。 4、检漏试验:检查空气过滤器及其与安装框架连接部位等的密封性试验。 5、洁净度测试:即通过测定洁净环境内单位体积空气中含大于或等于某粒径的悬浮粒子

过滤器使用寿命

过滤器使用寿命 空气过滤器是空调净化系统的核心设备,过滤器对空气形成阻力,随着过滤器积尘的增加,过滤器阻力将随着增大。当过滤器积尘太多,阻力过高,将使过滤器通过风量降低,或者过滤器局部被穿透,所以,当过滤器阻力增大到某一规定值时,过滤器将报废。因此,使用过滤器,要掌握合适的使用周期。在过滤器没有损坏的情况下,一般以阻力判定使用寿命。 过滤器的使用寿命除了取决于其本身的优劣,如:过滤材料、过滤面积、结构设计、初始阻力等,还与空气中的含尘浓度,实际使用风量,终阻力的设定等因素有关。 掌握合适的使用周期,必须了解其阻力的变化情况,首先必须了解如下定义: 1.额定初阻力:在额定风量下,过滤器样本、过滤器特性曲线或过滤器检测报告所提供的 初阻力。 2.设计初阻力:系统设计风量下,过滤器阻力(应由空调系统设计师提供)。 3.运行初阻力:系统运行之初,过滤器的阻力,如果没有测量压力的仪表,就只能取设计 风量下的阻力作为运行初阻力(实际运行的风量不可能完全等于设计风量); 运行中应定期检查过滤器的阻力超出初阻力的情况(每个过滤段都应安装阻力监测装置),以决定何时更换过滤器。过滤器更换周期,见下表(仅供参考): 特别说明:低效率过滤器一般使用粗纤维滤料,纤维间空隙大,过大的阻力有可能将过滤器上的积尘吹散,这种情况下,过滤器阻力不再增高,但过滤效率降到几乎为零,因此要严格控制粗效过滤器的终阻力值! 确定终阻力要综合考虑几种因素。终阻力定的低,使用寿命短,长期更换费用(过滤器费用、人工费用,和废弃处理费用)相应就高,但运行能耗低,因此每种过滤器应该有最经济的终阻力值。 终阻力建议值: 过滤器越脏,阻力增长越快。过高的终阻力不意味着过滤器使用寿命会延长,过高阻力会使空调系统风量锐减。过高的终阻力是不可取的。

高效过滤器的更换

高效空气过滤器的更换 过滤器, 空气 在下列任何一种情况下,应更换高效空气过滤器: 表10-6洁净室的净化空气监测频数 1、气流速度降到最低限度。即使更换初效、中效空气过滤器后,气流速度仍不 能增加。 2、高效空气过滤器的阻力达到初阻力的1.5倍~2倍。 3、高效空气过滤器出现无法修补的渗漏。 在更换净化空调系统中各级空气过滤器时应注意以下几个 问题: 6、末端过滤器更换后的综合性能检测 净化空调系统中热、湿处理设备、风机在与过滤器更换后,应起动系统风机使净化系统投入运行,并进行综合性能的检测,检测的主要内容为: 1)系统送、回风量、新风量、排风量的测定 系统送、回风量、新风量、排风量的测定,是在风机空气入口处 或风管上有风量测定孔处进行测定,并调整有关调节机构。 测定时所使用的仪器仪表一般为:毕托管和微压计或叶轮风速仪、热球 式风速仪等。

2)洁净室内气流速度及均匀性的测定 单向流洁净室,垂直单向流洁净室在高效过滤器下方10cm处(美国标准定为30cm)和距地坪80cm工作区水平平面上进行测定,测点间距 ≯2m,测点数不少于10个。 非单向流洁净室(即乱流洁净室)内气流速度,一般为测定送风口下方10cm处风速,测点数可根据送风口的大小适当布置即可(一般为1~5个 测点)。 3)室内空气温度和相对湿度的检测 (1)室内空气温度和相对湿度测定之前,净化空调系统应已连续运行至少24h,对于有恒温要求的场所,根据对温度和相对湿 度波动范围的要求,测定宜连续进行8h以上。每次测定间隔 不大于30min。 (2)根据温度和相对湿度的波动范围,应选择相应的具有足够精 度的仪表进行测定。 (3)室内测点一般布置在以下各处: a、送、回风口处 b、恒温工作区内具有代表性的地点 c、室中心 d、敏感元件处 所有测点宜在同一高度处,离地坪0.8m,也可以根据恒温区的大小,分别布置在离地不同高度的几个平面上,测点距外表面应大于0.5m。 4)室内气流流型的检测 对于室内气流流型的检测,实际是检查洁净室内的气流组织方式是否能满足洁净室洁净度的一个关键问题,如果洁净室内的气流流型不能满足气流组织的要求,则洁净室内的洁净度也不会或很难达到要求。

初效中效高效过滤器介绍

初效中效高效过滤器介绍 一、初效过滤器介绍: 初效过滤器适用于空调系统的初级过滤,主要用于过滤5μm 以上尘埃粒子。初效过滤器有板式、折叠 式、袋式三种样式,外框材料有纸框、铝框、镀锌铁框,过滤材料有无纺布、尼龙网、活性碳滤材、金属孔网等, 防护网有双面喷塑铁丝网和双面镀锌铁丝网。, 初效过滤器特点:价廉、重量轻、通用性好、结构紧凑。主要用于:中央空调和集中通风系统预过滤、大型 空压机预过滤、洁净回风系统、局部高效过滤装置的预过滤、耐高温空气过滤器,用不锈钢外框,耐高温250-300℃过滤效率。 这种效率的过滤器,常用一空调与通风系统的初级过滤,也适用于只需一级过滤的简单空调和通风系统。 G 系列粗效空气过滤器分八个品种,分别为:G1,G2,G3,G4,GN(尼龙网过滤器),GH(金属网过滤器),GC (活性炭过滤器),GT(耐高温粗效过滤器)。 初效过滤器结构 过滤器的外框是以坚固的防水板组成,用来固定已折叠完成的滤材。外框上对角线的设计能提供大过滤 面积,并使内部滤材紧密的粘附在外框上。过滤器的四周皆以特殊的专业粘合胶水与外框粘合,能防止空气泄漏 或因风阻压力造成破损的情况发生。 一次性纸框过滤器的外框一般分为一般硬纸框和高强度摸切硬纸板,滤芯为打褶的纤维过滤材料内衬单 面金属丝网。外型美观。结构坚固耐用。一般硬纸板外框用于制造非标规格的过滤器,可用于任意规格过滤器生 产,高强度,不宜变形。高强度摸且硬纸板用于制造标准规格的过滤器,特点为规格精度高,美观成本低。如果 用进口面纤维或合成纤维过滤材料,则其各项性能指标均可达到或超过进口过滤同产。 过滤材料是以折叠形式装入高强度摸且硬纸板内,迎风面积增大。流入的空气中的尘埃粒子被过滤材料有效 阻挡褶与褶之间。洁净空气从另一面均匀流出,因此气流通过滤器是平缓和均匀的。视过滤材料不同,它所阻挡 的粒径从0。5μm 到5μm 而不同,过滤效率也不同! 二、中效过滤器概述 中效过滤器在空气过滤器中属F 系列过滤器。F 系列中效空气过滤器分袋式和非袋式两种,其中袋式包括F5,F6,F7,F8,F9,非袋式包括FB(板式中效过滤器),FS(隔板式中效过滤器),FV(组合式中效过滤器)。注:(F5、F6、F7、F8、F9)为过滤效率(比色法),F5:40~50%,F6:60~70%,F7:75~85%,F9:85~95%。! 中效过 滤器在工业上应用: 主要用于中央空调通风系统中级过滤、制药、医院、电子、食品、等工业净化中;还可做为高效过滤的 前端过滤,以减少高效过的负荷,延长其使用寿命;由于迎风面大,因此空尘量大、风速低,被认为是目前最好 的中效过滤器结构。 中效过滤器特点: 1.捕集1-5um 的颗粒灰尘及各种悬浮物。 2.风量大。 3.阻力小。 4.容尘量高。 5.可重复清洁使用。 6.型式:无框式和有框袋式。 7.滤料:特殊无纺布或玻璃纤维。 8.效率:60%~95%@1~5um(比色法)。 9.使用最高温度、湿度:80℃、80%。 三、高效过滤器 主要用于捕集0.5um以下的颗粒灰尘及各种悬浮物。采用超细玻璃纤维纸作滤料,胶版纸、铝膜等材料 作分割板,与木框铝合金胶合而成。每台均经纳焰法测试,具有过滤效率高、阻力低、容尘量大等特点。高效空 气过滤器可广泛用于光学电子、LCD液晶制造,生物医药、精密仪器、饮料食品,PCB印刷等行业无尘净化车间的 空调末端送风处。高效和超高效过滤器均用于洁净室末端,以其结构形式可分为有:有隔板高效、无隔板高效、 大风量高效,超高效过滤器等。 另外还有三种高效过滤器,一种是超高效过滤器,能做得到净化99.9995%。一种是抗菌型无隔板高效空 气过滤器,具有抗菌作用,阻止细菌进入洁净车间,一种是亚高效过滤器,价格便宜以前多用于要求不高的净化 空间。 过滤器选型的一般原则 1、进出口通径:原则上过滤器的进出口通径不应小于相配套的泵的进口通径,一般与进口管路口径一致。

高效过滤器分析与设计

高效过滤器分析与设计

高效过滤器 高效空气过滤器(HEPA filter)广泛地应用于要求清洁无菌的房间(电子产品和药品的生产场所、手术室)以及其他应用领域(如空气净化器、真空袋式除尘器和口罩)。超细玻璃纤维垫、熔喷(MB)纤网、静电纺纤网和ePTFE薄膜等各种介质都可达到HEPA的过滤要求。 过滤介质用超细纤维或纳米纤维制成,或具有纤维状结构,以使其有较大的纤维表面积或是在原纤结构中存在很多微孔。过滤介质的面密度、集尘量和使用寿命各不相同,不同成分和结构的材料更有着迥异的压降。与亚微米级超细玻璃纤维和纳米纤维静电纺纤网相比,熔喷纤网的超细纤维直径较粗,必须经过驻极化(EC)才能达到HEPA级的过滤效率,其他一些介质也可经驻极化提高过滤效率而不会增加压降。应用驻极化的熔喷聚丙烯纤网的优势在于其低压降和较高的集尘量。尽管熔喷聚丙烯纤网的电荷衰减很慢,但进入的油粒和发动机排出的废气对其长期储存和使用有影响。本文将对经过驻极和未经驻极的各种介质在用于HEPA过滤时的过滤效率、压降和使用寿命进行比较。 1 HEPA过滤介质 本实验选用的材料是驻极熔喷(ECMB)材料、超细玻璃纤维纸、ePTFE薄膜和静电纺纳米纤维网。熔喷材料是在TANDEC的Reicofil 24”双组分熔喷生产线上生产的,驻极是在适用于厚型和高面密度产品的TANTRET T—II上完成的。静电纺聚酰胺纳米纤维直径范围为50~60 nm,在TANDEC的静电纺设备上生产,超细玻璃纤维纸和ePrFE薄膜都是工业产品。 2 实验 用TSI 8130自动过滤测试仪测定熔喷材料和口罩在加载NaCI和DOP颗粒时的效率。测试中采用的NaCI平均粒径为0.067 m,几何标准偏差(GSD)为1.6 m;DOP平均粒径为0.2 m,几何标准偏差与前者相同。用于过滤效率(FE)比较时,气溶胶浓度为100 mg/m ,流动速率分别为1632、64和96 L/min。微粒加载试验也用于研究材料的衰减性(过滤效率的衰减和DOP 的增加)。过滤面积为100 em ,气溶胶流动速率为32 L/min,相当于过滤速度为5.3 cm/s。 3 结果与讨论 从表1可见,90 g/m 驻极熔喷材料在流动速率为32 L/min(过滤速度为5.3 cm/s)时,过滤效率可达到99.996%,压降为84.3 Pa。而其他材料要达到所要求的HEPA过滤效率,其压降比驻极熔喷材料高得多,如玻璃纤维纸压降达到409.6 Pa,ePTFE薄膜是1 129.0 Pa,静电纺纳米纤维材料是590.9 Pa。驻极熔喷材料的过滤效率随过滤速度的增加而下降。当过滤速度增加时,气溶胶的迁移力将克服静电力,因此静电力将失去对移动微粒的捕获能力。依照布朗扩散机理,HEPA过滤介质的作用就是捕获以低过滤速度(如2.5 cm/s)移动的微小颗粒,而高速运动的大颗粒则通过使用预滤器,由惯性撞击或直接拦截机理的作用而被捕获。 DOP气溶胶在驻极熔喷材料上的过滤效率比NaC1在该材料上的过滤效率低得 多。DOP不带电,介电常数很高。由于介电常数大,驻极熔喷材料纤维中由电荷形成的电场将会减弱,对DOP颗粒的吸引力也因此而下降。如同从NaC1中观察到的情况一样,驻极熔喷材料的过滤效率将随DOP过滤速度的提高而下降,其他材料的过滤效率随过滤速度的提高无明显变化。 过滤介质的使用寿命是十分重要的指标。驻极熔喷材料的过滤效率随NaC1微粒的加载而增加(图2,这是由于NaC1微粒在过滤材料上会粘结成饼,其他介质的情况也是如此。然而,随DOP微粒的加载,驻极熔喷材料的过滤效率却会下降,这是由于DOP微粒凝聚在纤维表面,形成了覆盖层,由于DOP层的高介电常数,使得由纤维中的电荷形成的电场强度下降。 经TANTRET T—II充电的驻极熔喷材料耐DOP衰减的能力要比普通的工业用驻极熔喷材料强得多。充电方法的选择对于介质有效带电及耐DOP衰减是一个重要课题。应用较高面

高效过滤器的更换

高效过滤器的更换标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

高效空气过滤器的更换 , 在下列任何一种情况下,应更换高效空气过滤器: 表10-6洁净室的净化空气监测频数 能增加。 2、高效空气过滤器的阻力达到初阻力的倍~2倍。 3、高效空气过滤器出现无法修补的渗漏。 在更换净化空调系统中各级空气过滤器时应注意以下几个问题: 6、末端过滤器更换后的综合性能检测 净化空调系统中热、湿处理设备、风机在与过滤器更换后,应起动系统风机使净化系统投入运行,并进行综合性能的检测,检测的主要内容

为: 1)系统送、回风量、新风量、排风量的测定 系统送、回风量、新风量、排风量的测定,是在风机空气入口处或风管上有风量测定孔处进行测定,并调整有关调节机构。 测定时所使用的仪器仪表一般为:毕托管和微压计或叶轮风速仪、热球 式风速仪等。 2)洁净室内气流速度及均匀性的测定 单向流洁净室,垂直单向流洁净室在高效过滤器下方10cm处(美国标准定为30cm)和距地坪80cm工作区水平平面上进行测定,测点 间距≯2m,测点数不少于10个。 非单向流洁净室(即乱流洁净室)内气流速度,一般为测定送风口下方10cm处风速,测点数可根据送风口的大小适当布置即可(一般为1~5 个测点)。 3)室内空气温度和相对湿度的检测 (1)室内空气温度和相对湿度测定之前,净化空调系统应已连续运行至少24h,对于有恒温要求的场所,根据对温度和相对 湿度波动范围的要求,测定宜连续进行8h以上。每次测定 间隔不大于30min。 (2)根据温度和相对湿度的波动范围,应选择相应的具有足够精

高效过滤器的质量标准

空气过滤器。高效过滤器标准过滤效率: 中国标准欧洲标准 EN779-1993 美国DOP法0.3um 效率/%ASHRA 标准计重法效 /%ASHRAE 标准比色法效 率/% 粗效过滤器G1 <65 初效过滤器G2 65-80 初效过滤器G3 80-90 中效过滤器G4 >=90 中效过滤器F5 40-60 中效过滤器F6 20-25 60-80 中效过滤器F7 55-60 80-90 中效过滤器F8 65-70 90-95 中效过滤器F9 75-80 >=90 亚高效过滤器H10 >85 亚高效过滤器H11 >98 亚高效过滤器H12 >99.9 高效过滤器H13 >9.97 高效过滤器H14 >9.997 超高效过滤器U15 >99.9997 超高效过滤器U16 >99.99997 超高效过滤器U17 >99.999997 高效过滤器的外观质量标准: 【范围】 适用于高效过滤器外观质量检验依据及判断标准。 【引用标准】 根据高效空气过滤器国家标准GB13554-92制定。 【责任】检验员:负责按本规程实施检验、判定。复核员:负责按本规程进行检验复核。【质量标准】 [包装] 外包装完好无污损,无撞击、开裂的痕迹;内包装(塑料袋)密封应完好,泡沫角、泡沫板应齐全,型号、风量、气流流向等标识应完整、准确、齐全,有产品出厂合格证等。[框架] 高效过滤器框架表面无明显污染,无凹凸、疤痕,无划痕、涂层,无剥落,无毛刺,锈斑;高效过滤器框架(粘密封条一侧)应平整,无明显偏差;高效过滤器框架强度应符合要求,如放在平整的表面,摇晃,框架无变形、晃动的情况发生。 [接缝] 高效过滤器滤纸和框架之间的密封应严密,没有缝隙和孔洞;高效过滤器和框架之间的密封胶条,应连接、无断裂现象,目视平整,高效过滤器和框架之间的密封胶条的厚度不宜超过8mm,压缩率为25%-30%。 [滤纸] 单面折纸层数符合要求,纸隔板的高度应在4.0-4.5mm之间;滤纸无损伤、无污损、无脱屑、无皱褶、无打胶、无补丁;分隔板无明显损伤,平齐均匀;密封胶整齐、无裂纹,滤纸和分隔板浸润高度不大于5mm,框架滤纸和密封胶粘帖处,不应出现裂纹、气

高效过滤器的使用期限问题

高效过滤器的使用期限 一、高效过滤器的使用期限问题 1、根据公司制定的监测规程定期对洁净厂房进行空气洁净情况的 监测,发现有异常情况时如认为是高效过滤器问题则应该进行更换,如送风量下降至70%,有泄漏等; 2、按空调净化系统验证要求定期进行验证,发现异常情况时按要 求进行更换; 3、正常生产过程中发现有异常情况时,如压差不合格、感觉不到 送风量等时分析原因最后认定是高效过滤器问题时应进行更换; 4、公司文件规定的更换周期:一般应考虑生产量的大小,产尘量 情况等因素,不可盲目规定,也不能人云亦云。 二、高效过滤器泄漏的测试方法 用尘埃粒子计数器法: 通常用小采样量仪器如2.83L/min,以尘埃粒子计数法规定的限度做为判定标准,或发现有明显的粒子数变化。 操作方法:采样口距离过滤器2至3cm,移动速度5至20mm/s。 DOP或PAO法 使用仪器:烟雾发生器、检漏器。 方法:接收器的采样头离过滤器距离约2cm,巡检速度在2~3cm/s以内。 标准:泄漏率应小于99.99%。

高效过滤器检漏 1、目的:通过检测高效过滤器的泄漏量,发现高效过滤器及其安装的缺陷,以便及时采取补救措施. 2、范围:适用于洁净区高效过滤器的检漏. 3、责任者:质量部、生产部. 4、规程: 4-1测试方法:尘埃粒子计数扫描巡检法. 4-2测试范围:过滤器的滤材,过滤嚣框架的密封和过滤器组支撑框架之问的连接、支撑框架和固定壁间连接. 4-3检测仪器:尘埃粒子计数器. 4-4检测原理:根据浮游粒子在一定强度的光照下所散射出与其粒径成一定比例关系的光通量原理,粒子散射光经光电转换变成电信号,经放大和计算机处理后被显示粒子当量直径和相应粒子数量. 4-5检测程序: 4-5-l用尘埃粒子计数器采样头扫描过滤器的出风侧,采样头离过滤器距离约2cm,沿过滤器内边框等巡检,扫描速度低于5cm/s.4-5-2当检测周期为10min时,0.5u m粒子数>20,表明泄漏量超标.需要修补或更换。 4-5-3用环氧树脂胶堵漏或紧固螺栓后,再进行扫描巡检. 4-6检测周期 正常使用时每年至少检测一次,新装高效过滤器应进行检测.

高效过滤器维护保养及更换操作规程

1、目的 按GMP要求,规范高效过滤器维护保养和更换操作。 2、适应范围 本程序适用于高效过滤器维护保养和使用操作。 3、责任 3.1工程部:负责高效过滤器的安装和更换。 4、术语与定义 4.1高效过滤器:捕集颗粒灰尘及各种悬浮物 5、相关文件 5.1《设备使用与清洁管理规程》(SMP-E-020) 6、内容 6.1概述 6.1.1基本概念 本高效过滤器主要用于捕集0.5um以下的颗粒灰尘及各种悬浮物。它是采用超细玻璃纤维纸作滤料,胶版纸、铝膜等材料作分割板,与木框铝合金胶合而成。其经纳焰法测试,具有过滤效率高、阻力低、容尘量大等特点。高效空气过滤器很适合于我公司无尘净化车间的空调末端送风处。 6.1.2过滤器基本特点: 文件类型:操作规程第1 页/共3 页文件状态:受控文件

1)过滤精度高对水中悬浮物的去除率可达95%以上,对大分子有机物、病毒、细菌、胶体、铁等杂质有一定的去除作用,经过良好的混凝处理的被处理水,进水为10NTU时,出水1NTU以下; 2)过滤速度快一般为40m/h,最高可达60m/h; 3)纳污量大一般为15~35kg/m3; 4)反洗耗水率低反冲洗耗水量小于周期滤水量的1~2%; 5)加药量低,运行费用低由于滤床结构及滤料自身的特点,絮凝剂投加量是常规技术的1/2~1/3。周期产水量的提高,吨水运行费用也随之减少; 6)占地面积小制取相同的水量,占地面积为普通砂滤器的1/3以下; 7)可调性强过滤精度、截污容量、过滤阻力等参数可根据需要调节; 8)滤料经久耐用,用寿命20年以上。 6.1.3工艺流程: 采用絮凝加药装置在泵前往循环水中投加絮凝剂,原水通过增压泵增压后,絮凝剂经水泵叶轮搅拌后均匀混合将原水中的细小固体颗粒悬浮和胶体物质进行微絮凝反应,快速生成体积大于5微米的絮体,流经过滤系统管路进入高效不对称纤维过滤器,絮凝物被滤料过滤截留。 本系统采用气水联合冲洗,反洗空气由风机提供,反洗水由直接由自来水提供。系统的废水排入污水处理系统。 6.2操作过程 1)检测,了解相关数据,更换后可做参考。 2)拆开高效过滤器,查看箱体。 3)更换高效过滤器(要选择好同类型规格的过滤器)。 4)检漏(检查洁净度能否达到要求)。 5)正常使用 6.3维护保养 1)高效过滤器在安装前应扫描检漏。 2)高效过滤器在安装后对密封部位需要再检漏。 3)每2年更换1次高效过滤器。 4)每半年应检查1次高效过滤器的使用情况。 文件类型:操作规程第2 页/共3 页文件状态:受控文件

高效过滤器检漏方案

高效过滤器检漏方案

目录 1、测试目的及工作原理 2、测试范围及测试部位 3、制定依据 4、测试仪器设备 5、测试状态 6、前提条件 7、合格标准 8、测试操作 8.1准备工作 8.2气溶胶烟雾的引入 8.30基准和100%基准的设定 8.4光度计扫描 9、测试结果 10、结果分析 11、不符合纠正措施 12、再验证周期 13、检测报告

1.测试目的及工作原理 1.1测试目的:通过对指定区域内已安装的高效过滤器进行PAO检漏,确认高效滤器的完整性及其安装的密封性。 1.2工作原理:在被检测高效过滤器上风侧发生PAO气溶胶作为尘源,在下风侧用光度计采样检测,含尘气体经过光度计时产生的散射光经光电效应和线性放大转换为电量,并由微安表快速显示,采集到的空气样品通过光度计的扩散室,由于粒子扩引起灯光强度的差异,经测定这个光强度,光度计便可测得气溶胶的相对浓度。PAO检漏法中测得的是高效过滤器的穿透率,即光度计直接显示穿透率读数。 2. 测试范围及测试部位 2.1测试范围:适用于洁净区域内已安装的高效过滤器泄漏率的检测,包括FFU和房间高效过滤器。 2.2测试部位:①过滤器的滤材;②过滤器的滤材与其框架内部的连接;③过滤器框架的密封垫和过滤器组支撑框架之间;④支撑框架和墙壁或顶棚之间。 3.制定依据 《洁净室施工及验收规范》GB50591-2010 《药品生产验证指南》2003 4.测试仪器设备 5.测试状态:静态。 6.前提条件 (1)净化空调系统的运行正常;

(2)风量和压差项目已测试通过; (3)确定过滤器出口风速与光度扫描仪采样探头的入口风速相适应; 注:高效过滤器经过风量测定,应在额定风量的60%~80%之间运行。 7.判断标准《洁净室施工及验收规范》GB50591-2010 过滤器泄漏率≤0.01%。 8.测试操作 8.1准备工作 ◆卸下高效过滤器的散流板,对箱体和框架的外表面进行清洁,避免积尘对检测产 生干扰。 ◆关闭洁净室(区)的防火报警装置,避免测试期间因烟雾泄漏造成误会。 ◆确定上游浓度验证孔。(若无孔,则在上游风管上打一孔) ◆准备好惰性气体的气源(通常使用氮气)。 8.2气溶胶烟雾的引入 8.2.1 空调系统气溶胶烟雾的引入 向5B气溶胶发生器中加入适量PAO液体,通电加热至393.3℃-404.4℃。空调系统检漏直接把气溶胶发生器放入空调机箱送风段,即中效过滤器后。如空调机箱送风段没有门,气溶胶发生器无法放入,则需拆除初效或中效过滤器。以防发生的气溶胶被空调箱内的过滤器吸附,接通压力源,开启喷嘴调节阀,开启压力调节阀(0.1Mpa-0.3Mpa),调节气溶胶烟雾的输出量。 8.3 0基准和100%基准的设定 确认光度计选择阀处在CLEAR的位置。将电源开关设置到1(On)的位置,按ENTER键,设置零基准线。 采样管穿过验证孔,一端与上游(高效过滤器进风侧)采样口连接,另一端与气溶胶光度计接通。光度计选择阀拨到UPSTREAM位置,测定上游气溶胶浓度。调节气溶胶发生器输出阀的开合度,直至确认上游浓度达到20-30μg/L,并保持相对稳定。按100键,然后按ENTER键,设定100%基准。 100%基准线成功设置之后,<0>指示灯将闪烁,表明0%基准线必须进行校正。将选择阀设置到CLEAR,并按ENTER键,0%基准线得到校正。

相关文档
相关文档 最新文档