文档库 最新最全的文档下载
当前位置:文档库 › 第二章 挖掘机的基本构造及工作原理

第二章 挖掘机的基本构造及工作原理

第二章  挖掘机的基本构造及工作原理
第二章  挖掘机的基本构造及工作原理

第二章挖掘机的基本构造及工作原理第二章挖掘机的结构及工作原理

第一节挖掘机总体结构一、单斗液压挖掘机的总体结构

单斗液压挖掘机的总体结构包括动力装置、工作装置、回转机构、操纵机构、传动系统、行走机构和辅助设备等,如图所示。

12

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和驾驶室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成工作装置、上部转台和行走机构等三部分。

工作装置——动臂、斗杆、铲斗、液压油缸、

连杆、销轴、管路

上部转台——发动机、减震器主泵、主阀、驾驶室、回转机构、回转支承、回转接头、转台、液压油箱、燃油箱、控制油路、电器部件、配重行走机构——履带架、履

带、引导轮、支重轮、托轮、

终传动、张紧装置

挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达+减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回转运动、整机的行走运动。

二、挖掘机动力系统

1、挖掘机动力传输路线如下

,)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履带——实现行走

,)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回

转 ,)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——动臂油缸(液压能转化为机械能)——实现动臂运动

,)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——斗杆油缸(液压能转化为机械能)——实现斗杆运动

,)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——铲斗油缸(液压能转化为机械能)——实现铲斗运动

13

1、引导轮

2、中心回转接头

3、控制阀

4、终传动

5、行走马达

6、液压泵

7、发动机

8、行走速度电磁阀 9、回转制动电磁阀 10、回转马达 11、回转机构 12、回转支承 2、动力装置

单斗液压挖掘机的动力装置,多采用直立多缸式、水冷、一小时功率标定的柴油机。 3、传动系统

单斗液压挖掘机传动系统将柴油机的输出动力传递给工作装置、回转装置和行走机构等。单斗液压挖掘机用液压传动系统的类型很多,习惯上按主泵的数量、功率的调节方式和回路的数量来分类。有单泵或双泵单回路定量系统、双泵双回路定量系统、多泵多回路定量系统、双泵双回路分功率调节变量系统、双泵双回路全功率调节变量系统、多泵多回路定量或变量混合系统等六种。按油液循环方式分为开式系统和闭式系统。按供油方式分为串联系统和并联系统。

14

1、驱动盘

2、螺旋弹簧

3、止动销

4、摩擦片

5、减震器总成

6、消音器

7、发动机后部安装座

8、发动机前部安装座

凡主泵输出的流量是定值的液压系统为定量液压系统;反之,主泵的流量可以通过调节系统进行改变的则称为变量系统。在定量系统中各执行元件在无溢流情况下是按油泵供给的固定流量工作,油泵的功率按固定流量和最大工作压力确定;在变量系统中,最常见的是双泵双回路恒功率变量系统,有分功率变量与全功率变量之分。分功率变量调节系统是在系统的每个回路上分别装一台恒功率变量泵和恒功率调节器,发动机的功率平均分配给各油泵;全功率调节系统是有一个恒功率调节器同时控制着系统中的所有油泵的流量变化,从而达到同步变量。

开式系统中执行元件的回油直接流回油箱,其特点是系统简单、散热效果好。但油箱容量大,低压油路与空气接触机会多,空气易渗入管路造成振动。单斗液压挖掘机的作业主要是油缸工作,而油缸大、小有腔的差异较大、工作频繁、发热量大,因此绝大多数单斗液压挖掘机采用开式系统;闭式回路中的执行元件的回油路是不直接回油箱的,其特点式结构紧凑,油箱容积小,进回油路中有一定的压力,空气不易进入管路,运转比较平稳,避免了换向时的冲击。但系统较复杂,散热条件差‘单斗液压挖掘机的回转装置等局部系统中,又采用闭式回路的液压系统的。为补充因液压马达正反转的油液漏损,在闭式系统中往往还设有补油泵。

4、回转机构

回转机构使工作装置及上部转台向左或向右回转,以便进行挖掘和卸料。单斗液压挖掘机的回转装置必须能把转台支撑在机架上,不能倾斜并使回转轻便灵活。为此单斗液压挖掘机

15

都设有回转支撑装置和回转传动装置,它们被称为回转装置。

1、制动器

2、液压马达

3、行星齿轮减速器

4、回转齿圈

5、润滑油杯、

6、中央回转接头全回转液压挖掘机回转装置的传动形式有直接传动和间接传动两种。

1)直接传动。在低速大扭矩液压马达的输出轴上安装驱动小齿轮,与会转齿轮啮合。

2)间接传动。由高速液压马达经齿轮减速器带动回转齿圈的间接传动结构形式。他结构紧凑,具有较大的传动比,且齿轮的受力情况较好。轴向柱塞液压马达与同类型的液压油泵结构基本相同,许多零件可以通用,便于制造及维修,从而降低了成本。但必须设制动器,以便吸收较大的回转惯性力矩,缩短挖掘机作业循环时间,提高生产效率。 5、行走机构

行走机构支撑挖掘机的整机质量并完成行走任务,多采用履带式和轮胎式。6、履带行走机构

单斗液压挖掘机的履带式行走机构的基本结构与其他履带式机构大致相同,但他多采用两个液压马达各自驱动一个履带。与回转装置的传动相似可用高速小扭矩马达或低速大扭矩马达。两个液压马达同方向旋转式挖掘机将直线行驶;若只向一个液压马达供油,并将另一个液压马达制动,挖掘机将绕制动一侧的履带转向,若是左右两个液压马达反向旋转,挖掘即将进行原地转向。

行走机构的各零部件都安装在整体式实行走架上。液压泵输入的压力油竟多路换向阀和中央回转接头进入行走液压马达,该马达将液压能转变为输出扭矩后,通过齿轮减速器传给驱动轮,最终卷绕履带以实现挖掘机的行走。

单斗液压挖掘机大都采用组合式结构履带和平板型履带——没有明显履刺,虽附着性能差,但坚固耐用,对路面破坏性小适用于坚硬岩石地面作业,或经常转场的作业。也有采用三履刺型履带,接地面积较大履刺切入土壤深度较浅,适宜于挖掘机采石作业。实行标准化后规定挖掘机采用质量轻、强度高、结构简单、价格较低的轧制履带板。专用于沼泽地的三角形履带板可降低接地比压,提高挖掘机在松土地面上的通过能力。

16

1、引导轮

2、履带架

3、托链轮

4、终传动

5、支重轮

6、履带板

7、中心护板

8、张紧弹簧

9、前护板

单斗液压挖掘机的驱动轮均采用整体铸件,能与履带正确啮合、传动平稳。挖掘机行走时驱动轮应位于后部,式履带的张紧段较短,减少履带的摩擦磨损和功率损耗。

每条履带都设有张紧装置,以调整履带的张紧度减少振动噪声摩擦磨损和功率损失。目前单斗液压挖掘机都采用液压张紧结构。其液压缸置与缓冲弹簧内部减小了结构尺寸。 7、轮胎式行走机构

轮胎式挖掘机的行走机构由机械传动和液压传动两种。其中的液压传动的轮胎式挖掘机的行走机构主要由车架、前桥、后桥、传动轴和液压马达等组成。

行走液压马达安装在固定与机架的变速箱上,动力经变速箱、传动轴传给前后驱动桥,有的挖掘机经轮边减速器驱动车轮。采用液压马达的高速传动方式使用可靠,省掉了机械传动中的上下传动箱垂直动轴,结构简单布置方便。

1、车架

2、回转支撑

3、中央回转接头

4、支腿

5、后桥

6、传动轴

7、液压马达及变速箱

8、前桥

17

第二节挖掘机的工作装置

液压挖掘机工作装置的种类繁多(可达100余种),目前工程建设中,目前工程建设中应用最多的是反铲和破碎器。

1 、反铲结构

铰接式反铲式单斗液压挖掘机最常用的结构形式,动臂、斗杆和铲斗等主要部件彼此铰接,在液压缸的作用下各部件绕铰接点摆动,完成挖掘提升和卸土等动作。

图5-25 反铲工作装置

1-斗杆油缸;2-动臂;3-液压管路;4-动臂油缸;5-铲斗;6-斗齿;7-侧齿;

8-连杆;9-摇杆;10-铲斗油缸;11-斗杆

1.1动臂

动臂是反铲的主要部件,其结构由整体式和组合式两种。

1.1.1整体式动臂

整体式动臂的优点是结构简单,质量轻而刚度大。其缺点是更换的工作装置少,通用性较差,多用于长期作业条件相似的挖掘机上。整体式动臂又可分为直动臂和弯曲动臂两种。其中的直动臂结构简单质量轻制造方便,主要用于悬挂式挖掘机,但它不能式挖掘机获得较大的挖掘深度不适用于通用挖掘机;弯动臂是目前是目前应用最广泛的结构形式,与同厂都得直动臂相比可以使挖掘机有较大的挖掘深度,但降低了卸土高度,这正符合挖掘机反铲作业的要求。

1.1.2组合式动臂

组合式动臂有辅助连杆(或液压缸)或螺栓连接而成。上下动臂之间的夹角可用辅助连杆或液压缸来调节,虽然结构操作复杂化但在挖掘机作业中可随时大幅度调整上下动臂者间的夹角,从而提高挖掘机的作业性能,尤其是用反铲或抓斗挖掘窄而深得基坑时,容易得到较大距离的垂直挖掘轨迹,提高挖掘质量和生产率。组合

式动臂的优点是,可以根据作业条件随意调整挖掘机的作业尺寸和挖掘能力,且调整时间短。此外他的互换工作装置多,可以满

18

足各种作业的需要,装车运输方便。其缺点是质量大,制造成本高,用于中小型挖掘机上。

组合式动臂

(a)连杆下置 (b) 连杆上置

1、下动臂

2、上动臂

3、连杆或液压缸

2、铲斗

1.2.1 基本要求

1)铲斗的纵向剖面应适应挖掘过程各种物料的在斗中运动规律有利于物料的流动,使装土阻力最小,有利于将铲斗充满。

2)装设斗齿,以增大铲斗对挖掘物料的线压比,斗持及斗形参数具有较小单位切削阻力,便于切入及破碎土壤。斗齿应耐磨、易更换。

3)为式装载铲斗的物料不易掉出,斗款与直径之比应大于4?1.

4)物料易于卸净,缩短卸载时间,并提高铲斗的容积效率。

1.2.2结构反铲用的铲斗形状尺寸与其作业对象有很大关系。为了满足各种挖掘机作业的需要,在同一台挖掘机上可以配置多种形式的铲斗,图2,3、图2,4分

别为反用铲斗的基本形式和常用形式铲斗的斗齿采用装配式,其形式有橡胶卡销式和螺连接式。铲斗与液压缸连接的结构形式有四连杆机构和六连杆机构。其中四连杆机构连接方式是铲斗直接交接与液压缸,使铲斗转角较小,工作力矩变化较大;六连杆机构的特点是,在液压缸活塞行程相同的条件下,铲斗可以后的较大的转角,并改善机构的传动特性。

图2,3

19

反铲斗

1-齿座;2-斗齿;3-橡胶卡销;4-卡销;5、6、7-斗口板

图2-4 斗齿结构

a)螺栓连接方式;b)橡胶卡销连接方式

1-卡销;2-橡胶卡销;3-齿座;4-斗齿

20

3、液压破碎器

3.1概述

液压破碎器(锤)是利用液压能转化为机械能,对外做工的一种工作装置,它主要用于打桩、开挖冻土层和岩层、可更换的作业工具(凿子、扁铲、镐)等组成。锤的撞击部分再双作用液压缸作用下,在壳体内作往复直线运动,装机作业工具,完成破碎和开挖作业。液压破碎器通过附加的中间支撑与斗杆连接。为了减轻振动,在锤的壳体和支座

的连接处常设有橡胶连接装置。

液压破碎器外观如图所示

液压破碎器经过近40年的发展,其规格和功率都大量增加,可靠性和工作效率也明显提高。其中最大的技术进步是“智能型液压破碎器“的诞生,其特点是能根据岩石的阻力自动调节输出功率,当岩石被击穿是,

自动切断功率输出,避免空打、损坏工具和固定销。

3.2液压破碎器的选用

根据液压挖掘机主机总重选择液压破碎器。它与主机的匹配十分重要,其中主要匹配参数主要有两个:一是主机液压泵的压力和流量;另一个

是主机的总重。选用是既要考虑充分发挥液压破碎器的工作效率,又要

考虑挖掘机的稳定性和结果的耐久性。因此,针对需安装液压破碎器的

挖掘机机型,根据提供的液压破碎器与主机总重的匹配范围表,可利用

下列公式予以校核:G<0.9(W+γq) (N)

式中 G——液压破碎器总重,N;G,G,G,G,其中G为支座总重,1231

G,为破碎器重量,G为作业工具(如凿子、扁铲、镐等)量, 23

W——标准铲斗的重量。

3 γ——砂土容量,一般取1600N,m 3 q——标准铲斗容量;m

若液压破碎其总重(G)为标准斗容量(W)和铲斗中沙土中重量(γq)总和的90,以下时,则可以认为破碎器的选择是正确的。

3.3液压破碎器的基本工作原理

首先、用钢凿将活塞向上

推至打击点位置。

1. 活塞上升

图1表示活塞打击钢凿时

的位置。

活塞的反向腔与高压腔

连通,活塞因上部承压面与

下部承压面的面积差之故

而上升。

活塞上升,压缩了气体缓

冲室内充入的气体。

21

2. 滑阀上升

图2表示活塞上升过程。

活塞一上升,液压先导腔与低压腔连通,滑阀下部承压面的作用力大于上部承压面的作用力,滑阀上升。

3. 活塞下降(打击)

图3表示活塞上升至上顶部状态。

活塞的反向腔经滑阀从

低压腔连通至油箱。活塞上部承压面的作用力大于下部承压面的作用力,活塞下降。

此时,被压缩的气体发挥作用,加快活塞下降速度,打

击钢凿。

22

4. 滑阀下降

图4表示活塞下降过程。

活塞一旦下降,液压先导

腔与高压回路连通,滑阀因

上部承压面与下部承压面

的面积差之故而下降。

滑阀下降结束时如图1状

态。从而进行连续打击。

3.4 液压破碎锤的正确使用

现以常用规格为例,说明液压破碎锤的正确使用。

1)仔细阅读液压破碎锤的操作手册,防止损坏液压破碎锤和挖掘机,并有效地操作它们。

2)操作前检查螺栓和连接头是否松动,以及液压管路是否有泄漏现象。

3)不要用液压破碎锤在坚硬的岩石上啄洞。

4)不得在液压缸的活塞杆全伸或全缩状况下操作破碎锤。

5)当液压软管出现激烈振动时应停止破碎锤的操作,并检查蓄能器的压力。

6)防止挖掘机的动臂与破碎锤的钻头之间出现干涉现象。

7)除钻头外,不要把破碎锤浸入水中。

8)不得将破碎锤作起吊器具用。

9)不得在挖掘机履带侧操作破碎锤。

10)液压破碎锤与液压挖掘机或其他工程建设机械安装连接时,其主机液压系统的工作压力和流量必须符合液压破碎锤的技术参数要求,液压破碎锤的“P”口与主机高压油路连接,“A”口与与主机回油路连接。

11)液压破碎锤工作时的最佳液压油温度为50-60度,最高不得超过80度。否则,应减轻液压破碎锤的负载。

12)液压破碎锤使用的工作介质,通常可以与主机液压系统用油一致。一般地区推荐使用YB-N46或YB-N68抗磨液压油,寒冷地区使用YC-N46或YC-N68低温液压油。液压油过滤精度不低于50micro;m。

13)新的和修理的液压破碎锤启用时必须重新充氮气,其压力2.5、?0.5MPa。

23

14)钎杆柄部与缸体导向套之间必须用钙基润滑脂或复合钙基润滑脂进行润滑,且每台班班加注一次。

15)液压破碎锤工作时必须先将钎杆压在岩石上,并保持一定压力后才开动破碎锤,不允许在悬空状态下启动。

16)不允许把液压破碎锤当撬杠使用,以免折断钎杆。

17)使用时液压破碎锤及纤杆应垂直于工作面,以不产生径向力为原则。

18)被破碎对象已出现破裂或开始产生裂纹时应立即停止破碎锤的冲击,以免出现有害的“空打”。

19)液压破碎锤若要长期停止使用时应放尽氮气,并将进、出油口密封,切铁在高温和-20度以下的环境下存放。

3.5 破碎锤的分类

液压破碎锤的种类很多,分类方法也很多。

根据操作方式分类:液压破碎锤分为手持式和机载式两大类;

根据工作原理分类:液压破碎器分为全液压式,液气联合式与氮爆式三大类。液气联合式依靠液压油和后部压缩氮气膨胀同时推动活塞工作,目前绝大多数破碎器属于此类产品;

根据配流阀结构分类:液压破碎器分为内置阀式和外置阀式两种。

此外还有其他各种分类方式,如根据反馈方式可分为行程反馈式和压力反馈式破碎器;

根据噪音大小分为低噪音型和标准型破碎器;

根据外壳形式可分为三角形和塔形破碎器;

根据外壳结构可分为夹板式和箱框式破碎器;等等

3.6 破碎锤的常见应用场合

1、矿山开采:开山、开矿、格筛破碎、二次破碎

2、冶金:钢包、炉渣清理、拆炉觖体、设备基础拆除

3、铁路:开山、隧道掘进、道桥拆毁、路基夯实

4、公路:高速公路修补、水泥路面破碎、基础开挖

5、市政园林:混凝土破碎、水、电、气工程施工、旧城改造

6、建筑:旧建筑拆除、钢筋混凝土破碎

7、船舶:船体除蚌、除锈

8、其它:破冰、破冻土、砂型振捣

3.7 破碎锤国内厂家

目前,较具规模的国内生产厂家有:合肥中达机械制造有限公司、世工机械有限公司(苏州)惊天公司(安徽)、森泰(温州)、格瑞德、山河公司和长治液压件厂。但国内产品的市场占有率仍很低,大部分市场被韩、日本、德国的产品所占有。商机不可失,国内的企业家应抓住这一产品市场大发展的机会,精心制造,不断创新,扩大销售,夺回国内市场,甚至出口到国外。

24

3.8 操作指南

一、注意事项

注意事项

驾驶室前要装上碎片防护罩装置,防止作业时飞来的碎块造成伤害。

在作业期间,所有现场人员包括挖机司机都必须戴上耳塞及口罩。

司机应坐在座椅上操作破碎锤,只有在挖掘机/装载机与破碎锤状态均正常时才可以破碎锤。

若有人进入作业危险区域时,应立即停止破碎锤的作业;因为相对挖掘作业而言,破碎锤作业时,人员很容易被飞迸出的碎块击中。

用破碎锤作业时,操作挖掘机/装载机应遵守挖掘机/装载机制造厂家的安全操作规定。确认使用安装完好、调试正常的破碎锤。

醉酒或服药有反应的情况下不要操作破碎锤。

当脱开弯背进行维护及检修时,应确保工况稳定并放低工作装置。

二、正确的工作方式

1) 适当的击穿力

为了有效的破碎,破碎锤应用合适的击穿力。如果击穿力不足,那么活塞的锤击能量将不能有效碎石;这样锤击力的反作用力会传至破碎锤本体、挖掘机/装载机的大臂等到,从而损坏这些部件。

柴油机总体构造和基本原理

柴油机总体构造和基本原理 培训人: 培训对象: 日期:2018.5 目录 第一章概述 (2) 第二章柴油机的基本知识 (2) 第三章柴油机的总体构造 (5) 第四章柴油机的基本工作原理 (7) 第五章柴油机发展趋势 (9) 第六章机组控制系统介绍 (10) 第七章产品的使用和维护 (14)

第一章概述 柴油机是一种将柴油燃料燃烧释放出来的热能转变为有用机械能的一种动力装置。这种能量的转换是柴油燃料在气缸中与空气充分混合进行燃烧,产生高温、高压的工作气体,高温、高压的气体作为热能的载体推动活塞,通过连杆、曲轴向外输出机械功。 柴油机由于油耗低、热效率高、功率范围宽广、适应各种转速、启动迅速、运行安全、维修方便、使用寿命长等优点,在国民经济和国防建设中得到了广泛应用。 下面,简单给大家介绍一下有关柴油机的基本知识、总体构造、基本原理以及柴油机发展趋势。 第二章柴油机的基本知识 一、柴油机分类 柴油机的分类方法很多,常用的有以下几种分类方式: 1、按气缸数量分,可分为单缸机、双缸、多缸柴油机; 2、按转速分,可分为高速、中速、低速柴油机; 3、按冷却方式分,可分为水冷机和风冷机; 4、按工作循环所需行程数分,可分为四冲程和二冲程柴油机; 5、按进气状态分,可分为自然进气柴油机和增压柴油机; 6、按气缸布置形式分,可分为直列式、V型、卧式柴油机; 7、按用途分分,可分为汽车用、工程机械用、农用、发电机用、机车用、船舶用、摩托车用、军用等柴油机。 例如:在太钢4350m3高炉项目中用到的VOLVO TAD740GE型柴油机根据以上分类方法就可以描述为6缸高速水冷直列四冲程增压中冷柴油机。 二、柴油机性能

挖掘机基本构造工作原理

第一部分:挖掘机 第一章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和 驾驶室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成 工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲斗、④液 压油缸、⑤连杆、⑥销轴、⑦管路 上部转台——①发动机、② 减震器主泵、③主阀、④驾 驶室、⑤回转机构、⑥回转 支承、⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油箱、○11 控制油路、○12电器部件、○13 配重 行走机构——①履带架、② 履带、③引导轮、④支重轮、 ⑤托轮、⑥终传动、⑦张紧 装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达 +减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回 转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履 带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——动臂油缸(液压能转化为机械能)——实现动臂运动 4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——斗杆油缸(液压能转化为机械能)——实现斗杆运动 5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——铲斗油缸(液压能转化为机械能)——实现铲斗运动

831第二章柴油机的结构和主要部件第十节

第十节推力轴承的工作原理及调整25题 考点1:推力轴承的工作原理14题 柴油机运转时,螺旋桨的轴向推力通过艉轴和中间轴传到推力环,推力环通过正车推力块和调整垫圈(推力盘)将推力传给柴油机机座,又通过地脚螺栓传给船体,从而推动船舶前进。为了防止推力块跟随推力环转动,在正、倒车推力块的上方都设有压板来定位。推力环与推力块之间由滑油润滑,滑油来自主轴承滑油总管的压力油润滑和冷却滑油从喷管不断地喷到正、倒车推力块和推力环上,润滑以后的滑油落入油池中,并经溢流口流入发动机机座油底壳中。溢流口的位置较高,使得油池总有部分存油浸润着推力块和推力环,即使断油,也不致损坏轴承。为了防止滑油从轴颈处漏出机外,在轴颈上设有轴封。 A1.推力轴承的结构特点有()。 Ⅰ.推力块靠调节圈侧有高、低位面Ⅱ.推力块靠推力环侧有高、低位面Ⅲ.在推力环工作表面浇铸轴承合金Ⅳ.在推力块工作表面浇铸轴承合金Ⅴ.推力块间通过凸台接触Ⅵ.推力环和推力块工作表面都浇铸轴承合金 A.Ⅰ+Ⅳ+Ⅴ B.Ⅰ+Ⅳ+Ⅴ+Ⅵ C.Ⅱ+Ⅲ+Ⅴ D.Ⅱ+Ⅵ D2.关于推力块结构说法正确的是()。 A.推力块绕推力环整圆周布置 B.推力块背面采用高低位面结构是为了改善受力 C.推力块背面的高低位面上浇铸轴承合金 D.推力块背面采用高低位面结构是为了改善润滑 C3.目前船用大中型主机的推力轴承普遍采用()。 A.滚动式单环式 B.滚动式多环式 C.滑动单环式 D.滑动多环式 D4.船舶主柴油机的输出端必设有止推轴承,其作用是()。 A.传递轴系轴向推力 B.减磨 C.轴系轴向定位 D.A+C C5.在船舶副机(如发电柴油机)的飞轮端通常也设有止推轴承,其作用是()。 A.传递轴向推力

挖掘机的结构与工作原理(正式版)

文件编号:TP-AR-L2615 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 挖掘机的结构与工作原 理(正式版)

挖掘机的结构与工作原理(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 液压挖掘机主要由发动机、液压系统、工作装置、行走装置和电气控制等部分组成。液压系统由液压泵、控制阀、液压缸、液压马达、管路、油箱等组成。电气控制系统包括监控盘、发动机控制系统、泵控制系统、各类传感器、电磁阀等。 液压挖掘机一般由工作装置、回转装置和行走装置三大部分组成。根据其构造和用途可以区分为:履带式、轮胎式、步履式、全液压、半液压、全回转、非全回转、通用型、专用型、铰接式、伸缩臂式等多种类型。 工作装置是直接完成挖掘任务的装置。它由动

臂、斗杆、铲斗等三部分铰接而成。动臂起落、斗杆伸缩和铲斗转动都用往复式双作用液压缸控制。为了适应各种不同施工作业的需要,液压挖掘机可以配装多种工作装置,如挖掘、起重、装载、平整、夹钳、推土、冲击锤等多种作业机具。 回转与行走装置是液压挖掘机的机体,转台上部设有动力装置和传动系统。发动机是液压挖掘机的动力源,大多采用柴油要在方便的场地,也可改用电动机。 液压传动系统通过液压泵将发动机的动力传递给液压马达、液压缸等执行元件,推动工作装置动作,从而完成各种作业。以工地使用较多的PV-200型液压挖掘机为例。该机采用改进型的开式中心负荷传感系统(OLSS)。该系统用控制斜盘式变量柱塞泵斜盘角度(输出流量)的方法,减少了发动机的功率输

挖掘机的基本构造及工作原理分析

第二章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和 驾驶室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成 工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲斗、④液 压油缸、⑤连杆、⑥销轴、⑦管路 上部转台——①发动机、② 减震器主泵、③主阀、④驾 驶室、⑤回转机构、⑥回转 支承、⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油箱、○11 控制油路、○12电器部件、○13 配重 行走机构——①履带架、② 履带、③引导轮、④支重轮、 ⑤托轮、⑥终传动、⑦张紧 装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达 +减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回 转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履 带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——动臂油缸(液压能转化为机械能)——实现动臂运动 4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——斗杆油缸(液压能转化为机械能)——实现斗杆运动 5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——铲斗油缸(液压能转化为机械能)——实现铲斗运动

挖掘机的基本构造及基本原理

液压挖掘机的基本原理与结构特征 1 液压挖掘机的组成和工作原理 液压挖掘机的工作原理与机械式挖掘机工作原理基本相同。液压挖掘机可带正铲、反铲、抓斗或起重等工作装置。 液压挖掘机是在动力装工与工作装盆之间采用了容积式液压传动系统(即采用各种滚压元件).直接控翻各系统机构的运动状态.从而进行挖掘工作的。液压挖掘机分为全液压传动和非全液压传动两种。若其中的一个机构的动作采用机械传动.即称为非全液压传动。例如.WY 一160型,WY -250璧和H121虽等即为全液压传动;WY -60型为非全液压传动.因为其行走机构采用机械传动方式。一般悄况下.对液压挖掘机.其工作装置及回转装置必须是液压传动.只有行走机构既可为液压传动.也可为机械传动。 (1)液压反铲挖掘机。 1)液压反铲挖掘机的组成。液压反挖掘机机结构示意图,它由工作装置、回转装置和运行装置三大部分组成。液压反铲工作装置的结构组成是:下动臂和上动臂,用辅助油缸来控制两者之间的夹角。依命下动臂油缸4.使动臂绕其下支点A进行升降运动。依靠斗柄油缸6.可使斗柄8绕其与上臂的铰接点摆动。问样.借助转斗油缸,.可使铲斗绕着它与斗柄的校接点转动。操纵控制阀,就可使各构件在油缸的作用下,产生所需要的各种运动状态和运动轨迹,特别是可用工作装置支撑起机身前部.以便机器维修。 2)液压反铲挖妇机工作原理。液压反铲挖翻机的工作原理如图4-16所示。工作开始时,机器转向挖拥工作面.间时.动份油缸的连杆腔进油.动,下降.铲斗落至工作面(见图中位盆11).然后,铲斗油缸和斗柄油缸顺序工作.两油缸的活塞腔进油,活班的连杆外伸.进行挖劫和装段(如从位盆田到I)。铲斗装润后(在位置ll》这两个油缸关闭,动份油缸关闭.动衡油缸就反向进油.使动,提升.随之反向接通回转油马达,铲斗鱿转至卸峨地点.斗柄油缸和铲斗油iti 反向进油.铲斗匆截。匆叔完毕后.回转油马达正向接通.上部平台回转.工作装,转回挖州位2,开始第二个工作循环。 在实际操作工作中.因土城和工作面条件的不间和变化.液压反铲的各油缸在挖拥循环中的动作配合是灵活多样的.上述的工作方式只是其中的一种挖月方法。 3)滚压反铲挖翻机的工作特点。液压反铲挖拥机叮用于挖拓机停机面以下的土镶挖扭工作.如挖蜂沟、基坑等。由于各油缸可以分别操纵或联合操纵.故挖拥动作显得更加灵活。护斗挖扭轨迹的形成取决于对各油缸的操纵。当采用动有油虹工作进行挖扭作业时(斗柄和铲斗油位不工作》.就可以得到最大的挖翻半径和最大的挖翻行程.这就有利于在较大的工作面上工作。挖翻的高度和挖扭的深度决定于动特的.大上倾角和下倾角,亦即决定于动价油缸的行程。 当采用斗柄油位进行挖翻作业时.铲斗的挖月轨进是以动份与斗柄的校接点为回心.以斗齿至此校接点的距离为半径所作的圈弧线.圈弧线的长度与包角由斗柄油缸行程来决定。当动,位于级大下倾角,采用斗柄油缸工作时.可得到最大的挖扭深度和较大的挖抽行程,在较坚硬的土质条件下工作时也能装摘铲斗.故在实际工作中常以斗柄油缸进行挖翻作业和平场工作。 当采用铲斗油缸进行挖拓作业时.挖拐行程较短。为便护斗在挖翻行程终了时能保证铲斗装脚土峨.需要有较人的挖翻力挖取较厚的土续。因此.铲斗油包一般用于清除障碍及挖翻。 各油IE组合工作的工况也较多。当挖抽荃坑时,由于深度要求大、基坑璧陡而平整,需要采用动衡会斗柄两油缸同时工作;当挖拓坑底时,挖掘行程将结束.为加速装摘铲斗和挖扭过程需要改变铲斗切削角度等.则要求采用斗柄和铲斗网时工作.以达到良好的挖掘效果并提高生产率。 根据液压反铲挖捆机的结构形式及其结构尺寸.利用作图法可求出挖掘轨进的包络图.从

挖掘机工作原理

挖掘机的工作原理 液压挖掘机主要由发动机、液压系统、工作装置、行走装置和电气控制等部分组成。液压系统由液压泵、控制阀、液压缸、液压马达、管路、油箱等组成。电气控制系统包括监控盘、发动机控制系统、泵控制系统、各类传感器、电磁阀等。 液压挖掘机一般由工作装置、回转装置和行走装置三大部分组成。根据其构造和用途可以区分为:履带式、轮胎式、步履式、全液压、半液压、全回转、非全回转、通用型、专用型、铰接式、伸缩臂式等多种类型。 工作装置是直接完成挖掘任务的装置。它由动臂、斗杆、铲斗等三部分铰接而成。动臂起落、斗杆伸缩和铲斗转动都用往复式双作用液压缸控制。为了适应各种不同施工作业的需要,液压挖掘机可以配装多种工作装置,如挖掘、起重、装载、平整、夹钳、推土、冲击锤等多种作业机具。 回转与行走装置是液压挖掘机的机体,转台上部设有动力装置和传动系统。发动机是液压挖掘机的动力源,大多采用柴油要在方便的场地,也可改用电动机。 液压传动系统通过液压泵将发动机的动力传递给液压马达、液压缸等执行元件,推动工作装置动作,从而完成各种作业。 挖掘机液压系统是怎么工作的? 挖掘机有三个部分的液压缸分别是动臂,斗杆,铲斗。有三个液压马达,左右行走和一个回转。这些都由换向阀控制供油。油液从液压泵出来经换向阀分配到以上各执行元件。挖掘机的换向阀大多是液控的就是用一股压力较小的油推动换向阀的阀芯。一般中型挖掘机用的是三联泵,两个大泵提供工作所需要的压力,一个小齿轮泵给控制油路供油。控制油通过手柄下边的控制阀调节主油路换向阀阀芯的位置从而实现动臂斗杆和铲斗油缸的伸缩。以及液压马达的转与停以及转动方向。主油路设溢流阀,压力超过限定值就会打开,油液直接回油箱。所以系统压力始终保持在一定范围内。同样道理在各油缸的支路也设溢流阀,实现二次调定压力。不光是挖掘机,任何液压系统工作原理都是油箱中油液-泵-控制元件-执行元件-油箱。液控比例阀换向阀的作用和液控比例阀换向阀串联的先导阀是什么作用 传统换向阀的进出油口控制通过一根阀芯来进行,两油口听开口对应关系早在阀芯设计加工时已确定,在使用过程中不可能修改,从而使得通过两油口的流量或压力不能进行独立控制,互不影响。 随着微处理控制器、传感器元件成本的下降,控制技术的不断完善,使得双阀芯控制技术在工程机械领域得以应用。英国Utronics公司利用自己的技术及专利优势研制出双阀芯多路换向阀,已广泛应用于JCB、Deere、DAWOO、CASE等公司的挖掘机、*车、装载机及挖掘装载机等产品上。为适应中国工程机械产品对液压系统功能要求。稳定性以及自动化控制程度的不断提高,Utronics公司产品适时进入中国市场,现已初步完成厦工(5t)装载机、詹阳(8t)挖掘机样机调试并进入试验阶段。 1、传统单阀芯换向阀的缺陷 传统的单阀芯换向阀所组成的液压系统难以合理解决好以下功能和控制之间存在的矛盾:(1)液压系统设计时为提高系统稳定性,减少负载变化对速度的影响,要么牺牲部分我们想实现的功能,要么增加额外的液压元件,如调速阀、压力控制阀等,通过增加阻尼,提高系统速度刚度来提高系统的稳定性。但是这样元件的增加又会降低效率,浪费能源;还会使得整个系统的可*性降低、增加成本。 (2)由于换向结构的特殊性,使得用户在实现某一功能时必须购买相应的液压元件,再加上工程机械厂家会根据不同最终用户要求设计出相应的功能,这样会造成生产厂家采购同类、多规格的液压控制元件来满足不同功能要求的需要,不利于产品通用化及产品管理,同时会大大提高产品成本。

挖掘机的基本构造及工作原理演示教学

挖掘机的基本构造及 工作原理

第二章挖掘机的基本构造及工作原理 第一节概述 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括①动力装置、②工作装置、③回转机构、④操纵机构、⑤传动系统、⑥行走机构和⑦辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机 构、辅助设备和驾驶室等都安装在可回转的平台上,通常称为上部转台。因此 又可将单斗液压挖掘机概括成工作装置、上部转台和行走机构等三部分。 工作装置——①动臂、②斗杆、③铲 斗、④液压油缸、⑤连杆、⑥销轴、⑦ 管路 上部转台——①发动 机、②减震器主泵、③ 主阀、④驾驶室、⑤回 转机构、⑥回转支承、 ⑦回转接头、⑧转台、 ⑨液压油箱、⑩燃油 箱、○11控制油路、○12电 行走机构——①履带 架、②履带、③引导 轮、④支重轮、⑤托 轮、⑥终传动、⑦张紧挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械 能转换成液压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转 马达+减速机、行走马达+减速机),由各执行元件再把液压能转化为机械能, 实现工作装置的运动、回转平台的回转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下

1)行走动力传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——中央回转接头——行走马达(液压能转化为机械能)——减速箱——驱动轮——轨链履带——实现行走 2)回转运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——回转马达(液压能转化为机械能)——减速箱——回转支承——实现回转 3)动臂运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——动臂油缸(液压能转化为机械能)——实现动臂运动4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——斗杆油缸(液压能转化为机械能)——实现斗杆运动5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀——铲斗油缸(液压能转化为机械能)——实现铲斗运动

附录-氨分解炉操作手册

附录:AQ/FC系列液氨制氢炉/纯化装置操作指导手册 1、液氨制氢炉概述 氨分解总流程: 液氨瓶→液氨汇流排→双回路液氨减压装置→液氨分气缸→液氨制氢炉/纯化装置→氢气分气缸→氢气氮气配比器→烧结炉 高纯度的氢氮混合气是一种良好的还原性保护气体,可用于零件退火,脱碳处理及铜基、铁基粉末冶金烧结。 液氨制氢炉工作原理: 液氨气化后(氨气压力:<0.1MPa)在750℃-850℃情况下,经催化剂(镍催化剂)作用,分解为氢气和氮气,并吸收热量。 2NH3→3H2+N2 液氨制氢炉需注意的安全事项: ⑴、液氨进入液氨制氢炉必须是气态的!为达到此目的,有以下3个措施: 液氨储罐出口须装有减压阀,经有效减压后氨气压力小于0.2MPa;液氨 储罐和液氨制氢炉连接管路距离大于5m;液氨制氢炉设备装有汽化器, 并能有效工作。 ⑵、氨气是一种对人体粘膜有刺激性的化学气体,分解后的氮气是一种使 人窒息的气体,氢气是一种易燃、易爆还原性极强的气体,因此,设备 现场必须良好通风,5m范围内不得有明火,所有氨源处必须配置水源, 作为氨泄露的应急措施。 ⑶、液氨制氢炉必须安全可靠接地,接地电阻<0.5欧姆。 2、液氨制氢炉设备基本参数 AQ/FC系列液氨制氢炉/纯化装置设备基本参数: 工作压力:<0.1Mpa; 工作温度:800℃-850℃ 液氨消耗:12kg/h 原料氨气: 符合《液体合成氨》规定一级品要求; 含水量:≤2000PPm 纯化后氨分解混合气: 露点:≤-10℃

残氨:≤5PPm 出口压力:<0.1Mpa; 3、液氨制氢炉/纯化装置设备工作原理: AQ液氨制氢炉采用镍催化剂加热分解液氨;FC纯化装置采用专用干燥剂物理吸附混合气中水分和残氨。 其工作流程如下图: AQ 液氨制氢炉为单式流程: 液氨→汽化器→减压阀→热交换器→制氢炉炉胆(镍催化剂加热分解液氨)→热交换器→冷却器→分解氨 其中:冷却器后设放空阀旁路,方便停炉时分解氨排放。 为实现热交换,设备配置冷却水。水冷却流程: 冷却水→冷却器进水口→冷却器→冷却器出水口→汽化器进水口→汽化器→汽化器进水口→室外(液氨瓶水池) FC纯化装置为复式流程:Ⅰ组工作,Ⅱ组再生,通过阀门操作可进行工作再生切换。 FC纯化装置Ⅰ组工作流程: 冷却器分解氨→Ⅰ组进工作阀→干燥器(专用干燥剂物理吸附混合气中水分和残氨)→Ⅰ组出工作阀→纯气出口阀→纯气流量计→纯化后氨分解混合气其中:纯气出口阀前设取样阀,用于检测纯化后氨分解混合气的露点及残氨含量。 FC纯化装置Ⅱ组再生流程:

挖掘机电气控制系统

挖掘机电气控制系统 本篇将以SY2XXC5挖掘机为例讲述挖掘机的电气系统基本原理、基本构造、操作说明、故障分析。 一、概述 机电一体化是液压挖掘机的主要发展方向,其最终目的是机器人化,实现全自动运转,这是挖掘机技术的又一次飞跃。作为项目机械主导产品的液压挖掘机,在近几十年的研究和发展中,已逐渐完善,其工作装置、主要结构件和液压系统已基本定型。人们对液压挖掘机的研究,逐步向机电液控制系统方向转移。控制方式不断变革,使挖掘机由简单的杠杆操纵发展到液压操纵、气压操纵、电气操纵、液压伺服操纵、无线电遥控、电液比例操纵和计算机直接控制。所以,对挖掘机机电一体化的研究,主要是集中在液压挖掘机的控制系统上。 液压挖掘机电气控制系统主要是对发动机、液压泵、多路换向阀和执行元件<液压缸、液压马达)的一些温度、压力、速度、开关量的检测并将有关检测数据输入给挖掘机的专用控制器EC-7,EC-7控制器综合各种测量值、设定值和操作信号发出相关控制信息,对发动机、液压泵、液压控制阀和整机进行控制。 <一)电气控制系统具有以下功能: 1:控制功能:负责对发动机、液压泵、液压控制阀和整机的复合控制。 2:检测和保护功能:通过一系列的传感器、油压开关、蜂鸣器、熔断器和触摸屏等对挖机的发动机、液压系统、气压系统和工作状态进行检测和保护。 3:照明功能:主要有司机室厢灯、工作装置作业灯及检修灯。 4:其它功能:主要有刮雨器、喷水器、空调器和收放音机等。 <三)系统组成及原理 SY2XXC5挖掘机电气系统由电源部分、启动部分、照明部分、电气操纵机构、空气调节装置、音响设备、节能控制及故障诊断报警系统等组成。 2.1 电源部分 系统电源为直流24V电压供电、负极搭铁方式;采用2节12V 120AH蓄电池串联作发动机启动电源,由带内置硅整流和电压调节装置的交流发电机充电,以维持蓄电池电量和稳定系统电压;蓄电池输出端装设电源继电器,由钥匙开关控制,以增加电源系统的安全性。 1)蓄电池:采用12V 120AH免维护型蓄电池,2组串联。

简述各设计院的分解炉

分解炉在窑外分解系统起着很重要的作用,自1971年第一台窑外分解系统投产,从而开始水泥工业大规模生产开始,分解炉的形式有很多。从分解炉内的气流运动来看,可归纳为四种基本型式,即:涡旋式、喷腾式、悬浮式和流化床式。早期开发的分解炉,多以上述四种运动型式之一为基础,使生料和燃料分别依靠“涡旋效应”、“喷腾效应”、“悬浮效应”和“流态化效应”分散于热气流中,利用物料颗料之间在炉内流场中的相对运动,实现高度分散、均匀混合和分布、迅速换热,以达到提高燃烧效率,传热效率和入窑生料碳酸盐分解率的目的。 分解炉按照设计单位国内有以下常见几种:RSP 来源与日本小野田 T DF、TSD、TD、TSD、TWD、TTF、TFD天津院 CDC成都院 NST-I NC-SST南京院 具体形式和特点如下:TDF型分解炉 TDF分解炉是天津水泥院在引进日本DD炉技术的基础上,针对中国燃料特点,研制开发的一种双喷腾分解炉(Dual Spout Furnace),如下图1-1所示。 TDF炉技术特点如下:

①分解炉坐落窑尾烟室之上,炉与烟室之间缩口在尺寸优化后可不设调节阀板,结构简单; ②炉中部设有缩口,保证炉内气固流产生第二次“喷腾效 应”; ①三次风切线入口设于炉下锥的上部,使三次风涡旋入炉;炉的两个三通道燃烧器分别设于三次风入口上部或侧部,以便入炉燃料斜喷入三次风气流之中迅速起风燃烧; ②在炉的下部圆筒体内不同的高度设置四个喂料管入口,以利物料分散均布及炉温控制。 ⑤炉的下锥体部位的适当位置设置有脱氮燃料喷嘴,以还原窑气中的氮,满足环保要求; ⑥炉的顶部设有气固流反弹室,使气固流产生碰撞反弹效应,延长物料在炉内滞留时间; ⑦气固流出口设置在炉上椎体顶部的反弹室下部; ⑧由于炉容较DD炉增大,气流、物料在炉内滞留时间增加,有利于燃料完全燃烧和碳酸盐分解。 TSD分解炉 TSD型炉是带旁置旋流预燃室的组合式分解炉(Combination Furnace with spin pre-burning Chamber)见图1-2炉 TSD炉技术特点如下: ①设置了类似RSP型炉的预燃室; ②将DD型炉改造为类似MFC型炉的上升烟道或RSP型窑的MC室(混合室),作为TSD型炉炉区的组成部分,并扩大了DD炉型的上升烟道容积,使TSD炉具有更大的适应性; ③该炉可用于低挥发分煤及质量较差的燃料。 TFD分解炉 TFD型炉是带有旁置流态化悬浮炉的组合型分解炉(Combination Furnace with

柴油机工作原理及构造

柴油机概述 一,定义: 柴油机是用柴油作燃料的内燃机。柴油机属于压缩点火式发动机,它又常以主要发明者狄塞尔的名字被称为狄塞尔引擎。柴油机在工作时,吸入柴油机气缸内的空气,因活塞的运动而受到较高程度的压缩,达到500~700℃的高温。然后将燃油以雾状喷入高温空气中,与高温空气混合形成可燃混合气,自动着火燃烧。燃烧中释放的能量作用在活塞顶面上,推动活塞并通过连杆和曲轴转换为旋转的机械功 二:历史 法国出生的德裔工程师鲁道夫,狄塞尔,在1897年研制成功可供实用的四冲程柴油机。 1)1905年制成第一台船用二冲程柴油机。 2)1922年,德国的博世发明机械喷射装置,逐渐替代了空气喷射。 3)二十世纪20年代后期出现了高速柴油机,并开始用于汽车。 4)二十世纪50年代,柴油机进入了专业化大量生产阶段。特别是在采用了废气涡轮增压技术以后,柴油机已成为现代 动力机械中最重要的部分。 三,分类 柴油机种类繁多。 1! 按工作循环可分为四冲程和二冲程柴油机。 ②按冷却方式可分为水冷和风冷柴油机。 ③按进气方式可分为增压和非增压(自然吸气)柴油机。 ④按转速可分为高速(大于1000转/分)、中速(300~1000转/分)和低速(小于300转/分)柴油机。 ⑤按燃烧室可分为直接喷射式、涡流室式和预燃室式柴油机。 ⑥按气体压力作用方式可分为单作用式、双作用式和对置活塞式柴油机等。 ⑦按气缸数目可分为单缸和多缸柴油机。 ⑧按用途可分为船用柴油机、机车柴油机、车用柴油机、农业机械用柴油机、工程机械用柴油机、发电用柴油机、固 定动力用柴油机。 ⑨按供油方式可分为机械高压油泵供油和高压共轨电子控制喷射供油。 ⑩按气缸排列方式可分为直列式和V形排列,水平对置排列,W型排列,星型排列等. 11 按功率大少可分为小型(200)中型(200-1000)大型(1000-3000)特大(3000以上) 四,世界最大柴油机 瓦锡兰苏尔寿Wartsila-sulzer 14RT-flex96-C 配4台ABB TPL85增压器 两冲程4涡轮增压14缸柴油共轨电喷发动机单缸排气量1820升单杠功率7780马力总功率108920 马力整机重1300吨 最佳工况每小时耗油6400升

氨分解炉的氨分解制氢设备工艺流程简述

一、氨分解制氢流程简述: 利用液氨为原料,氨经裂解后,每公斤液氨裂解可制得2.64Nm3混合气体,其中含75%的氢气和25%的氮气。所得的气体含杂质较少(杂质中含水汽约2克/立方米,残余氨约1000ppm),再通过分子筛(美国UOP)吸附纯化器,气体的露点可降至-60℃以下,残余氨可降至3PPM以下.氨裂解制氢炉可用于有色金属,硅钢、铬钢和不锈钢等金属材料和零件的光亮退火、硅钢片的脱碳处理、铜基、铁基粉末冶金烧结、电真空器件的金属零件烧氢处理、半导体器件的保护烧结和封结、钯合金膜扩散纯化氢气的原料气等。 原料氨容易得到,价格低廉,原料消耗较少。氨裂解来制取保护气体具有投资少,体积小,效率高等优点(苏州宏博净化设备提供氨分解制氢一站式气体解决方案) 二、氨分解制氢工作原理: 氨(气态)在一定温度下,经催化剂作用下裂解伟75%的氢气和25%的氮气,并吸收21.9千卡热量,其主要反应为:2NH3=3H2+N2-21.9千卡,整个过程因是吸热膨胀反应,提高温度有利于氨裂解,同时它又是体积扩大的反应,降低压力有利于氨的分解,氨分解制氢设备为使用最佳状态。 三、氢气纯化工作原理: 当氨分解制氢设备所产生的氢气合格时再进入氢气纯化作进一步提纯处理,裂解氢气的纯度很高,其中挥发性杂质只有微量的残氨和水分,可见只须除去微量残氨和水分,即可获得高纯度气体。 气体提纯采用变温吸附技术。变温吸附(TSA)技术是以吸附剂(多孔固体物质),内部表面对气体分子在不同温度下吸附性能不同为基础的一种气体分离纯化工艺。常温时吸附杂质气,加温时脱付杂质气,分子筛表面全是微孔,在常温常压下可吸附相当于自重20%静态时吸附的水分和杂质,

挖掘机的工作原理

挖掘机的工作原理 挖掘机的工作原理 一.反铲 铰接式反铲是单斗液压挖掘机最常用的结构型式,动臂、斗杆和铲斗等主要部件彼此铰接(见图1),在液压缸的作用下各部件绕铰 接点摆动,完成挖掘、提升和卸土等动作。 反铲1—斗杆油缸;2—动臂;3—油管;4—动臂油缸;5—铲斗;6— 斗齿;7—侧齿;8—连杆;9—摇杆;10—铲斗油缸;11—斗杆 1.动臂 动臂是反铲的主要部件,其结构有整体式和组合式两种。 1)整体式动臂。其优点是结构简单,质量轻而刚度大。缺点是更换的工作装置少,通用性较差。多用于长期作业条件相似的挖掘机上。整体式动臂又可分为直动臂和变动臂两种。其中的直动臂结构 简单、质量轻、制造方便,主要用于悬挂式液压挖掘机,但它不能 使挖掘机获得较大的挖掘深度,不适用于通用挖掘机;弯动臂是目前 应用最广泛的结构型式,与同长度的直动臂相比,可以使挖掘机有 较大的'挖掘深度。但降低了卸土高度,这正符合挖掘机反铲作业的 要求。 2)组合式动臂。如图2所示,组合式动臂用辅助连杆或液压缸3 或螺栓连接而成。上、下动臂之间的夹角可用辅助连杆或液压缸来 调节,虽然使结构和操作复杂化,但在挖掘机作业中可随时大幅度 调整上、下动臂之间的夹角,从而提高挖掘机的作业性能,尤其在 用反铲或抓斗挖掘窄而深的基坑时,容易得到较大距离的垂直挖掘 轨迹,提高挖掘质量和生产率。组合式动臂的优点是,可以根据作 业条件随意调整挖掘机的作业尺寸和挖掘力,且调整时间短。此外,它的互换工作装置多,可满足各种作业的需要,装车运输方便。其 缺点是质量大,制造成本高,一般用于中、小型挖掘机上。

2.反铲斗 反铲用的铲斗形式,尺寸与其作业对象有很大关系。为了满足各种挖掘作业的需要,在同一台挖掘机上可配以多种结构型式的铲斗,图3为反铲常用铲斗形式。铲斗的斗齿采用装配式,其形式有橡胶 卡销式和螺栓连接式,如图4所示。 3.组合式动臂 1—下动臂;2—上动臂;3—连杆或液压缸 常用铲斗结构 1—齿座;2—斗齿;3—橡胶卡销;4—卡销;5、6、7—斗齿板 二.正铲 单斗液压挖掘机的正铲结构如图5所示,主要由动臂2、动臂油 缸1、铲斗5、斗底油缸4等组成。 铲斗的斗底利用液压缸来开启,斗杆6是铰接在动臂的顶端,由双作用的斗杆油缸7使其转动。斗杆油缸的一端铰接在动臂上,另 一端铰接在斗杆上。其铰接形式有两种:一种是铰接在斗杆的前端; 另一种是铰接在斗杆的尾端。 动臂均为单杆式,顶端呈叉形,以便与斗杆铰接。动臂有单节的和双节的两种。单节的动臂有长短两种备品,可根据需要更换。双 节的动臂则由上、下两节拼装而成,根据拼装点的不同,动臂的工 作长度也不同。 斗齿安装形式 (a)螺栓连接;(b)橡胶卡销连接 1—卡销;2—橡胶卡销;3—齿座;4—斗齿 铲1—动臂油缸;2—动臂;3—加长臂;4—斗底油缸;5—铲斗;6— 斗杆;7—斗杆油缸;8—液压软管。

分解炉的温度控制

分解炉有多种型式,其结构性能虽有差异,但要起的主要作用却是相同的:要使燃料燃烧的放热过程与生料碳酸盐分解的吸热过程在其中以悬浮态或流化态下极其迅速地进行,使入窑生料碳酸盐分解率提高,从而减轻窑的热负荷,提高窑的运转周期,提高产质量。而分解炉的温度控制对整个预分解窑系统的热力分布,热工制度的稳定至关重要。为此,作者对分解炉温度控制的有关几个问题进行讨论。 1 分解炉温度与燃料燃烧 分解炉的温度取决于燃料燃烧过程的放热速率与生料分解过程的吸热速率。当燃料燃烧放热速率慢,生料分解在接近平衡的条件下进行,分解炉的温度于860~920℃范围,燃料燃烧放出的热量就会迅速传递给生料,并被分解反应吸收。但是,当燃料燃烧速率大于生料分解过程的吸热速率,燃料燃烧的热量大于生料分解所需的吸热量,此时分解炉的温度就会超过平衡温度范围。 从燃料燃烧的角度来看,分解炉内燃料的燃烧与回转窑内燃料燃烧有许多不同之处。回转窑内燃料燃烧温度比分解炉内高得多,回转窑内燃料燃烧明显是受扩散控制的,而分解炉内燃料燃烧则有所不同。由于分解炉温度远低于回转窑内燃料燃烧温度,故煤在分解炉内的燃烧时间受煤种类的影响比回转窑内的影响大得多。如广东云浮水泥厂FCB分解炉容积偏小,结构上亦存在一些问题,当使用低挥发分、高灰分的低热值煤时,还原气氛十分严重,迅速导致结皮堵塞;而采用高挥发分、低灰分的高热值煤时情况则有所改善。煤粉细度对于回转窑内的燃烧是相当敏感的,因为其是受扩散控制,即受边界层扩散时输送速率的控制;而煤粉

细度对分解炉内燃烧的影响就没有在回转窑内那样敏感了。 问题还要回到分解炉温度与燃料燃烧的关系上来。由于回转窑内燃料燃烧是受扩散控制的,增减10~20℃对于燃料的燃烧影响是甚微的。但在分解炉内则明显不同。如有的分解炉容积偏小,煤粉燃烬时间不足,以至还原气氛重,而降低分解炉的温度,减少分解炉用煤量,以图改变煤粉燃烧不完全、还原气氛的问题,但往往是事与愿违。因在不减产量的情况下,分解炉用煤减少,分解炉温度降低,煤的燃烧速度随温度降低而迅速下降,煤粉始终是燃烧不完全。适当增大分解炉的容积已成为一个发展动向。在分解炉偏小煤质差的情况下,可适当降产量,而不宜降低分解炉的温度。 2 分解炉温度与末级旋风筒温度及物料、燃料情况 燃料在分解炉内燃烧放热,料粉在其中吸热分解;随后,气固两相流离开分解炉进入末级旋风筒,进行气固分离;分离后的物料进入回转窑,而气体进入上一级旋风预热器。在正常情况下,煤粉在分解炉燃烧完全,分解炉的出口温度会高于最末一级旋风筒下部及其物料的温度。但是,当分解炉内燃料的燃烧速度慢,燃料燃烧不完全,则未完全燃烧的煤粉在旋风筒内继续燃烧,此时则会使最末一级旋风筒下部及物料的温度比分解炉出口温度还要高。如云浮水泥厂在1993年8月煤粉质量明显下降,灰分高、热值低,FCB型预分解窑窑头三通道喷煤管未能适应烧这些质量差的煤,熟料煅烧温度低,三次风温明显下降,而低的三次风温又进一步延滞了分解炉内煤粉的燃烧,可谓雪上加霜。就这样,不完全燃烧的煤粉进入五级旋风筒内继续燃烧,五级旋风筒下部温度比分解炉出口温度

柴油机结构原理分析解析

柴油机结构 一、发动机的工作原理 发动机的功能是将燃料在气缸内燃烧使其热能转换成机械能,从而输出动力。能量的转换是通过不断地依次反复进行“进气—压缩—做功——排气”四个连续过程来实现的,每进行这样一个连续过程就叫做一个工作循环。 1、进气冲程—活塞由曲轴带动从上止点向下止点运动,此时排气门关闭,进气门开启。活塞移动的过程中,气缸内的容积逐渐增大,形成一定的真空度,于是经过虑芯的空气通过进气门进入气缸。直至活塞到达下止点时,进气门关闭,停止进气。 2、压缩冲程—进气冲程结束时,活塞在曲轴的带动下,从下止点向上止点运动,气缸容积逐渐减小,由于进排气门均关闭,气体被压缩,气缸内温度上升,直至活塞到达上止点时,压缩结束。 3、做功冲程—在压缩冲程末,高压油嘴喷出高压燃油与空气混合,在高温、高压下混合气体迅速燃烧,使气体的温度、压力迅速升高而膨胀,从而推动活塞由上止点向下止点运动,再通过连杆驱动曲轴转动做功,至活塞到下止点时,做功结束。 4、排气冲程—在做功冲程结束时,排气门被打开,曲轴通过连杆推动活塞由下止点向上止点运动,废气在自身剩余压力和活塞的推力作用下,被排出气缸,直至活塞到达上止点时,排气门关闭,排气结束。排气冲程终了时由于燃烧室容积存在,气缸内还存少量废气,气体压力也因排气门和排气管的阻力而仍高于大气压。

二、发动机的总体构造 柴油机由两大机构四大系统组成。 1、柄连杆机构—曲柄连杆机构主要由构成气缸的机体、活塞、连杆、曲轴和飞轮等组成。 由发动机的工作循环可知,混合气在气缸内燃烧产生的高压是通过活塞、连杆、曲轴而变为有用的机械能输出的;反之,工作循环的准备过程也是由曲轴通过连杆通过活塞作往复运动来实现的。可见,曲柄连杆机构是发动机维持工作循环,实现能量转换的核心。 2、配气机构—为使发动机的工作循环能够连续进行,必须定时地开闭气门,以便向气缸内充入新鲜气体和排出废气。它主要由气门和控制气门开闭的凸轮轴及其他传动件等组成。 3、燃料供给系—从发动机的工作循环可知,柴油机要向气缸内提供纯空气并在规定时刻向气缸内喷入燃油。另外,需要将燃烧完的废气按规定的管路导出。柴油机的燃料供给系主要由燃油箱、喷油泵、喷油器、进、排气管、虑清器等组成。 4、润滑系—发动机内部有很多高速运动的摩擦表面,为了减小摩擦阻力和减缓磨损,需要向这些摩擦表面提供润滑油。润滑系主要由油底壳、机油泵、油道、虑清器等组成。 5、冷却系—发动机工作时,气缸内气体燃烧的热量在使气体膨胀做功的同时,不可避免地将会加热与它相接触的机件,为了保持正常的工作温度,需将机件的多余热量散发出去。冷却系有水冷和风冷两种,水冷主要由散热器、风扇、水泵、水套等组成;风冷主要由风扇、散

第二章挖掘机基本构造与工作原理

第二章挖掘机的结构及工作原理 第一节挖掘机总体结构 一、单斗液压挖掘机的总体结构 单斗液压挖掘机的总体结构包括动力装置、工作装置、回转机构、操纵机构、传动系统、行走机构和辅助设备等,如图所示。

常用的全回转式液压挖掘机的动力装置、传动系统的主要部分、回转机构、辅助设备和驾驶 室等都安装在可回转的平台上,通常称为上部转台。因此又可将单斗液压挖掘机概括成工作 装置、上部转台和行走机构等三部分. 工作装置--动臂、斗杆、铲斗、液压油缸、连 杆、销轴、管路 上部转台——发动机、减震 器主泵、主阀、驾驶室、回 转机构、回转支承、回转接 头、转台、液压油箱、燃油 箱、控制油路、电器部件、 配重 行走机构——履带架、履 带、引导轮、支重轮、托轮、 终传动、张紧装置 挖掘机是通过柴油机把柴油的化学能转化为机械能,由液压柱塞泵把机械能转换成液 压能,通过液压系统把液压能分配到各执行元件(液压油缸、回转马达+减速机、行走马达 +减速机),由各执行元件再把液压能转化为机械能,实现工作装置的运动、回转平台的回 转运动、整机的行走运动。 二、挖掘机动力系统 1、挖掘机动力传输路线如下 1)行走动力传输路线:柴油机—-联轴节——液压泵(机械能转化为液压能)-—分配阀—— 中央回转接头—-行走马达(液压能转化为机械能)—-减速箱——驱动轮—-轨链履带-—实 现行走 2)回转运动传输路线:柴油机——联轴节—-液压泵(机械能转化为液压能)-—分配阀-— 回转马达(液压能转化为机械能)——减速箱--回转支承-—实现回转 3)动臂运动传输路线:柴油机—-联轴节——液压泵(机械能转化为液压能)——分配阀—— 动臂油缸(液压能转化为机械能)—-实现动臂运动 4)斗杆运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)——分配阀 ——斗杆油缸(液压能转化为机械能)——实现斗杆运动 5)铲斗运动传输路线:柴油机——联轴节——液压泵(机械能转化为液压能)—-分配阀-— 铲斗油缸(液压能转化为机械能)——实现铲斗运动

分解炉岗位安全操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 分解炉岗位安全操作规程 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4409-25 分解炉岗位安全操作规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 目的: 使岗位操作制度化、标准化、规范安全操作。 2 适用范围: 烧成工段分解炉岗位 3 引用标准: 《劳动安全卫生国家标准》 4 所在岗位存在的职业健康安全风险: 高温烫伤、机械伤害、触电、粉尘、噪音、摔伤、坠落、碰伤、挂伤、砸伤、夹伤、顶伤、钉伤、压伤、切伤、刺伤等安全风险。 5 安全技术要求: 5.1 班前四小时内及班中不准喝酒,要穿戴好各种防护用品,严禁穿裙子、高跟鞋、拖鞋上班。 5.2 接班时应全面检查设备、工作场地及各安全

设施,排除故障隐患,确保人身与设备安全。 5.3 坚守工作岗位,认真检查,不准擅自把自己的工作交给他人。 5.4 禁止跨越正在运转的设备,严禁在运转的设备上传递物品和图近道穿越危险区。 5.5 从事高空作业时,必须拴安全绳、系安全带、带安全帽,严禁同时进行高低垂直作业。凡属危险作业,必须有人在旁进行监护。 5.6 预热器清料时,要身穿石棉衣、防护皮鞋,戴石棉手套、头盔,不要正对捅料孔清料,以免正压伤人。 5.7 岗位区域要保持清洁卫生,物品堆放整齐,严禁乱堆、乱放,严禁在未经许可和无人监护的情况下,从预热器上往下乱扔东西、清扫杂物,以防落物伤人。 5.8 检修设备时,要通知电工切断电源并挂检修牌,同时将机旁开关打至“0”位,进入设备内部检查、检修时,要使电压在36V的行灯照明。

相关文档
相关文档 最新文档