文档库 最新最全的文档下载
当前位置:文档库 › RS-485总线

RS-485总线

RS-485总线
RS-485总线

摘要:阐述了RS-485总线规范,描述了影响RS-485总线通信速率和通信可靠性的三个因素,同时提出了相应的解决方法并讨论了总线负载能力和传输距离之间

的具体关系。

关键词:RS-485 现场总线信号衰减信号反射

当前自动控制系统中常用的网络,如现场总线CAN、Profibus、INTERBUS-S以及ARCNet的物理层都是基于RS-485的总线进行总结和研究。

一、EIA RS-485标准

在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在RS-422标准的基础上,EIA研究出了一种支持多节点、远距离和接收高灵敏度的RS-485总线标准。

RS-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求:

?接收器的输入电阻RIN≥12kΩ

?驱动器能输出±7V的共模电压

?输入端的电容≤50pF

?在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关)?接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;

(V+)-(V-)≤-0.2V,表示信号“1”)

因为RS-485的远距离、多节点(32个)以及传输线成本低的特性,使得EIA RS-485成为工业应用中数据传输的首选标准。

二、影响RS-485总线通讯速度和通信可靠性的三个因素

1、在通信电缆中的信号反射

在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。

阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。

从理论上分析,在传输电缆的末端只要跨接了与电缆特性阻抗相匹配的终端电阻,就再也不会出现信号反射现象。但是,在实现应用中,由于传输电缆的特性阻抗与通讯波特率等应用环境有关,特性阻抗不可能与终端电阻完全相等,因此或多或少的信号反射还会存在。

引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。

信号反射对数据传输的影响,归根结底是因为反射信号触发了接收器输入端的比较器,使接收器收到了错误的信号,导致CRC校验错误或整个数据帧错误。

在信号分析,衡量反射信号强度的参数是RAF(Refection Attenuation Factor反射衰减因子)。它的计算公式如式(1)。

RAF=20lg(V ref /V inc ) (1)

式中:V ref —反射信号的电压大小;V inc —在电缆与收发器或终端电阻连接点的入射信号的电压大小。

具体的测量方法如图3所示。例如,由实验测得2.5MHz的入射信号正弦波的峰-峰值为+5V,反射信号的峰-峰值为+0.297V,则该通讯电缆在2.5MHz的通讯速率时,它的反射衰减因子为:

RAF=20lg(0.297/2.5)=-24.52dB

要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。在通讯线路中,如何通过加偏置电阻提高通讯可靠性的原理,后面将做详细介绍。

2、在通讯电缆中的信号衰减

第二个影响信号传输的因素是信号在电缆的传输过程中衰减。一条传输电缆可以把它看出由分布电容、分布电感和电阻联合组成的等效电路,如图4所示。

电缆的分布电容C主要是由双绞线的两条平行导线产生。导线的电阻在这里对信号的影响很小,可以忽略不计。信号的损失主要是由于电缆的分布电容和分布电感组成的LC低通滤波器。PROFIBUS用的LAN标准型二芯电感(西门子为DP总线选用的标准电缆),在不同波特率时的衰减系数如表1所示。

表1 电缆的衰减系数

通讯波特率16MHz 4MHz 38.4kHz 9.6kHz

衰减体系数(1km) ≤42dB ≤22dB ≤4dB ≤2.5dB

3、在通讯电缆中的纯阻负载

影响通讯性能的第三个因素是纯阻性负载(也叫直流负载)的大小。这里指的纯阻性负载主要由终端电阻、偏置电阻和RS-485收发器三者构成。

在叙述EIA RS-485规范时曾提到过RS-485驱动器在带了32个节点,配置了150Ω终端电阻的情况下,至少能输出1.5V的差分电压。一个接收器的输入电阻为12kΩ,整个网络的等效电路如图5所示。按这样计算,RS-485驱动器的负载能力为:

RL=32个输入电阻并联||2个终端电阻=((12000/32)×(150/2))/(12000/32)+(150/2))≈51.7Ω

现在比较常用的RS-485驱动器有MAX485、DS3695、MAX1488/1489以及和利时公司使用的SN75176A/D等,其中有的RS-485驱动器负载能力可以达到20Ω。在不考虑其它诸多因素的情况下,按照驱动能力和负载的关系计算,一个驱动器可带节点的最大数量将远远大于32个。

在通讯波特率比较高的时候,在线路上偏置电阻是很有必要的。偏置电阻的连接方法如图6。它的作用是在线路进入空闲状态后,把总线上没有数据时(空闲方式)的电平拉离0电平,如图7。这样一来,即使线路中出现了比较小的反射信号或干扰,挂接在总线上的数据接收器也不会由于这些信号的到来而产生误动作。

通过下面后例子了,可以计算出偏置电阻的大小:

终端电阻Rt1=Rr2=120Ω;

假设反射信号最大的峰-峰值Vref≤0.3Vp-p,则负半周的电压Vref≤0.15V;终端的电阻上由反射信号引起的反射电流Iref≤0.15/(120||120)=2.5mA。一般RS-485收发器(包括SN75176)的滞后电压值(hysteresis value)为50mV,即:

(Ibias-Iref)×(Rt1||Rt2)≥50mV

于是可以计算出偏置电阻产生的偏置电流Ibias≥3.33mA

+5V=Ibias(R上拉+R下拉+(Rt1||Rt2)) (2)

通过式2可以计算出R上拉=R下拉=720Ω

在实际应用中,RS-485总线加偏置电阻有两种方法:

(1)把偏置电阻平衡分配给总线上的每一个收发器。这种方法给挂接在RS-485总线上的每一个收发器加了偏置电阻,给每一个收发器都加了一个偏置电压。

(2)在一段总线上只用一对偏置电阻。这种方法对总线上存在大的反射信号或干扰信号比较有效。值得注意的是偏置电阻的加入,增加了总线的负载。

三、RS-485总线的负载能力和通讯电缆长度之间的关系

在设计RS-485总线组成的网络配置(总线长度和带负载个数)时,应该考虑到三个参数:纯阻性负载、信号衰减和噪声容限。纯阻性负载、信号衰减这两个参数,在前面已经讨论过,现在要讨论的是噪声容限(Noise Margin)。RS-485总线接收器的噪声容限至少应该大于200mV。前面的论述者是在假设噪声容限为0的情况下进行的。在实际应用中,为了提高总线的抗干扰能力,总希望系统的噪声容限比EIA RS-485标准中规定的好一些。从下面的公式能看出总线带负载的多少和通讯电缆长度之间的关系:

Vend=0.8(Vdriver-Vloss-Vnoise-Vbias) (3)

其中:Vend为总线末端的信号电压,在标准测定时规定为0.2V;Vdriver为驱动器的输出电压(与负载数有关。负载数在5~35个之间,Vdriver=2.4V;当负载数小于5,Vdriver=2.5V;当负载数大于35,Vdriver≤2.3V);Vloss为信号在总线中的传输过程中的损耗(与通讯电缆的规格和长度有关),由表1提供的标准电缆的衰减系数,根据公式衰减系数b=20lg(Vout/Vin)可以计算出Vloss=Vin-Vout=0.6V(注:通讯波特率为9.6kbps,电缆长度1km,如果特率增加,Vloss会相应增大);Vnoise 为噪声容限,在标准测定时规定为0.1V;Vbias是由偏置电阻提供的偏置电压(典型值为0.4V)。

式(3)中乘以0.8是为了使通信电缆不进入满载状态。从式(3)可以看出,Vdriver 的大小和总线上带负载数的多少成反比,Vloss的大小和总线长度成反比,其他几个参数只和用的驱动器类型有关。因此,在选定了驱动器的RS-495总线上,在通信波特率一定的情况下,带负载数的多少,与信号能传输的最大距离是直接相关的。具体关系是:在总线允许的范围内,带负载数越多,信号能传输的距离就越小;带负载数据少,信号能传输的距离就发越远。

四、分布电容对RS-485总线传输性能的影响

电缆的分布电容主是由双绞线的两条平行导线产生。另外,导线和地之间也存在分布电容,虽然很小,但在分析时也不能忽视。分布电容对总线传输性能的影响,主要是因为总线上传输的是基波信号,信号的表达方式只有“1”和“0”。在特殊的字节中,例如0x01,信号“0”使得分布电容有足够的充电时间,而信号“1”到来时,由于分布电容中的电荷,来不及放电,(Vin+)—(Vin-)-还大于200mV,结果使接爱误认为是“0”,而最终导致CRC校验错误,整个数据帧传输错误。具体过程如图8所示。

由于总线上分布影响,导致数据传输错误,从而使整个网络性能降低。解决这个问题有两种方法:

(1)降低数据传输的波特率;

(2)使用分布电容小的电缆,提高传输线的质量。

RS485总线控制能传输多远

在安防系统中,有很多设备都是以两线制形式、半双工的通讯来连接的,多是采用RS485接口作为控制总线的。由于RS485是采用平衡驱动和差分输入的,因而具有很强的抗共模干扰能力。RS485电气特性为+(2-6)V表示逻辑”1”,-(2-6)V表示逻辑”0”,其接口电平又很低,因此不易损坏。有关资料介绍RS485接口的最大传输距离标准值为4000英尺,相当是1200多米,同时允许在总线上连接128个收发站。实际上RS485总线的传输长度,要受到连接方式、负载多少和外界限类线型的影响,但是影响最大的问题是控制线的长度与信号速率的关系,这个长度的数据主要是受到信号的失真度及躁声等影响所限制。使用导线截面为0.5的双绞线,当终端负载电阻为100欧时,当速率为1.2Mbit/s时,则电缆长度被限制在100米,当信号速率为100kbit/s以下时,则电缆长度被限制在1200米左右,如果采用更大的导线截面时时则可以超过这个约束值。但实际上,这个限制条件在有些方面还是比较保守的,因为在安防行业实际应用中的通讯速率都是很低的。但是,我们还是要根据据应用环境,分析设计与施工方法是否得当,注意厂家的对敷设线材的要求、端接的要求,是否应当使用屏蔽线,如果传输距离超过了1200米,则需加相应的信号增大器。

RS-485标准回顾

RS-485是一个电气接口规范,它只规定了平衡驱动器和接收器的电特性,而没有规定接插件、传输电缆和通信协议。RS-485标准定义了一个基于单对平衡线的多点、双向(半双工)通信链路,是一种极为经济、并具有相当高噪声抑制、传输速率、传输距离和宽共模范围的通信平台。RS-485接口的主要特点如下:

?平衡传输

?多点通信

?驱动器输出电压(带载):≥|1.5V|

?接收器输入门限:±200MV

?7V至+12V总线共模范围

?最大输入电流:1.0MA/-0.8MA(12VIN/7VIN)

?最大总线负载:32个单位负载(UL)

?最大传输速率:10MBPS

?最大电缆长度:4000英尺

网络配置

RS-485支持半双工或全双工模式,网络拓扑一般采用终端匹配的总线型结构,不支持环形或星型网络。最好采用一条总线将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。但随着通信距离的延长或通信速率的提高,其不良影响会越来越严重,主要原因是信号在各支路末端反射后与原信号叠加,造成信号质量下降。除此之外还应注意总线特性阻抗的连续性,在阻抗不连续点也会发生信号的反射。例如,总线的不同区段采用不同电缆、某一段总线上有过多收发器紧靠在一起安装、或者是有过长分支线引出总线时都会出现阻抗不连续点。总之,应该提供一条单一、连续的信号通道作为总线。

有关总线上允许连接的收发器数标准并没有做出规定,但规定了最大总线负载为32个单位负载(UL)。每单位负载的最大输入电流为1.0MA/-0.8MA,相当于约12KΩ。为了扩展总线节点数,器件生产厂商增大收发器输入电阻。例如MAX487,MAX1487的输入电阻增加至48 KΩ以上(1/4UL),节点数就可增加至128个,96 KΩ输入电阻的MAX1483允许节点数可到256个。

是否对RS-485总线进行终端匹配取决于数据传输速率、电缆长度及信号转换速率。UART是在每个数据位的中点采样数据的,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。有一条经验性的准则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配;当信号的转换时间(上升或下降时间)超过电信号沿总线单向传输所需时间的3倍以上时就可以不加匹配。例如具有限斜率特性的RS-485接口MAX483输出信号的上升或下降时间最小为250NS,典型双绞

线上的信号传输速率约为0.2M/NS(24AWG PVC电缆),那么只要数据速率在250KBPS以内、电缆长度不超过16米,采用MAX483作为RS-485接口时就可以不加终端匹配。

当考虑终端匹配时,有多种匹配方案可以选择。最简单的就是在总线两端各接一只阻值等于电缆特性阻抗的电阻。大多数双绞线特性阻抗大约在100Ω至120Ω之间。这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大电流,对于功耗电量限制比较严格的系统不太适合。另外一种比较省电的匹配方案是RC匹配。利用一只电容C隔断直流成分可以节省大部分功率。但电容C的取值是个难点,需要在功耗和匹配质量间进行折中。除上述两种外,还有一种采用二极管的匹配方案。这种方案虽未实现真正的“匹配”,但它利用二极管的钳位作用迅速削弱反射信号,达到改善信号质量的目的,节能效果显著。

RS-485/RS-232接口相比有何特点?

由于RS-232接口标准出现较早,难免有不足之处,主要有以下几点:

1.接口的信号电平值较高,易损坏接口电路的芯片,又因为与TTL 电平不兼容故需使用电

平转换电路方能与TTL电路连接。

2.传输速率较低,在异步传输时,波特率为20Kbps。

3.接口使用一根信号线和一根信号返回线而构成共地的传输形式,这种共地传输容易产生

共模干扰,所以抗噪声干扰性弱。

4.传输距离有限,最大传输距离标准值为50英尺,实际上也只能用在50米左右。

5.RS-232接口在总线上只允许连接1个收发器, 即单站能力。

关于RS-485传输线路

在使用RS-485接口时,对于特定的传输线经,从发生器到负载其数据信号传输所允许的最大电缆长度是数据信号速率的函数,这个长度数据主要是受信号失真及噪声等影响所限制。最大电缆长度与信号速率的关系曲线是使用24AWG铜芯双绞电话电缆(线径为0.51mm),线间旁路电容为52.5PF/M,终端负载电阻为100欧时所得出。(曲线引自GB11014-89附录A)。可知,当数据信号速率降低到90Kbit/S以下时,假定最大允许的信号损失为6dBV时,则电缆长度被限制在1200M。实际上,曲线是很保守的,在实用时是完全可以取得比它大的电缆长度。当使用不同线径的电缆.则取得的最大电缆长度是不相同的。例如:当数据信号速率为600Kbit/S时,采用24AWG电缆,最大电缆长度是200m,若采用19AWG电缆(线径为0.91mm)则电缆长度将可以大于200m;若采用28AWG 电缆(线径为0.32mm)则电缆长度只能小于200m。

通讯线须采用国际上通行的屏蔽双绞线。采用屏蔽双绞线有助于减少和消除两根485通信线之间产生的分布电容以及来自于通讯线周围产生的共模干扰。工程商大都习惯采用5类网线或超5类网线作为485通信线,这是错误的。这是因为:

1.普通网线没有屏蔽层,不能防止共模干扰。

2.网线只有0.2mm平方,线径太细,会导致传输距离降低和可挂接的设备减少。

3.网络线为单股的铜线,相比多芯线而言容易断裂。

RS-485收发器在规定的共模电压-7V至+12V之间时,才能正常工作。如果超出此范围会影响通讯,严重的会损坏通讯接口。共模干扰会增大上述共模电压。消除共模干扰的有效手段之一是将485通讯线的屏蔽层用作地线,将机具、电脑等网络中的设备地连接在一起,并由一点可靠地接入大地。

关于RS-485接线方式

星形结构会产生反射信号,从而影响到485通信。总线到每个终端设备的分支线长度应尽量短,一般不要超出5米。分支线如果没有接终端,会有反射信号,对通讯产生较强的干扰,应将其去掉。

在同一个网络系统中,使用同一种电缆,尽量减少线路中的接点。接点处确保焊接良好,包扎紧密,避免松动和氧化。保证一条单一的、连续的信号通道作为总线。

如何消除线路的干扰

485通信线由两根双绞的线组成,它是通过两根通信线之间的电压差的方式来传递信号,因此称之为差分电压传输。差模干扰在两根信号线之间传输,属于对称性干扰。消除差模干扰的方法是在电路中增加一个偏值电阻,并采用双绞线;共模干扰是在信号线与地之间传输,属于非对称性干扰。消除共模干扰的方法包括:

1.采用屏蔽双绞线并有效接地;

2.强电场的地方还要考虑采用镀锌管屏蔽;

3.布线时远离高压线,更不能将高压电源线和信号线捆在一起走线;

4.采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV)

一般情况下不需要增加终端电阻,只有在485通信距离超过300米的情况下,且使用效果明显的情况下,要在485通讯的开始端和结束端增加终端电阻。

如何延长485的通讯距离

485网络的规范之一是1.2公里长度,32个节点数。如果超出了这个限制,那么必须采用485中继器或485集线器来拓展网络距离或节点数。利用485中继器或485集线器,可以将一个大型485网络分隔成若干个网段。485中继器或485集线器就如同485网段之间连接的“桥梁”。当然每个网段还是遵循上面的485规范,即1.2公里长度,32个节点数。

RS485总线原理和维护

RS485总线原理及维护 一.RS-485标准回顾 RS-485标准最初由电子工业协会(EIA)于1983年制订并发布,后由TIA-通讯工业协会修订后命名为TIA/EIA-485-A,不过工程师还是习惯地称之为RS-485。RS-485由RS-422发展而来,后者是为弥补RS-232之不足而提出的。为改进RS-232通信距离短、速率低的缺点,RS-422定义了一种平衡通信接口,将传输速率提高到10Mbps,传输距离延长到4000英尺(速率低于100kbps时),并允许在一条平衡线上连接最多10个接收器。RS-422是一种单机发送、多机接收的单向、平衡传输规范,为扩展应用范围,随后又为其增加了多点、双向通信能力,即允许多个发送器连接到同一条总线上,同时增加了发送器的驱动能力和冲突保护特性,扩展了总线共模范围,这就是后来的EIA RS-485标准。 RS-485是一个电气接口规范,它只规定了平衡驱动器和接收器的电特性,而没有规定接插件、传输电缆和通信协议。RS-485标准定义了一个基于单对平衡线的多点、双向(半双工)通信链路,是一种极为经济、并具有相当高噪声抑制、传输速率、传输距离和宽共模范围的通信平台。RS-485接口的主要特点如下: ?平衡传输; ?多点通信; ?驱动器输出电压(带载):≥|1.5V|;

?接收器输入门限:±200mV; ?-7V至+12V总线共模范围; ?最大输入电流:1.0mA/-0.8mA(12Vin/-7Vin); ?最大总线负载:32个单位负载(UL); ?最大传输速率:10Mbps; ?最大电缆长度:4000英尺。实际上可达 3000米。 ?RS-485接口在总线上是允许连接多达128个收发器。即具有多站能力,这样用户可以利用单一的RS-485接口方便地建立起设 备网络。 因RS-485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口。因为RS485接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输。 RS485接口连接器采用DB-9的9芯插头座,与智能终端RS485接口采用DB-9(孔),与键盘连接的键盘接口RS485采用DB-9(针)。二.网络配置 RS-485支持半双工或全双工模式,网络拓扑一般采用终端匹配的总线型结构,不支持环形或星形网络。最好采用一条总线将各个节点串接起来,从总线到每个节点的引出线长度应尽量短,以便使引出线中的反射信号对总线信号的影响最低。图1所示为实际应用中常见的一些错误连接方式(a,c,e)和正确的连接方式(b,d,f)。a,c,e三种不恰当的网络连接尽管在某些情况下(短距离、低速率)仍然

一种基于RS485总线的远程数据通信系统

一种基于!"#$%总线的远程数据通信系统& 潘浩’李洪彪(张朝晖) ’*石油大学信控学院东营(+,-.’/(*胜利油田胜大集团东营(+,---/ )*北京科技大学信息学院北京’---0)/ 摘要介绍了单片机和微机通过1230+总线进行远程通信的软硬件设计方法4并结合实例给出了系统的几种特殊应用5 关键词串行通讯1230+总线单片机动态数据交换 6789:;<=>!8?=@8A=??B<:C D@:=<"E9@8?9F:D!"#$%G B9 H I J K I L’M N K L J O P N I L Q R I J OQ R I L R S N T*U V W X X Y X Z[\Z X]^_‘a X\_\bc X\‘]X Y d\e a\f f]a\e4g\a h f]i a‘jX Zk f‘]X Y f l^4m X\e j a\e n o p q r T4c W a\_/ 6s9@t D C@u R v w I w v x N y z L{S y L JI|v y N O JL z{L}}S J N{I~N L J y P v~!v v J"L{I"}v~v x I J|x v}L~v{L}w S~v x P I y v|L J 1230+P S y#2L}v y{R v}v y4y S{RI v J v x O$y I%N J O4"L J O v x|N y~I J{v I J|&&’I x v w x v y v J~v|# (8E)=t*92v x N I"{L}}S J N{I~N L J1230+P S y2N J O"v+{R N ww x L{v y y L x&&’*&$J I}N{|I~I v,{R I J O v/ -引言 自动化仪表的数字化.分散化.网络化4即现场总线4是其重要的发展方向之一5它克服了&/2系统的控制和采集相对集中.系统封闭的缺点5它将现场的智能模块赋予强大的采集和控制功能4把各模块和远程监控微机通过双绞线作总线4按照开放的.规模的通信协议连成网络4从而使控制更灵活4危险更分散5其通讯协议主要有00.M L J1L x2y.H x L z N P S y./34等几种4但它们都较为复杂4需要专门的硬件支持5针对目前仪表过渡阶段而言41230+总线通讯方式更为简洁灵活5由于其传输速率高4误码率低4距离远*不加中继器时有效传输距离可达’(--}/4硬件接口简单4软件易实现4性价比较高等优点使得基于1230+协议的系统更适合于现场4特别是中小型数据采集和控制系统的应用5本文将给出一种基于该总线的数据采集和控制系统的软硬件设计方法及诸如节电.中长距离通信.和&&’接口等的应用5 5单片机与微机远程通信的实现 5#-实现!"#$%总线通信的一般应用 如图’4由于全双工方式需要(对双绞线4为节约成本和简化控制4这里采用半双工两线制方式5系统首先将单片机的信号和串行电平接口芯片如*63730)4 ,+’,.等/相连4进行u u M81230+电平互转4作为一个节点连接到由双绞线组成的1230+总线网络上4再在 远程微机端用电平转换模块*如3|I}3+(-等/进行 1230+812()(电平互转后和计算机串口相连5每个节点都有自己的独立的地址5通过远程微机端发送带有地址码的命令码4由各个节点对命令进行监听4和命令码中的地址相匹配的节点将在规定的时间内完成规定的读写操作4并返回相关信息 5 &本文得到石油大学博士基金资助5万方数据

RS485总线在智能抄表系统中的应用

RS485总线在智能抄表系统中的应用 引言 智能抄表系统由主站通过传输媒体将多个用户仪表的数据集中抄读的系统。它是用现代化的通讯手段去抄读这些仪表的数据,而不用到现场。智能抄表系统一般是集中抄表系统与数据远程通讯的组合。网络远程集中抄表是工业和民用中新兴的一项实用技术,结合了计算机、网络、信和工业自动化等现代化技术,并随着技术的不断发展而出现许多不同的实现手段。本文详细介绍了RS485总线在这种智能抄表系统中的应用。 一智能抄表系统硬件设计 1.1 RS485通讯网络设计 RS485总线是工业应用中非常成熟的技术,是现代通讯技术的工业标准之一,采用RS485总线设计网络也是基于这些原因。RS485总线用于多站互连十分方便,用一对双绞线即可实现,由于采用平衡发送和差分接收,即在发送端,驱动器将TTL电平信号转换成差分信号输出;在接收端,接收器将差分信号变成TTL电平,因此具有抗共模干扰的能力。根据RS-485标准,传送数据速率达100kbit/s时通讯距离可达1200m。 本文中RS485总线包括数据采集器和数据集中器两个独立的子系统。在这种主从式的一点对多点的连接中,数据集中器是主机(即所谓的上位机),数据采集器为从机(即下位机)。网络结构图如图1所示。 网络拓扑结构为总线型。网络中只能有一个主设备(Master),从设备从不进行主动通讯。数据集中器作为主设备,主动开始一个通讯过程,即发送指令和数据。而数据采集器作为从设备监听总线,随时准备响应总线指令,回应数据集中器。 图1 基于RS485总线网络的集中器与采集器结构图 1.2 数据集中器通讯设计 数据集中器硬件原理框图见图2,主要由以下几部分组成:单片机系统、调制解调器、与计算机间的通讯接口电路、摘机电路、隔离驱动电路、与数据采集器间的通讯接口电路、LED显示单元、收发控制电路。数据集中器设有小键盘输入和LED显示模块,在系统中有承上启下的作用,即可作为上位机与数据采集器进行通讯(主动模式),也可作为下位机与管理计算机进行通讯(被动模式)。工作模式如下: 1、主动模式:在没有上层管理计算机联机控制下,数据集中器作为主控设备,可通过小键盘设置下位机从节点(数据采集器,下同)地址进行主动通讯,然后通过LED显示模块循环显示接收到的该下位机从节点发送来的组数据。 2、被动模式:在有上层管理计算机的联机控制下,数据集中器成为一个通讯中转站,一方面与上层计算机通讯,一方面与RS48网内从节点通讯。通过这种方式,计算机的指令和数据可传达到RS48}网内的任何节点,网内的任何节点的数据也可回送到计算机。

解析基于RS485总线的远程测控系统

解析基于RS485总线的远程测控系统 rs-485/' target='_blank'>RS-485总线型远程测控系统已得到广泛应用,这主要因为rs-485/' target='_blank'>RS-485总线具有传输距离远等特点。在传输速率为9600bit/s 时传输距离可达1.2km以上,最高传输速率可达10Mbit/s,且只用普通双绞线即可,同一对双绞线上可以挂接多至256个以上的终端。有许多工业测控模块都是采用RS-485总线型的,比如Adam、Nudan等,但价格较高。本文介绍的RS-485远程测控系统结合传统的分布式测控系统的特点、利用了RS-485总线的特点,而且巧妙地应用了AT89C2051单片机和CD4067多路开关,因而成本低,功能灵活,使用简单。 1、系统设计方案本系统由一台PC作为主机,多至255台AT89C2051单片机作为从机。主机的RS-232串行口经过外插式的RS-232/RS-485转换器变成RS-485的数字信号总线。PC与单片机之间通过RS-485数字信号总线进行串行通信。 单片机的串行口通过MAX485芯片转换成RS-485规程。单片机的P1.0~P1.3用于作为两片 CD4067(16选1多路开关)的地址选择信号。两片CD4067共同构成一个双16选1多路开关。PC首先发出所要选中的单片机编号m(0~254),然后发送该单片机控制的通道的序号n(0~15),这时第m个单片机的第n个通道选中,其信号与本系统的模拟信号总线相通,并传送到PC并行口(即打印口)上挂接的微型数据采集器上。微型数据采集器对模拟信号进行A/D转换后送入计算机进行记录和显示。如果被选中的通道的模拟信号是电流信号而不是电压信号,则需要在模拟信号总线之间并接一只电阻,以便将电流信号转换成电压信号。为了能有效地传送比较微弱的模拟信号,比如热电偶的热电势信号,系统的模拟信号总线必须使用屏蔽电缆。微型数据采集器应选用带多量程选择和程控放大的型号,以适应各种传感器输出信号的要求。本系统也可以用来远程控制继电器和电机等,此时利用微型数据采集器的D/A转换功能。比如第m个单片机的第n个通道接的是一个固态继电器,首先PC通过串行口发出地址信号选中该通道,然后PC通过微型数据采集器

rs485总线通讯协议

竭诚为您提供优质文档/双击可除 rs485总线通讯协议 篇一:Rs485通讯协议说明 摘要:阐述了Rs-485总线规范,描述了影响Rs-485总线通信速率和通信可靠性的三个因素,同时提出了相应的解决方法并讨论了总线负载能力和传输距离之间的具体关系。 关键词:Rs-485现场总线信号衰减信号反射 当前自动控制系统中常用的网络,如现场总线can、profibus、inteRbus-s以及aRcnet的物理层都是基于 Rs-485的总线进行总结和研究。 一、eiaRs-485标准 在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在Rs-422标准的基础上,eia研究出了一种支持多节点、远距离和接收高灵敏度的Rs-485总线标准。 Rs-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求: 接收器的输入电阻Rin≥12kΩ 驱动器能输出±7V的共模电压

输入端的电容≤50pF 在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关) 接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;(V+)-(V-)≤-0.2V,表示信号“1”)因为Rs-485的远距离、多节点(32个)以及传输线成本低的特性,使得eiaRs-485成为工业应用中数据传输的首选标准。 二、影响Rs-485总线通讯速度和通信可靠性的三个因素 1、在通信电缆中的信号反射 在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。 阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。

RS485总线接口引脚定义及说明

RS485总线标准是工业中(考勤,监控,数据采集系统)使用非常广泛的双向、平衡传输标准接口,支持多点连接,允许创建多达32个节点的网络;最大传输距离1200m,支持1200 m时为100kb/s的高速度传输,抗干扰能力很强,布线仅有两根线很简单。 RS485通信网络接口是一种总线式的结构,上位机(以个人电脑为例)和下位机(以51系列单片机为例)都挂在通信总线上,RS485物理层的通信协议由RS485标准和51单片机的多机通讯方式。由于RS-485是从RS-422基础上发展而来的,所以RS-485许多电气规定与RS-422相仿。如都采用平衡传输方式、都需要在传输线上接终接电阻等。RS-485可以采用二线与四线方式,二线制可实现真正的多点双向通信。 下面介绍以下rs485通讯接口定义的标准 1.英式标识为TDA(-) 、TDB(+) 、RDA(-) 、RDB(+) 、GND 2.美式标识为Y 、Z 、A 、B 、GND 3.中式标识为TXD(+)/A 、TXD(-)/B 、RXD(-) 、RXD(+)、GND rs485两线一般定义为: "A, B"或"Date+,Date-" 即常说的:”485+,485-” rs485四线一般定义为: "Y,Z,A, B," 一般rs485协议的接头没有固定的标准,可能根据厂家的不同引脚顺序和管脚功能可能不尽相同,但是官方一般都会提供产品说明书,用户可以查阅相关 rs485管脚图定义或者引脚图 上图中rs232转rs485电路中hin232(max232可以起到同样的作用但是要贵一点)起到转

换pc端rs232接口电平的作用,然后把信号由max485这个芯片转换成485电平由AB两根线输出,如果接上双绞线信号rs485总线接口的信号的通信距离至少是1千米远。

基于RS_485总线主从通信协议及其实现

云南大学学报(自然科学版),2007,29(S2):259~262CN53-1045/N ISSN0258-7971 Journal of Yunnan U niversity Ξ 基于RS-485总线主从通信协议及其实现 彭 娜,黎 英,林庆超,张英华 (云南大学信息学院,云南昆明 650091) 摘要:RS-485总线是工业现场控制系统常用的组网方法.本文中详细讨论了一种基于RS-485总线通信协议的设计,具有可靠、灵活,相比其它的主从通信协议设计可以实现即插即用功能. 关键词:RS-485;主从通信协议;协议数据单元 中图分类号:TP366 文献标识码:A 文章编号:0258-7971(2007)S2-0259-04 计算机技术、自动化技术和通信技术是现代信息科学技术的重要组成部分,是现代科学技术中的核心先导技术.计算机控制是计算机技术与自动控制理论及自动化技术紧密结合并应用于实际的结果.20世纪90年代高性能计算机、网络技术及多媒体技术的发展,使计算机应用向网络化、综合化、集成化、智能化发展,使自动控制技术更广泛地应用于工业、交通、服务等各行各业,而且控制的形式也越来越复杂.许多单机控制系统已逐渐向多机联网的方向发展,如:数据采集、消防、门禁、消费等控制系统,这就需要将各单机控制系统进行组网以进行相互通信,从简单的集中式控制逐渐向复杂的分布式、多控制端形式发展,出现了以网络通信技术为基础的新的控制形式.串行通信作为一种简单、廉价的通信方式在控制工程中广泛应用,其中RS -485总线型多CPU网络控制系统得到了推广与发展[1]. 1 硬件设计 RS-485通信协议是工业控制中使用最为广泛的双向、平衡传输线标准,它支持多点联接,允许创建多达32个接点的网络,并可以在网络中增加另外32个模块;由于RS-485标准支持半双功通信,只需2根线就可以进行数据的发送和接收,同时具有抑制共模干扰的能力.在由单片机构成的多机串行通信系统中,采用主从式结构:子机不主动发送命令或数据,一切都由主机控制.并且在一个多机通信系统中,只有1台单片机作为主机,各台子机之间不能相互通讯,即使有信息交换也必须通过主机转发[2],RS-485构成的多机通信原理框图如图1. 2 通信协议设计 协议数据单元分为2种格式:通用帧格式(表1);特殊帧格式(表2) 表1 通用帧格式 T ab11 G eneral frame format 地址功能数据长度数据CRC 1B1B1B1-16B2B 表2 特殊帧格式 T ab12 S pecial frame format 地址功能结束符 1B1B0X00 其中第1种格式为通用帧,第2种数据帧当主机检测与之连接从机的地址或者报接收数据出错时才用的格式. 主从式通信方式,即主控制器采用循环查询的方式于各子控制器通信,子控制器相互间不直接通信,而是通过主控制器间接地相互通信. Ξ收稿日期:2007-09-20 作者简介:彭 娜(1983- ),女,云南人,硕士生,主要从事低压电力载波通信协议方面的研究. 通讯作者:黎 英(1963- ),男,云南人,教授,博士,主要从事嵌入式系统研究.

基于RS485总线的数据采集处理系统

基于RS 485总线的数据采集处理系统 李新超,李继凯 (茂名学院 广东茂名 525000) 摘 要:为了解决多通道数据的远程采集和处理问题,介绍基于RS 485总线的串行通信数据采集处理系统的方案设计。给出RS 485通信接口的具体硬件电路,应用VC ++6.0编写PC 机软件,完成了PC 机与数据采集模块的串行通信及数据处理的软件系统设计,实现了对多通道现场数据的实时采集和处理,系统具有较强的实用性和扩展性。 关键词:RS 485总线;数据采集;串口通信;VC ++ 中图分类号:TN919 文献标识码:B 文章编号:10042373X (2007)122124203 The Data Acquisition and Processing System B ased on RS 485Bus L I Xinchao ,L I Jikai (Maoming University ,Maoming ,525000,China ) Abstract :To meet the remote multi 2channel data acquisition and processing.In this paper a serial communication data ac 2 quisition and processing system based on RS 485are designed.The hardware design of RS 485bus is presented.The system software design of serial communication between PC and multi 2channel data Acquisition modules and processing module by u 2sing VC ++6.0are described.The multi 2channel real 2time data acquisition and processing is realized.The system proves practi 2cability and expansibility. K eywords :RS 485bus ;data acquisition ;serial communication ;VC ++ 收稿日期:2006212216 基金项目:茂名学院青年科研基金项目(203259) 单片机具有集成度高、控制功能强、系统结构简单、价格优廉等优点。但是他的存储器容量太小,无法存储大量的采集数据;速度较慢,无法完成复杂数据处理、分析。将二者结合起来,单片机对输入的信号进行采集,然后向PC 机系统发送数据,PC 机系统对采集的数据进行处理,系统的功能将非常强大。二者的通信在速度要求不高的情况下常采用串行通信。串行通信具有实现简单、使用灵活方便、数据传输可靠等优点,因而在工业监控、数据采集和实时监控系统中得到广泛应用。目前,有多种接口标准可用于串行通信,包括RS 232,RS 422和RS 485等。RS 232是最早的串行接口标准,在短距离、较低波特率串行通信中得到了广泛应用。其后发展起来的RS 422,RS 485是平衡传送的电气标准,比起RS 232非平衡的传送方式在电气指标上有了大幅度的提高。RS 485硬件设计简单、控制方便、成本低廉,支持远距离多机通信。在实际应用如小区智能管理,楼宇监控等场合通常需要多个测控点才能有效完成测控任务,传输距离通常较远,RS 232总线无法满足设计要求,所以采用RS 485总线进行设计。1 系统总体设计 为满足对多通道数据采集和处理、控制的开发设计,系统采用1台PC 机和多个单片机采集终端构成集总式系统。由单片机P89L PC935构成采集控制终端即下位机, 采用RS 485总线与PC 机进行串口通信数据传输。系统中所有下位机挂接于同一条数据通信总线,总线为各现场单元共享,为避免总线通信的竞争与冲突,系统网络通信采用主从通信控制方法,即系统中每个下位机被赋予惟一的本机地址,采用上位机轮询,下位机应答的通信方式。用VC ++编写PC 机系统软件控制整个系统工作,利用VC 的MSComm 控件编写程序实现与下位机串口通信,编写程序实现对所得数据进行处理,如可以动态显示采集数据的曲线图形,并用ADO 数据库实现了采集数据的保存和查询。图1 是采集处理系统的总体框图。 图1 系统总体结构框图 2 系统的设计与实现2.1 RS 485通信接口 PC 机只有RS 232接口,所以要设计电路将RS 232 4 21总线与网络李新超等:基于RS 485总线的数据采集处理系统

RS485总线应用与选型指南

RS485总线应用与选型指南 一、RS485总线介绍 RS485总线是一种常见的串行总线标准,采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。在一些要求通信距离为几十米到上千米的时候,RS485总线是一种应用最为广泛的总线。而且在多节点的工作系统中也有着广泛的应用。 二、RS485总线典型电路介绍 RS485电路总体上可以分为隔离型与非隔离型。隔离型比非隔离型在抗干扰、系统稳定性等方面都有更出色的表现,但有一些场合也可以用非隔离型。 我们就先讲一下非隔离型的典型电路,非隔离型的电路非常简单,只需一个RS485芯片直接与MCU 的串行通讯口和一个I/O控制口连接就可以。如图1所示: 图1、典型485通信电路图(非隔离型) 当然,上图并不是完整的485通信电路图,我们还需要在A线上加一个4.7K的上拉偏置电阻;在B线上加一个4.7K的下拉偏置电阻。中间的R16是匹配电阻,一般是120Ω,当然这个具体要看你传输用的线缆。(匹配电阻:485整个通讯系统中,为了系统的传输稳定性,我们一般会在第一个节点和最后一个节点加匹配电阻。所以我们一般在设计的时候,会在每个节点都设置一个可跳线的120Ω电阻,至于用还是不用,由现场人员来设定。当然,具体怎么区分第一个节点还是最后一个节点,还得有待现场的专家们来解答呵。)TVS我们一般选用6.8V的,这个我们会在后面进一步的讲解。 RS-485标准定义信号阈值的上下限为±200mV。即当A-B>200mV时,总线状态应表示为“1”;当A-B<-200mV时,总线状态应表示为“0”。但当A-B在±200mV之间时,则总线状态为不确定,所以我们会在A、B线上面设上、下拉电阻,以尽量避免这种不确定状态。

基于RS485总线的PC与多个单片机通信的C语言程序

思路: PC方面:可以用MSCOMM控件先发一个字符表示接收地址,后延迟1ms,(注意PC端在485通讯在字符发送过程中一定要加延迟,这是我多次测试的总结,如果是用调试助手的话,他内部代码已经加过延迟了,就不必考虑这个问题)再发控制指令,初学者建议直接用调试助手 单片机方面:首先对接收数据进行核对,如果不是本地地址,放弃,如果是本地地址,在检测命令是否正确,如果正确,做出处理后返回PC本地地址并发送命令 我举个例子教你怎么玩多站通讯,下面是我已经通过测试的一个程序 #include //选用晶振11.0592MHz #include #define DATA51 DBYTE[0x80] //80H存数据 #define AddressID 0x31 //本机地址1 sbit RS485E=P3^7; //定义485的使能脚// RS5485E=0为接收状态RS5485E=1为发送状态sbit MAX485_DIR=P3^7; main() { //****************通讯设置 SCON = 0xF0; //REN=1允许串行接受状态,串口工作模式3,SM2=1 TMOD|= 0x20; //定时器工作方式2 PCON|= 0x80; //波特率提高一倍 IP=0x10; //串口优先级高 // TH1 = 0xFD; //baud*2 /* reload value 19200、数据位8、停止位1。效验位无(11.0592) TH1 = 0xf4; //fa // //baud*2 /* 波特率4800、数据位8、停止位1。效验位无(11.0592M) TL1 = 0xf4; TR1 = 1; //开启定时器1 EA = 1; // 开总中断 ES = 1; //开串口中断 RS485E=0; // RS5485E=0为接收状态RS5485E=1为发送状态 while(1); } void counter4(void) interrupt 4 using 2 //串口中断 { while(RI==0); RI=0; if(SBUF==AddressID) { while(RI==0); RI=0; if(SBUF==0x01) //发送指令 {

RS485通讯协议说明

摘要:阐述了RS-485总线规范,描述了影响RS-485总线通信速率和通信可靠性的三个因素,同时提出了相应的解决方法并讨论了总线负载能力和传输距离之间的具体关系。 关键词:RS-485 现场总线信号衰减信号反射 当前自动控制系统中常用的网络,如现场总线CAN、Profibus、INTERBUS-S以及ARCNet的物理层都是基于RS-485的总线进行总结和研究。 一、EIA RS-485标准 在自动化领域,随着分布式控制系统的发展,迫切需要一种总线能适合远距离的数字通信。在RS-422标准的基础上,EIA研究出了一种支持多节点、远距离和接收高灵敏度的RS-485总线标准。 RS-485标准采有用平衡式发送,差分式接收的数据收发器来驱动总线,具体规格要求: 接收器的输入电阻RIN≥12kΩ 驱动器能输出±7V的共模电压 输入端的电容≤50pF 在节点数为32个,配置了120Ω的终端电阻的情况下,驱动器至少还能输出电压1.5V(终端电阻的大小与所用双绞线的参数有关) 接收器的输入灵敏度为200mV(即(V+)-(V-)≥0.2V,表示信号“0”;(V+)-(V-)≤-0.2V,表示信号“1”) 因为RS-485的远距离、多节点(32个)以及传输线成本低的特性,使得EIA RS-485成为工业应用中数据传输的首选标准。 二、影响RS-485总线通讯速度和通信可靠性的三个因素 1、在通信电缆中的信号反射 在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。

阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射,如图1所示。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻,如图2所示。 从理论上分析,在传输电缆的末端只要跨接了与电缆特性阻抗相匹配的终端电阻,就再也不会出现信号反射现象。但是,在实现应用中,由于传输电缆的特性阻抗与通讯波特率等应用环境有关,特性阻抗不可能与终端电阻完全相等,因此或多或少的信号反射还会存在。 引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。 信号反射对数据传输的影响,归根结底是因为反射信号触发了接收器输入端的比较器,使接收器收到了错误的信号,导致CRC校验错误或整个数据帧错误。 在信号分析,衡量反射信号强度的参数是RAF(Refection Attenuation Factor反射衰减因子)。它的计算公式如式(1)。 RAF=20lg(V ref/V inc) (1) 式中:V ref—反射信号的电压大小;V inc—在电缆与收发器或终端电阻连接点的入射信号的电压大小。 具体的测量方法如图3所示。例如,由实验测得2.5MHz的入射信号正弦波的峰-峰值为+5V,反射信号的峰-峰值为+0.297V,则该通讯电缆在2.5MHz的通讯速率时,它的反射衰减因子为: RAF=20lg(0.297/2.5)=-24.52dB

rs485总线标准

RS485总线常识 1、RS485总线基本特性 根据RS485工业总线标准,RS485工业总线为特性阻抗120Ω的半双工通讯总线,其最大负载能力为32个有效负载(包括主控设备与被控设置)。 2、RS485总线传输距离 当使用0.56mm(24AWG)双绞线作为通讯电缆时,根据波特率的不同,最大传输距离理论值如下表: 波特率最大距离 2400BPS 1800m 4800BPS 1200m 9600BPS 800m 当使用较细的通讯电缆,或者在电磁干扰较强的环境使用本产品,或者总线上连接有较多的设备时,最大传输距离相应缩短;反之,最大距离加长。 3、连接方式与终端电阻 1)RS485工业总线标准要求各设备之间采用菊花链式连接方式,两头必须接有120Ω终端电阻(如图一所示),简化连接可采用图二 的接线方式,但“D”段距离不能超过7米。 图一 图二 2)球机终端120Ω匹配电阻的连接方式 球机终端120Ω匹配电阻可通过在球机底盘上的拨码开关拨码来连接,如图三所示。球机出厂时,120Ω匹配电阻默认为未接入,可通过把拨码开关的第10位拨到ON,把120Ω匹配电阻接入线路。反之,如果不接入120Ω匹配电阻,则把第10位拨到OFF即可。 图三 4、实际应用中的问题 实际施工使用中用户常采用星形连接方式,此时终端电阻必须连接在线路距离最远的两个设备上(如图四,1#与15#设备),但是由于该连接方式不符合RS485工业标准的使用要求,因此在各设备线路距离较远时,容易产生信号反射、抗干扰能力下降等问题,导致控制信号的可靠性下降。此时,出现的现象为球机完全不受控,或自行运转无法停止等。

图四 对于这种情况,建议采用增加一个RS485分配器。该产品可以有效地将星形连接转换为符合RS485工业标准所规定的连接方式,从而避免产生问题,提高通信可靠性,如图五所示。 图五 5、RS485总线常见故障解决 故障现象 可能原因 解决方法 球机能自检但不能控制 1、主机、球机地址、波特率不相符; 1、更改主机或球机地址、波特率,使之一致 2、RS485总线+、-极性接反; 2、调换RS485+、-接线极性; 3、接线松脱; 3、紧固接线; 4、RS485线中间断; 4、更换RS485线。 球机能控制但不顺畅 1、RS485线接触不良; 1、重新接好RS485线; 2、一根RS485线断; 2、更换RS485线; 3、主机、球机距离太远; 3、加装终端匹配电阻; 4、球机并接太多。 4、加装RS485分配器。 图例:1、2、3 为错误连接方式。 4、5、6连接方式正确。

基于RS485总线的多机通信系统设计

2.2 RS-485 RS-485标准接口是单片机系统种常用的一种串行总线之一。RS-485通信方式RS-485标准是由EIA(电子工业协会)和TIA(通讯工业协会)共同制订和开发的。RS-485作为一种多点差分数据传输的电气规范,已成为业界最广泛应用的标准通信接口之一。理论上,RS-485标准最多接入32个设备(受芯片驱动能力的影响),可以工作在半双工或全双工模式下,最大传输距离约为1219米,最大传输速率约为10Mbps[1]。然而通常RS-485网络采用平衡双绞线作为传输媒体,平衡双绞线的长度与传输速率成反比,只有在20Kbps的传输速率下,才可能达到最大传输距离。一般15米长的双绞线最大传输速率仅为1Mbps。不过对于速率要求不是很高的控制系统来说已经足够了。 RS-485采用平衡发送和差分接收方式来实现通信:在发送端TXD将串行口的TTL 电平信号转换成差分信号A、B两路输出,经传输后在接收端将差分信号还原成TTL电平信号。两条传输线通常使用双绞线,又是差分传输,因此有极强的抗共模干扰的能力,接收灵敏度也相当高。同时,最大传输速率和最大传输距离也大大提高。如果以10Kbps 速率传输数据时传输距离可达12m,而用100Kbps时传输距离可达1.2km。如果降低波特率,传输距离还可进一步提高。另外RS-485实现了多点互连,最多可达256台驱动器和256台接收器,非常便于多器件的连接。不仅可以实现半双工通信,而且可以实现全双工通信。 2.3 多机通信原理 在多机通信中,每台从机均分配有一个从机地址,主机与从机之间进行串行通信时,通常是主机先呼叫某从机地址,唤醒被叫从机后,主、从两机之间进行数据交换。而未被呼叫的从机则继续进行各自的工作。可是,如果在主机与某被呼叫从机进行数据交换过程中,其他从机如果不采取相应的数据识别技术,则这些从机就会因为串行通信线上有数据传输而时时被打断,影响正常的工作。利用单片机的串口工作方式2、方式3可以很好解决上述问题。在多机通信过程中,从机首先要解决的是如何识别主机发送的是地址信息还是数据信息。当发送的是地址信息时,各从机都响应串口中断,接收主机下发的一帧地址数据。而当主机发送数据帧时,无关从机可不响应串口中断。解决的方法是:当主机发送一帧地址信息时,应保持这帧数据的第9位为1(即TB8=1)。从机按照工作方式2或工作方式3运行时,将串口寄存器SCON中的控制位SM2置为1,当所接收的一帧数据的第9位为1,所有从机都产生串口中断,接收这一帧地址数据并与各自的从机地址进行比较,以判断主机是否要与本机通信。接收到的地址数据与从机地址相等达到为被呼叫从机,该从机将串口控制寄存器SCON中的控制位SM2清为0,

RS-485总线标准及几种常见的RS-485接口电路介绍

RS-485总线标准及几种常见的RS-485接口电路介绍 本文主要简单介绍RS-485总线标准,以及比较几种常见的RS-485电路,并重点介绍美国模拟器公司(ADI)最新量产的具备±15 kV ESD保护功能的完全集成式隔离数据收发器 ADM2582E/ADM2587E,一个集成隔离DC/DC电源,适合用于多点传输线路上的高速通信应用的数据收发器。 1.引言 随着现代化社会生活的迅速发展,工业自动化的程度越来越高。在工业控制、电力通讯、智能仪表等领域中,也常常使用简便易用的串行通讯方式作为数据交换的手段。但是,在工业控制等环境中,常会有电气噪声干扰传输线路,使用RS-232通讯时经常因外界的电气干扰而导致信号传输错误;另外,RS-232通讯的最大传输距离在不增加缓冲器的情况下只可以达到15 米。为了解决上述问题,RS-485标准通常被用作为一种相对经济、具有相当高噪声抑制、相对高的传输速率、传输距离远、宽共模范围的通信平台。 RS-485标准采用平衡式发送,差分式接收的数据收发器来驱动总线。因为RS-485的远距离、多节点(256个)以及传输线成本低的特性,是EIA RS-485称为工业应用中数据传输的首选标准。ADI公司的ADM2582E/ADM2587E器件针对均衡的传输线路而设计,符合ANSI/TIA/EIA RS-485-A-98和ISO 8482:1987(E)标准。它采用ADI公司的iCoupler?技术,在单个封装内集成了一个三通道隔离器、一个三态差分线路驱动器、一个差分输入接收机和一个isoPower DC/DC转换器。该器件采用5V或3.3V单电源供电,从而实现了完全隔离的RS-485解决方案。 2.RS-485 标准介绍 电子工业协会(EIA)于1983 年制订并发布RS-485标准,并经通讯工业协会(TIA)修订后命名为TIA/EIA-485-A,习惯地称之为RS-485标准。RS-485标准是为弥补RS-232通信距离短、速率低等缺点而产生的。RS-485标准只规定了平衡发送器和接收器的电特性,而没有规定接插件、传输电缆和应用层通信协议。RS-485标准数据信号采用差分传输方式(Differential Driver Mode),也称作平衡传输,RS-485标准的最大传输距离约为1219 米。通常,RS-485网络采用平衡双绞线作为传输媒体,平衡双绞线的长度与传输速率成反比。在这里尤为注意并不是所有的RS-485收发器都能够支持高达10Mbps的通讯速率。如果采用光电隔离方式,则通讯速率一般还会受到光电隔离器件响应速度的限制。 3.几种典型的RS485电路设计 (1)、传统的RS485电路

RS485与CAN总线的区别与故障

CAN总线与RS485的比较 最近一个项目总体方案设计为分布式系统,于是在通讯上纠结于CAN总线还是RS485。因此在网上搜索一些了一些关于RS485和CAN总线的资料,除进一步认识RS485通讯特点外,认识了CAN总线的特点及其与RS485的比较,总结如下: CAN总线特点: 1、国际标准的工业级现场总线,传输可靠,实时性高; 2、传输距离远(最远10Km),传输速率快(最高1MHz bps); 3、单条总线最多可接110个节点,并可方便的扩充节点数; 4、多主结构,各节点的地位平等,方便区域组网,总线利用率高; 5、实时性高,非破坏总线仲裁技术,优先级高的节点无延时; 6、出错的CAN节点会自动关闭并切断和总线的联系,不影响总线的通讯; 7、报文为短帧结构并有硬件CRC校验,受干扰概率小,数据出错率极低; 8、自动检测报文发送成功与否,可硬件自动重发,传输可靠性很高; 9、硬件报文滤波功能,只接收必要信息,减轻cpu负担,简化软件编制; 10、通讯介质可用普通的双绞线,同轴电缆或光纤等; 11、CAN总线系统结构简单,有极高的性价比。 RS485接口标准特点: (1) RS-485的电气特性:逻辑"1"以两线间的电压差为+(2-6)V表示;逻辑"0"以两线间的电压差为-(2-6)V表示。接口信号电平比RS-232-C降低了,就不易损坏接口电路的芯片,且该电平与TTL电平兼容,可方便与TTL 电路连接。 (2) RS-485的数据最高传输速率为10Mbps (3) RS-485接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。 (4) RS-485接口的最大传输距离标准值为4000英尺,实际上可达 3000米,另外RS-232-C 接口在总线上只允许连接1个收发器,即单站能力。而RS-485接口在总线上是允许连接多达128个收发器。即具有多站能力,这样用户可以利用单一的RS-485接口方便地建立起设备网络。但RS-485总线上任何时候只能有一发送器发送。 (5) 因RS-485接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口。 (6) 因为RS485接口组成的半双工网络,一般只需二根连线,所以RS485接口均采用屏蔽双绞线传输。

can总线vsrs485总线

CAN总线和RS485总线的定义 CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO11898)。是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。

rs-485采用半双工工作方式,支持多点数据通信。rs-485总线网络拓扑一般采用终端匹配的总线型结构。即采用一条总线将各个节点串接起来,不支持环形或星型网络。 rs-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。加上总线收发器具有高灵敏度,能检测低至200mv的电压,故传输信号能在千米以外得到恢复。有些rs-485收发器修改输入阻抗以便允许将多达8倍以上的节点数连接到相同总线。rs-485最常见的应用是在工业环境下可编程逻辑控制器内部之间的通信。

CAN总线和RS485总线应用概述 以往,PC与智能设备通讯多借助RS232、RS485、以太网等方式,主要取决于设备的接口规范。但RS232、RS485只能代表通讯的物理介质层和链路层,如果要实现数据的双向访问,就必须自己编写通讯应用程序,但这种程序多数都不能符合ISO/OSI的规范,只能实现较单一的功能,适用于单一设备类型,程序不具备通用性。 在RS232或RS485设备联成的设备网中,如果设备数量超过2台,就必须使用RS485做通讯介质,RS485网的设备间要想互通信息只有通过“主(Master)”设备中转才能实现,这个主设备通常是PC,而这种设备网中只允许存在一个主设备,其余全部是从(Slave)设备。而现场总线技术是以ISO/OSI模型为基础的,具有完整的软件支持系统,能够解决总线控制、冲突检测、链路维护等问题。现场总线设备自动成网,无主/从设备之分或允许多主存在。在同一个层次上不同厂家的产品可以互换,设备之间具有互操作性。 现在的总线格式很多,CAN相对于其他的总线有什么特点首先,就比较一下大家耳熟能详的485总线, 485总线只是一种电平标准,并不是什么新的协议,与232差不多,当然这么说不是很恰当,但是有助于大家理解。 CAN总线PK RS485总线 CAN(Controller Area Network)属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之目前RS-485基于R线构建的分布式控制系统而言,基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 1)CAN控制器工作于多主方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁方式竞争向总线发送数据,且CAN协议废除了站地址编码,而代之以对通信数据进行编码,这可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差。 2)CAN总线通过CAN控制器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这就保证不会出现像在RS-485网络中,当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动

相关文档