文档库 最新最全的文档下载
当前位置:文档库 › 角速度传感器(陀螺仪)的应用研究分析

角速度传感器(陀螺仪)的应用研究分析

角速度传感器(陀螺仪)的应用研究分析
角速度传感器(陀螺仪)的应用研究分析

角速度传感器(陀螺仪)的应用研究分析

目录

一、陀螺仪的原理

二、陀螺仪的基本部件包括

三、陀螺仪的两个重要特性

四、陀螺仪的前世今生

五、陀螺仪的分类

六、传感器的应用

1.陀螺仪在航空飞行领域的应用

2.陀螺仪在车载导航设备中的应用

3.陀螺仪在无人机飞行控制系统中的应用

4.陀螺仪在照相/摄相领域的应用

5.陀螺仪在智能手机中的应用

七、陀螺仪最新技术简介和发展趋势

对于角速度传感器,很多人可能会比较陌生,不过,如果提到它的另一个名字——陀螺仪,相信有不少人知道。

一、陀螺仪的原理

陀螺仪,是一种用来感测与维持方向的装置,基于角动量不灭的理论设计出来的。陀螺仪一旦开始旋转,由于轮子的角动量,陀螺仪有抗拒方向改变的趋向。

通俗地说,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。大家如果玩过陀螺就会知道,旋转的陀螺遇到外力时,它的轴的方向是不会随着外力的方向发生改变的。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量

人们根据这个道理,用它来保持方向,制造出来的东西就叫做陀螺仪,然后再用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。

二、陀螺仪的基本部件包括

1、陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值)。

2、内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构)。

3、附件(是指力矩马达、信号传感器等)。

三、陀螺仪的两个重要特性

陀螺仪有两个非常重要的基本特性:一为定轴性,另一是进动性,这两种特性都是建立在角动量守恒的原则下。

1.定轴性

当陀螺转子以高速旋转时,在没有任何外力矩作用在陀螺仪上时,陀螺仪的自转轴在惯性空间中的指向保持稳定不变,即指向一个固定的方向;同时反抗任何改变转子轴向的力量。这种物理现象称为陀螺仪的定轴性或稳定性。

其稳定性随以下的物理量而改变:

1、转子的转动惯量愈大,稳定性愈好;

2、转子角速度愈大,稳定性愈好。

所谓的“转动惯量”,是描述刚体在转动中的惯性大小的物理量。当以相同的力矩分别作用于两个绕定轴转动的不同刚体时,它们所获得的角速度一般是不一样的,转动惯量大的刚体所获得的角速度小,也就是保持原有转动状态的惯性大;反之,转动惯量小的刚体所获得的角速度大,也就是保持原有转动状态的惯性小。

2.进动性

当转子高速旋转时,若外力矩作用于外环轴,陀螺仪将绕内环轴转动;若外力矩作用于内环轴,陀螺仪将绕外环轴转动。其转动角速度方向与外力矩作用方向互相垂直。这种特性,叫做陀螺仪的进动性。

进动性的大小有三个影响的因素:

1、外界作用力愈大,其进动角速度也愈大;

2、转子的转动惯量愈大,进动角速度愈小;

3、转子的角速度愈大,进动角速度愈小。

四、陀螺仪的前世今生

陀螺仪由1850年法国物理学家莱昂·傅科在研究地球自传中获得灵感而发明出来的,类似像是把一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度,和现在小巧的芯片造型大相径庭。

陀螺仪发明以后,首先被用在航海上(当年还没有发明飞机),后来被用在航空上。因为飞机飞在空中,是无法像地面一样靠肉眼辨认方向的,而飞行中方向都看不清楚危险性极高,所以陀螺仪迅速得到了应用,成为飞行仪表的核心。

到了第二次世界大战,各个国家都玩命的制造新式武器,德国人搞了飞弹去炸英国,这是今天导弹的雏形。从德国飞到英国,千里迢迢怎么让飞弹能飞到,还能落到目标呢?于是,德国人搞出来惯性制导系统。惯性制导系统采用用陀螺仪确定方向和角速度,用加速度计测试加速度,然后通过数学计算,就可以算出飞弹飞行的距离和路线,然后控制飞行姿态,争取让飞弹落到想去的地方。不过那时候计算机也好,仪器也好,精度都是不太够的,所以德国的飞弹偏差很大,想要炸伦敦,结果炸得到处都是,颇让英国人恐慌了一阵。

不过,从此以后,以陀螺仪为核心的惯性制导系统就被广泛应用于航空航天,今天的导弹里面依然有这套东西,而随着需求的刺激,陀螺仪也在不断进化。

传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。

自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结

TR系列振动加速度传感器的说明

加速度传感器,通常需要在标准振动台上进行标定,给使用带来很多不便。TR系列固态加速度传感器采用先进的微电子加工技术和电容式测量原理,可获得优良的低频响应,用重力加速度g、通过改变传感器的放量方向就可对传感器进行校准。 振动和冲击 TR系列振动加速度传感器可以测量从直流到其截止频率范围内的振动量,以后的信号处理包括快速傅立叶变换,一次积分成速度,以及再积分成位移输出。例如测量壳体振动,输出量经过精确的滤波器及相应的积分器,再经有效值检波后可输出机壳的振动加速度、速度及位移,从而监测机组的运行状态。 倾斜角测量 当传感器倾斜放置时,传感器的输出为重力加速度在传感器测量轴上的分量,即输出与倾斜角存在反正弦的函数关系。当倾斜角较小时,近似为线性关系。 惯性测量 六自由度的惯性测量系统需要三个加速度传感器分别测量三个轴的加速度,三个陀螺仪测量三个轴的旋转。加速度经积分可获得速度,再次积分可获得位移或距离,此时加速度传感器的可重复性误差和温漂需要精确补偿,否则可能带来较大误差。

性能指标: 量程:±1g~±50g 分辨率:(5mg)0.1% 可承受最大冲击:1000g(6105) 非线性:0.2% 噪声:5000μg(Hz)2/1 (6105) 频响:6105最大到4kHz,6150最大到10kHz 工作温度:0℃~70℃ 重量:100g 形体尺寸:Φ32×6 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城。https://www.wendangku.net/doc/f17759652.html,/

中低频振动速度传感器

中低频振动速度传感器 概述 DZS-0.5型中低频振动速度传感器主要用于监测水轮机组、泵站机组等中低频旋转机械设备的轴承座、机壳或结构的振动速度,为设备安全运行提供测量保障。该系列产品采用高品质元器件和全封闭结构设计,产品具有防护等级高、故障率低、稳定性好等特点。 技术参数 ?振动速度峰值量程:0~68mm/s、0~34mm/s、0~17mm/s 量程越大,灵敏度越小,量程与灵敏度对应关系如下 振动速度峰值量程振动速度均方根值量程灵敏度0~68mm/s 0~48mm/s 100mV/(mm/s) 0~34mm/s 0~24mm/s 200mV/(mm/s) 0~17mm/s 0~12mm/s 400mV/(mm/s) ?频率范围:0.5Hz~1000Hz(-3dB) ?灵敏度:100mV/(mm/s)、200mV/(mm/s)、400mV/(mm/s) ?测量方向:水平、垂直 ?线型误差:≤3% ?输出:0-5V(AC) ?电源电压:±12V DC或24V DC、 ?功率:4W ?防护等级:IP67 ?重量: 工作原理 DZS-0.5型低频振动速度传感器采用磁电感应原理,将振动速度信号转换成电压信号,再利用精密的放大电路和频率延展电路,将传感器频率响应拓宽到0.5Hz-1000Hz。传感器输出的振动速度电压信号峰值U P正比于被测物体振动速度峰值。 安装与维护 ?外形尺寸

?安装注意 1、振动速度传感器分水平测量方向和垂直测量方向,不能混用;(水平测量方向是指 和水平面平行方向,垂直测量方向是指和水平面垂直方向) 2、传感器的安装点必须是刚性部件,并且传感器和安装点必须是刚性连接; 3、安装方向和标准测量方向角度偏差不能大于10°; 4、传感器安装紧固螺栓应采用可靠的防松措施,以免工作中传感器松动,引起测量误 差。应定期检查安装紧固螺栓是否松动; ?安装附件 如测量点没有预留安装螺纹孔,可将安装底座焊接在测量点,焊接时用水平尺找准方向。 焊接完成后确保焊接牢固时,将传感器紧固在安装底座上。 ?接线 选型说明 DZS – 0.5 - - 电源电压 A:±12V DC B:24V DC 灵敏度 1:100mV/(mm/s) 2:200mV/(mm/s) 4:400mV/(mm/s) 测量方向 S:水平方向 C:垂直方向 最低测量频率 0.5Hz 产品系列号 DZS:中低频振动速度传感器 注:传感器输出的电压峰峰值U P-P/2=振动速度电压峰值U p,振动速度电压峰值U P/灵敏度=振动速度峰值, 振动速度峰值/√2=振动速度均方根值V rms。 GB和ISO标准规定采用振动速度均方值V rms评价设备振动。

振动传感器的类型

根据不同的分类标准,有不同的分类,一般来说,有三种分类标准。按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式;按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。下面简单介绍几种振动传感器。 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。 压电式加速度传感器的机械接收部分是惯性式加速度机械接收原理,机电部分利用的是压电晶体的正压电效应。其原理是某些晶体(如人工极化陶瓷、压电石英晶体等,不同的压电材料具有不同的压电系数,一般都可以在压电材料性能表中查到。)在一定方向的外力作用下或承受变形时,它的晶体面或极化面上将有电荷产生,这种从机械能(力,变形)到电能(电荷,电场)的变换称为正压电效应。而从电能(电场,电压)到机械能(变形,力)的变换称为逆压电效应。 电阻式应变式传感器是将被测的机械振动量转换成传感元件电阻的变化量。实现这种机电转换的传感元件有多种形式,其中最常见的是电阻应变式的传感器。电阻应变片的工作原理为:应变片粘贴在某试件上时,试件受力变形,应变片原长变化,从而应变片阻值变化,实验证明,在试件的弹性变化范围内,应变片电阻的相对变化和其长度的相对变化成正比。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游

六-轮式车辆期望横摆角速度和侧偏转向控制方法

广西工学院毕业设计(外文) 翻译 英文原文名Desired yaw rate and steering control method during cornering for a six-wheeled vehicle 中文译名六轮式车辆期望横摆角速度和侧偏转向控制方法 系别汽车工程系 专业班级交Y081班 学生姓名XXX 指导教师XXX 填表日期 二〇一一年9月

译文: 六-轮式车辆期望横摆角速度和侧偏转向控制方法. 1)机械与宇航工程学院,汉城国立大学,汉城151-744,韩国 2)电脑辅助机械设计工程,大津大学,Gyoenggi 487-711,韩国 3),大田305-600,韩国国防发展局5-3-3集团 摘要: 本文提出了一种最优控制理论为基础,以改善六轮式车辆在转弯时的操作稳定性为目标转向控制方法。六轮式车辆,相信比四个轮子的车辆在其跨越障碍的能力,越野性能和当一个或两个轮胎刺破时故障安全处理方面有更好的性能表现。虽然人们研究和开发许多方法来提高四轮车辆的横向稳定性,但六轮式车辆的横向稳定性方面的研究比较少。近年来一些六轮式车辆的研究已经报道,但它们是有关用四轮汽车的横摆角速度去控制六轮车辆的转向。在本文中,通过侧滑角和横摆角速度的控制以提高转弯时的操作稳定性,提出了适合六轮式车辆所需的横摆角速度。此外,设计了带有6个独立控制驱动马达和六个独立控制的转向私服马达的按比例缩小的汽车模型。所提出的控制方法性能是可以通过一个完整的模型的车辆仿真模拟和按比例缩小的车辆实验验证的。 关键词:六轮式车辆的横向稳定性,所需的横摆角速度,按比例缩小的车辆 1. 引言 一个独立的6WD(四轮驱动)/ 6WS(转向轮)机制在特殊的用途的、军事的装甲车得以应用,以加强其转向性能和越野驱动能力。六轮式车辆,相信比四个轮子的车辆在其跨越障碍的能力,越野性能和当一个或两个轮胎刺破时故障安全处理方面有更好的性能。为了一个六轮车辆在转弯时达到最好的可操作性,中间及后轮转向角度根据前轮的转向和六轮式车辆的速度角度,需要加以控制。 许多方法已被研究,并积极开发,使四轮车辆的横向稳定性得到大大地提(Zanten,1998;Nagai et al,1999;Nagai etal.2002;Shino et al.2001;Shibahata.1992;Song etal.2007)。然而,只有少数研究六轮式车辆的横向稳定性。Huh et al.(2000

振动加速度传感器 参数指标及测试方法

关于加速度指标的表示方法及测试方法 黄正 本文仅说明常用指标,对于相频响应、功率谱密度等指标,需要时另描述。 案例1 MOI 7100加速度传感器 1:频响表示方法 1.1参考灵敏度,指在什么频率下(一般惯例是160Hz,或者100Hz),什么温度下(如果有温补要求),在多少加速度条件下,测试出来的灵敏度。该灵敏度是校准值,是正确的。 例如,F=160Hz,幅值2G,FT810测试加速度计的得到的波长变化量为417.7pm,那么该单位为:285.35pc/g ; 1.3频响的表示方法 表示在幅值频率响应范围内,某频率处的灵敏度,相对于参考灵敏度(它是准确的),允许的一个误差范围;它可以用百分比表示,或者用dB表示;通常用±5%、±10%或者±1dB,±3dB; 1)通常,频响的表示方法是采样图表的形式表示更为准确。

2)也可以采用如下的表示方法 即:±5%和±3dB两个指标;尤其是产品指标不好的情况下,采用这种方式表示。 但是,特别强调一点,允许单调变化,如果不是单调变化,通常归也为指标很差。也就是要么频响曲线缓慢上升或者下降(允许弯曲),但不应该是时大时小毫无规律。 1.4横向灵敏度 理想情况下,与轴向垂直90度的方向的灵敏度,与参考灵敏度相比,应该是0%;但由于制造等原因,这个横向灵敏度可高达±5%。 2:频响的测试方法 2.1按1/1倍频程或者1/3倍频程选择要测试的频率点; 2.2 选择加速度幅值; 2.3 按选定的频点,进行定频测试,每次测试一段时间,如100Hz时,测试20s,保存数据。 2.4数据分析 1)对每个频点,可选择时域a)峰峰值or b)有效值,可通过平均的方式获取; 也可以选择fft,对应频点的幅值; 2)将所有的幅值Sai,和参考灵敏度所对应频点的幅值Sa0进行比较。 3)画图: 纵坐标:(Sai-Sa0)/Sa0 * 100%,横坐标:对应的Sai的频点。

汽车ESP传感器介绍及其接口技术分析

一、引言 ESP(Electronic Stability Program,电子稳定程序)是汽车电控的一个标志性发明。不同的研发机构对这一系统的命名不尽相同,如博世(BOSCH)公司早期称为汽车动力学控制(VDC),现在博世、梅赛德—奔驰公司称为ESP;丰田公司称为汽车稳定性控制系统(VSC)、汽车稳定性辅助系统(VSA)或者汽车电子稳定控制系统(ESC);宝马公司称为动力学稳定控制系统(DSC)。尽管名称不尽相同,但都是在传统的汽车动力学控制系统,如ABS和TCS的基础上增加一个横向稳定控制器,通过控制横向和纵向力的分布和幅度,以便控制任何路况下汽车的动力学运动模式,从而能够在各种工况下提高汽车的动力性能,如制动、滑移、驱动等。ESP在国外已经批量生产,在国内尚处于研究阶段,要达到产业化的程度,还有大量的工作要做。 图1所示为汽车ESP的构成示意图,其电子部件主要包括电子控制单元(ECU)、方向盘传感器、纵向加速度传感器、横向加速度传感器、横摆角速度传感器、轮速传感器等。ESP作为保证行车安全的一个重要电控系统,其各个传感器的正常工作是进行有效控制的基础。本文介绍了ESP常用传感器的特点,设计了传感器硬件接口和软件接口,并在实车测试中得到验证。 二、ESP常用传感器介绍

如图1、图2所示,ESP常用的传感器如下。 1.方向盘转角传感器 ESP通过计算方向盘转角的大小和转角变化速率来识别驾驶员的操作意图。方向盘转角传感器将方向盘转角转换为一个可以代表驾驶员期望的行驶方向的信号,方向盘转角一般是根据光电编码来确定的,安装在转向柱上的编码盘上包含了经过编码的转动方向、转角等信息。这一编码盘上的信息由接近式光电耦合器进行扫描。接通点火开关并且方向盘转角传感器转过一定角度后,处理器可以通过脉冲序列来确定当前的方向盘绝对转角。方向盘转角传感器与ECU的通讯一般通过CAN总线完成。 2.横摆角速度传感器 横摆角速度传感器检测汽车沿垂直轴的偏转,该偏转的大小代表汽车的稳定程度。如果偏转角速度达到一个阈值,说明汽车发生测滑或者甩尾的危险工况,则触发ESP控制。当车绕垂直方向轴线偏转时,传感器内的微音叉的振动平面发生变化,通过输出信号的变化计算横摆角速度。 3.纵向/横向加速度传感器 ESP中的加速度传感器有沿汽车前进方向的纵向加速度传感器和垂直于前进方向的横向加速度传感器,基本原理相同,只是成90°夹角安装。ESP一般使用微机械式加速度传感器,在传感器内部,一小片致密物质连接在一个可以移动的悬臂上,可以反映出汽车的纵向/横向加速度的大小,其输出在静态时为2.5V左右,正的加速度对应正的电压变化,负的加速度对应负的电压变化,每1.0~1.4V对应1g的加速度变化,具体参数因传感器不同而有所不同。 4.轮速传感器

加速度计和陀螺仪指引——数学模型和基本算法

加速度计和陀螺仪指南——数学模型和基本算法 本帖转自https://www.wendangku.net/doc/f17759652.html,/thread-1695-1-1.html 本帖翻译自IMU(加速度计和陀螺仪设备)在嵌入式应用中使用的指南。 这篇文章主要介绍加速度计和陀螺仪的数学模型和基本算法,以及如何融合这两者,侧重算法、思想的讨论. 介绍 本指南旨在向兴趣者介绍惯性MEMS(微机电系统)传感器,特别是加速度计和陀螺仪以及其他整合IMU(惯性测量单元)设备。 IMU单元例子:上图中MCU顶端的ACC Gyro 6DOF,名为USBThumb,支持USB/串口通信 在这篇文章中我将概括这么几个基本并且重要的话题: - 加速度计(accelerometer)检测什么 - 陀螺仪(gyroscope,也称作 gyro)检测什么 - 如何将传感器ADC读取的数据转换为物理单位(加速度传感器的单位是g,陀螺仪的单位是度/秒)

- 如何结合加速度传感器和陀螺仪的数据以得到设备和地平面之间的倾角的准 确信息 在整篇文章中我尽量将数学运算降低到最少。如果你知道什么是正弦、余弦、正切函数,那无论你的项目使用哪种平台你应该都会明白和运用这篇文章中的思想,这些平台如Arduino、Propeller、Basic Stamp、Ateml芯片、PIC芯片等等。 总有些人认为使用IMU单元需要复杂的数学运算(复杂的FIR或IIR滤波,如卡尔曼滤波,Parks-McClellan滤波等)。你如果研究这些会得到很棒且很复杂的结果。我解释事情的方式,只需要基本的数学。我非常坚信简单的原则。我认为一个简单的系统更容易操作和监控,另外许多嵌入式设备并不具备能力和资源去实现需要进行矩阵运算的复杂算法。 我会用我设计的一个新IMU模块——Acc_Gyro Accelerometer + Gyro IMU作为例子。在下面的例子中我们会使用这个设备的参数。用这个模块作为介绍非常合适,因为它由3个设备组成: - LIS331AL (datasheet) – 3轴 2G 模拟加速度计 - LPR550AL (datasheet) –双轴(俯仰、翻滚)500°/s 加速度传感器 - LY550ALH (datasheet) –单轴(偏航)陀螺仪最后这个设备在这篇介绍中不使用,不过他在DCM Matrix implementation中有重要作用 它们一起组成了一个6自由度的惯性测量单元。这是个花哨的名字!然而,在花哨的名字后面是个非常有用的设备组合,接下来我们会详细介绍之。 第一部分加速度计 要了解这个模块我们先从加速度计开始。当我们在想象一个加速度计的时候我们可以把它想作一个圆球在一个方盒子中。你可能会把它想作一个饼干或者甜圈,但我就把它当做一个球好了:

结合角速度传感器(陀螺)与加速度计惯导原理

结合角速度传感器与加速度计测量车辆运动 当测试车辆时,人们常常需要测量车辆的动态运动以及车辆相对于道路的倾角。我们可以通过加速度计来获得车辆转弯、加速或者制动时产生的冲击力,但是,除非车辆在进行上述运动时保持水平,否侧测试结果是不准确的。比如,你想用加速度计测量车辆的制动力,但车辆是向前倾斜的,测量结果中就会有重力分量。 大多数倾斜传感器把重力方向当作参考方向。重力是一种加速度,并且不断变化(应该是随高度变化吧)。制动、加速和转弯时,车辆会产生加速度。然而当进行倾斜测量时,我们只需要得到重力加速度;当进行车辆动力测量时,却又只想得到运动加速度。 有运动加速度时,倾斜传感器将得到一个不准确的倾角。也就是说,在车辆倾斜时只通过加速度计将无法得到准确的倾角。 通过测量绕车辆重心的旋转,角速度传感器有助于纠正车俩向前倾斜带来的不利影响。不幸的是,角速度传感器有其自身的缺陷。它测量旋转速度,不是旋转角度,通过不断积分得到角度。当旋转速度的测量出现偏差,积分后所得的角度将会有很大的偏差。但是,你可以结合角速度值和加速度值,计算出车辆动态运动时的精确数据。角速度和加速度的缺点可以相互弥补。当拥有足够强的计算能力,我们就可以得到实时的加速度和角度的精确值。 要实现这一点,你需要测量沿三个轴的加速度和角速度。于是我们沿着车身安装了三轴加速度计,和与值对应的三轴角速度计。见图1。如果可能,传感器最好安装在车辆重心,尽量减少旋转加速度对测量带来的不利影响。 (原文件名:page 1.jpg) 引用图片 图1。车辆各轴上的传感器 我们可以用角速度传感器测量车辆绕给定轴的旋转。如果一直对角速度积分,将会得到角度关于时间的函数。例如,您可以使用角速度传感器来跟踪车辆沿着X和Y轴的旋转,然后对传感器信号积分,计算出车辆俯仰角和翻滚角。这是一个关于时间的函数。根据这个计算得到的俯仰角和翻滚角,从加速度传感器信号中减去由于倾斜带来的重力分量,最终得到运动加速度。 要得到可靠的俯仰角和翻滚角,你必须对角速度信号积分。结果是,角速度信号的偏差,会造成角度的偏差,并且随时间线性增加。此外,角速度传感器的随机噪声会导致计算角度的随机波动,这种波动使得角度以与时间的平方根成正比的速度漂移,even in the absence of rate bias error.这些影响将限制昂贵的角速度传感器在超过几分钟测量时的应用。 幸运的是,我们可以利用角速度传感器短时测量准确的优势和加速度计长时稳定的特点,两者结合,得到即能短时稳定又能长时稳定的倾角。用角速度传感器测量短时内角度变化,把加速度传感器当做倾角传感器测量倾角,并在一个长时间范围内,迫使角速度传感器得到的倾角慢慢匹配加速度传感器得到的倾角。 要执行这些操作,需要有传感器,以及数据采集和处理设备。我们使用一个三轴加速度计和(三个)3轴角速度计。不管沿哪个方向,你都需要以能测量车辆完整运动的目的来安装这些传感器。还可以添加一个温度传感器,用其采集的数据补偿温度对加速度计和角速度计输出的影响。然后将传感器信号数字化,并输入计算机或存储器。 可以使用电脑对得到的数据进行计算。但是,如果想看到实时的计算结果,那得需要一台数字信号处理器(DSP),作为信号采集设备之一。然后,将计算得到的角度数据、已修正的加速度和角速度信息用数据线传送到电脑。如果发送的是二进制数据包,工作在38.4K波特率的串行RS-232数据线应该满足超过200Hz的传输速率。这大大快于角速度传感器的带宽。 尽量把传感器安装在靠近车辆运动中心的地方。否侧旋转产生的离心力将会被加速度计测量。请注意,我们使用加速度计只是测量车辆重心的线性加速度,所以要尽量减少旋转运动对加速度测量的耦合。

Carsim车辆电子稳定系统控制分析

Electronic technology ? 电子技术 Electronic Technology & Software Engineering 电子技术与软件工程? 123 【关键词】电子稳定系统 Carsim 联合仿真 Fishhook 控制算法 电子稳定性控制系统(Electronic Stability Control, ESC)是一种新型主动安全系统,是ABS 和TCS 两种系统功能的延伸。电子稳定性控制系统在实现按理想轨迹行驶的同时,改善汽车的方向稳定性和操控性能。 由于考虑到电子稳定系统研制的复杂性,特别是在ESC 试车时所需运行工况都是非常恶劣和危险的,加快研发进度和研发的经济效益,在研究初期,对电子稳定系统进行软件仿真显得尤为重要。 1 电子稳定系统构成与工作过程 1.1 ESC系统结构组成 汽车ESC 系统主要由电子控制单元(ECU)、各种传感器及执行器三部分组成。 (1) ESC 系统中的传感器主要有:横摆角速度传感器、轮速传感器、转向传感器、侧滑传感器、横向加速度传感器、制动压力传感器、纵向加速度传感器、车身翻转角速度传感器等,采用这些传感器采集汽车行驶状况的各种信息。 (2)电子控制单元(ECU):电控单元ECU 接收上述各传感器的信号后,然后进行分析、判断、计算从而得出汽车的运行状态,进而发出控制指令,控制一个或多个车轮制动器的制动力,使汽车按照驾驶员所期望的理想路线行驶。 (3)执行器:接收电子控制单元(ECU)发出的命令信号,同时执行控制信号。ESC 系统中的执行器:制动系统和发动机管理系统。1.2 ESC系统工作过程 ESC 系统的工作过程可概括为信号采集、信号处理计算及ECU 判断、执行器执行。 2 基于CARSIM与SIMULINK联合控制仿真平台 Carsim 车辆电子稳定系统控制分析 文/朱成水 张天华 陆盛祥 2.1 电子稳定系统联合仿真平台构建 (1) 点击图中Test Speci ?cation 的下三角,选择相应的车型,或者点击进入根据参数建立自己实际所要车型。 (2)在Procedure 下新建或一个所要求的仿真工况(或选择满足用户需求的已有工况): (3) Simulink 接口 A :点击Model 图标所示的下三角,选择‘Models:Simulink ’。 B:自定义carsim 车型的在simulink 中的输入输出变量,选择simulink 的工作路径(已经建立的simulink 的文件)。 1、定义CarSim 的导入变量: 选择‘I/O Channels:Import ’,然后按 图1:ESC 系统结构图 图2:有无ESC 控制的.mdl

加速度计和陀螺仪传感器原理、检测及应用

加速度计和陀螺仪传感器原理、检测及应用 摘要:微机电系统(MEMS)在消费电子领域的应用越来越普及,移动市场的增长也带动了MEMS需求的日益旺盛。实际上,MEMS传感器正在成为消费类和移动产品差异化的关键要素,例如游戏控制器、智能手机和平板电脑。MEMS为用户提供了与其智能设备交互的全新方式。本文简要介绍MEMS的工作原理、检测架构以及各种潜在应用。本文网络版地址:http://https://www.wendangku.net/doc/f17759652.html,/article/247467.htm 关键词:MEMS;加速度计;陀螺仪;传感器 DOI:10.3969/j.issn.1005-5517.2014.5.013 引言 微机电系统(MEMS)将机械和电子元件集成在微米级的小型结构中。利用微机械加工将所有电气器件、传感器和机械元件集成至一片共用的硅基片,从而由半导体和微加工技术组合而成。MEMS系统的主要元件是机械单元、检测电路以及ASIC或微控制器。本文简要介绍MEMS加速度计传感器和陀螺仪,讨论其工作原理、检测结构以及目前市场的热点应用,对我们日常生活具有深远的影响。 1 MEMS惯性传感器 MEMS传感器在许多应用中测量沿一个或多个轴向的

线性加速度,或者环绕一个或多个轴的角速度,以作为输入控制系统(图1)。 MEMS加速度计传感器通常利用位置测量接口电路测 量物体的位移,然后利用模/数转换器(ADC)将测量值转换为数字电信号,以便进行数字处理。陀螺仪则测量物体由于科里奥利加速度而发生的位移。 2 加速度计工作原理 根据牛顿第二定律,物理加速度(m/s2)与受到的合力(N)成正比,与其质量(kg)成反比,加速度方向与合力相同。 上述过程可简单归纳为:作用力导致物体发生位移,进而发生电容变化。将多个电极并联,可获得更大的电容变化,更容易检测到位移(图4)。V1和V2连接至电容的每侧,电容分压器的中心连接到物体。 物体重心的模拟电压通过电荷放大、信号调理、解调及低通滤波,然后利用Σ-ΔADC将其转换为数字信号。将ADC输出的数字比特流送至FIFO缓存器,后者将串行信号转换为并行数据流。随后,可通过诸如I2C或SPI等串行协议读取数据流,再将其送至主机做进一步处理(图5)。 Σ-ΔADC具有信号带宽较窄,分辨率非常高,适合加速度计应用。Σ-ΔADC输出由其位数决定,很容易转换成“g”(单位),用于加速度计算。“g”为重力加速度。

mma7361角速度传感器实验

#include #include #define lcd P0 sbit sl=P1^0; sbit og=P1^1; sbit st=P1^2; sbit gs=P1^3; sbit adcs=P2^0; sbit adclk=P2^1; sbit addo=P2^2; sbit addi=P2^2; sbit lcdrs=P1^5; sbit lcdrw=P1^6; sbit lcden=P1^7; void delay(int n) { int i,j; for(i=0;i

} void lcdinit() //3?ê??ˉoˉêy { lcdrw=0; lcden=0; lcdwr_com(0x38); lcdwr_com(0x0c); lcdwr_com(0x06); lcdwr_com(0x01); lcdwr_com(0x80); } int rd_ad(unsigned char *date,int SGL,int ODD) //?áè?adêy?Y { unsigned char data0=0,data1=0; int i,j; adcs=1; adcs=0; addi=1; adclk=0; adclk=1; adclk=0; //μúò?????3? addi=SGL; //?£ê????? adclk=1; adclk=0; //μú?t????3? addi=ODD; adclk=1; adclk=0; //μúèy????3? addo=1; //êí·?êy?Y???ú for(i=0;i<8;i++){ data0<<=1; adclk=1; adclk=0; j++;j++;j++;j++;j++; j++;j++;j++;j++;j++; //?óê±5us if(addo) data0|=0x01; }

ESP电子稳定系统工作结构原理

ESP电子稳定系统工作结构原理 1.ESP电子稳定系统概念 ESP是电子稳定程序( Electronic Stability Programme)的简称。属于车辆的主动安全,人们也可称之为动态驾驶控制系统。ESP以ABS制动防抱死系统与ASR牵引力控制系统为基础,增加汽车转向行驶时横摆率传感器、车身翻转角速度传感器、侧加速度传感器、制动总泵中的液压力传感器和转向盘转角传感器等,通过对车轮制动器和发动机动力的控制,实现对侧滑的纠正。车身翻转角速度传感器就像一个罗盘,适时地监控汽车行驶的准确姿态,监控汽车每个可能的翻转运动角速度。其他传感器则分别监控汽车的行驶速度和各车轮的速度差,监控转向盘的转动角度和汽车的水平侧向加速度,当制动发生时则监控制动力的大小和各车轮制动力的分配情况。 2.ESP的功能与组成 2.1 ESP的功能 ESP能保证在转向状态下车辆的稳定性(横向) ,避免车辆产生侧滑。ESP能以25次/秒的频率对驾驶员的行驶意图和实际行驶情况进行检测,在转向状态下,能自动根据车辆的状态,有针对性地单独制动各个车轮,或控制发动机、自动变速器的状态使车辆保持稳定行驶。 (1)直线行驶车轮滑移的控制。当汽车在湿滑的路面上作直线起步或加速行驶,ESP-ECU 一旦通过车轮转速传感器检测到某个或全部车轮滑移率大于某设定值时,便立即通过ASR 向发动机ECU 发出减小喷油量的指令,降低发动机的动力输出,使驱动轮不再打滑。 (2)前轮侧滑的纠偏。当汽车高速转弯产生前轮侧滑时,ESP-ECU 便首先通过ASR 向发动机ECU 发出减小喷油量的指令,降低发动机的动力输出,并采用反向平衡的原理,同时向ABS-ECU发出先制动内后轮的纠偏指令,使车身得到向内转的运动,然后对4个车轮进行制动,使车速降到某一水平和抑制汽车的侧滑,汽车便按照驾驶员的意图,回复到正确的轨道上来。 (3)后轮甩尾的纠偏。当汽车转弯产生后轮甩尾时,ESP-ECU 同样采用反向平衡原理,首先通过ASR向发动机ECU发出减小喷油量的指令,降低发动机的动力输

加速度计and陀螺仪原理

MEMS加速度计原理 技术成熟的MEMS加速度计分为三种:压电式、容感式、热感式。压电式MEMS加速度计运用的是压电效应,在其内部有一个刚体支撑的质量块,有运动的情况下质量块会产生压力,刚体产生应变,把加速度转变成电信号输出。 容感式MEMS加速度计内部也存在一个质量块,从单个单元来看,它是标准的平板电容器。加速度的变化带动活动质量块的移动从而改变平板电容两极的间距和正对面积,通过测量电容变化量来计算加速度。Freescale的MMA7660FC这一款加速度计(3-Axis Orientation/MotionDetection Sensor),这一款芯片也是利用这一原理设计的。datasheet的第9页介绍了其工作原理:当芯片有向右的加速度时,中间的活动质量快相对于另外两块电容板向左移动,这两平行板电容器的电容就发生了变化,从而测量出芯片运动的加速度。 热感式MEMS加速度计内部没有任何质量块,它的中央有一个加热体,周边是温度传感器,里面是密闭的气腔,工作时在加热体的作用下,气体在内部形成一个热气团,热气团的比重和周围的冷气是有差异的,通过惯性热气团的移动形成的热场变化让感应器感应到加速度值。 由于压电式MEMS加速度计内部有刚体支撑的存在,通常情况下,压电式MEMS加速度计只能感应到“动态”加速度,而不能感应到“静态”加速度,也就是我们所说的重力加速度。而容感式和热感式既能感应“动态”加速度,又能感应“静态”加速度。 从上面的分析中,我们可以看到利用容感式和热感式加速度计进行定向时,加速度计测得的加速度里面包括重力加速度在各个轴上的重力分量和动态运动引起的加速度分量。因而,我觉得我们在利用这一类加速度计进行定向时,必须将动态加速度去掉(较为困难);在进行检测芯片的运动时,必须将重力加速度的去掉。 师兄,我觉得如果我们选择用加速度计来进行定向的话,我们可以考虑ST的LSM303DLH (5*5*1mm,0.83mA)这一款芯片。这一款芯片集成了测加速度和磁场的功能,完全可以满足我们定向的需求

ESP系统及其测试技术

ESP系统及其测试技术 作者:朱明明班级:物流工程学号:101204052 (辽宁工业大学汽车与交通工程学院,辽宁锦州121001) 引言 近几十年随着现代汽车技术的发展,汽车工业已成为我国的支柱产业,在日常工作和生活中起着越来越重要的作用。汽车行业内,20世纪80年代热门话题是防抱死制动系统ABS,90年代是加速防滑控制系统ASR,而当前的热门话题是电子稳定程序(ESP,Electronic Stability Program)。ESP包含ABS和ASR,是这两种系统功能上的延伸,ESP称得上是当前汽车防滑装置的最高级形式。ESP的出现是应时代对汽车提出的一种新型的主动安全性要求,它是当今的主动安全措施之一,其应用使车辆的主动安全性大大提高。 ESP是由德国博世公司(BOSCH)和梅赛德斯-奔驰(MERCEDES-BENZ)公司联合研制,它集成了防抱死制动系统ABS和驱动防滑系统ASR所有功能,它能够在几毫秒内识别出汽车不稳定的行驶趋势,ESP系统通过智能化的电子控制方案让汽车传动或者制动系统产生所期望的准确响应从而及时恰当的消除这些不稳定的形势趋势。即还能在车轮自由滑转以及极限操纵下保持车辆的稳定性;可以更好地利用轮胎与路面间的附着潜能,改善车辆转向能力和稳定性的同时,进一步改善驱动能力、缩短停车距离。在ABS和ASR两者的共同作用下,ESP 最大限度地保证汽车不跑偏、不甩尾、不侧翻,有效地保证了汽车稳定的操控安全性。1、ESP系统的组成及技术 ESP系统是一种牵引力控制系统,它在ABS和ASR的基础上增加了相应功能的传感器。该系统的电子部件主要包括电子控制单元(ECU)、方向盘传感器、纵向加速度传感器、横向加速度传感器、横摆角速度传感器、轮速传感器等。作为保证行车安全的一个重要电控系统,其各个传感器的正常工作是进行有效控制的基础。 ESP各电子部件的主要功用: (1)方向盘传感器,监测方向盘旋转的角度,帮助确定汽车行驶方向是否正确。 (2)轮速传感器,监测每个车轮的速度,确定车轮是否打滑。 (3)横摆角速度传感器,记录汽车绕垂直轴线的运动,确定汽车是否在打滑。 (4)纵向/横向加速度传感器,ESP中的加速度传感器有沿汽车前进方向的纵向加速度 传感器和垂直于前进方向的横向加速度传感器,基本原理相同,只是成900夹角安装。它对转弯时产生的离心力起反应,确定汽车是否在通过弯道时打滑。 控制单元通过这些传感器信号对车辆的运行状态进行判断,进而发出控制指令,并自动向一个或多个车轮施加制动力,甚至在某些情况下每秒进行150次制动,以把车辆保持在驾驶者所选定的车道内。这些传感器还向控制装置提供汽车在任何瞬间的运行状况信息。 1、传感器:转向传感器、车轮传感器、侧滑传感器、横向加速度传感器、方向盘油门刹车踏板传感器等。这些传感器负责采集车身状态的数据。 2、ESP电脑:将传感器采集到的数据进行计算,算出车身状态然后跟存储器里面预先设定的数据进行比对。当电脑计算数据超出存储器预存的数值,即车身临近失控或者已经失控的时候则命令执行器工作,以保证车身行驶状态能够尽量满足驾驶员的意图。 3、执行器:说白了ESP的执行器就是4个车轮的刹车系统,其实ESP就是帮驾驶员踩刹车。和没有ESP的车不同的是,装备有ESP的车其刹车系统具有蓄压功能。简单的说蓄压就是电脑可以根据需要,在驾驶员没踩刹车的时候替驾驶员向某个车轮的制动油管加压好让这个车轮产生制动力。另外ESP还能控制发动机的动力输出什么的,反正是相关的设备他都能插一腿!

Toyota 清除横摆率加速度传感器零位及 VSC 灯复位

Toyota 清除横摆率加速度传感器零位及VSC灯复位 元征软件TOYOTA开发工程师 李永帅 ECB(电子控制制动系统)利用四轮独立的油压制动系统,根据车辆行驶状态,控制S-VSC (助力转向车身稳定性控制系统)、刹车辅助系统和带EBD的ABS。ECB(电子控制制动系统)可根据驾驶员操作状况,协调控制油压制动系统和再生制动系统所产生的制动力,最大限度的发挥再生制动力作用,提高燃油效率。 横摆率传感器(又叫角速度传感器)检测汽车沿垂直轴的偏转,该偏转的大小代表汽车的稳定程度。如果偏转角速度达到一个阈值,说明汽车发生测滑或者甩尾的危险工况,则触发VSC控制。当车绕垂直方向轴线偏转时,传感器内的微音叉的振动平面发生变化,通过输出信号的变化计算横摆角速度。加速度传感器有沿汽车前进方向的纵向加速度传感器和垂直于前进方向的横向加速度传感器。横摆率传感器和加速度传感器为VSC提供车辆状态参数。 当这些传感器发生故障或更换后,要进行零位清除,同时VSC故障灯也点亮,这时必须借助诊断设备才能熄灭该故障指示灯。下面即简要介绍下如何用X-431对其进行零位清除及熄灭故障指示灯。 这个功能在X431 TOYOTA软件的ABS系统的工作支持菜单中,非CAN的ABS系统要用TOYOTA-16接头或CAN BUS接头,CAN ABS测试时注意要用第二代CAN BUS接头。 下面是利用X431执行此功能的主要步骤及必要的说明,供参考: 进入ABS系统功能菜单后,选择“清除横摆率/加速度传感器零点(对ECB系统)”(CLEAR YAW RATE/G SENSOR ZERO POINT)项后,弹出提示界面,如图1,图2所示: 图1 图2 图2中提示如果执行此功能故障灯会点亮,后面会教你如何熄灭之,点[YES]继续。

陀螺仪知识整理与解析

陀螺仪知识整理与解析 1、陀螺仪基础知识 (2) 2、Question and answer (2) 3、陀螺仪和加速度计的区别与联系 (3) 4、常用芯片介绍 (3)

1、陀螺仪基础知识 陀螺仪:测量角速度,是角速度传感器。时间积分后得到相对角度。陀螺和加速度计是惯性器件,是用来测量相对惯性空间的角速度(或对于积分类型的陀螺来说是角增量)和加速度。 在三维空间中描述一个刚体运动要六轴,三轴加速度,三轴角速度。测量角速度大部分芯片靠的是测量科特迪奥力,也就是让排水孔的水形成涡旋的力。 角速度跟角速率:速度是矢量、有方向。而速率是标量,只有大小,帶有平均的意味。如果采样点很快的話(dt趋于0),速度和速率的数值是一样的。 航模的陀螺仪全是角速度传感器,不管是高端还是低端。 mems陀螺仪积分很多时候造成零偏的主要原因应该是随机游走。 2、Question and answer Q:角速度传感器如果在它的测量轴上匀速转动输出是否为定值? A:是,不过首先要保证你是在匀速转动。 用过几种角速度传感器,发现匀速转动传感器,因为加了高通滤波,传感器输出的电平和静止时的电平一样,只有加速的时候电平才变动。 Q:如果在测量轴的某一位置静态输出为A,那么匀速转过45度后静止,那么此时输出是否为A? A:如果是静止测量,是如此的。但由于频宽,通常信号有一点点滞后。 Q:用陀螺仪测角度的话,是不是对测出的角速度积分即可?网上看到有些资料说可以用陀螺仪和加速度传感器组合测角度,这种方法具体如何实现? A:理论上如此,但是由于bias、drift、scale和数值积分的误差,积分结果是会漂移的。 假设加速度计测量到重力加速度时,可以对陀螺仪校正角

汽车ESP传感器介绍

汽车ESP传感器介绍及其接口技术分析(组图) 一、引言 ESP(Electronic Stability Program,电子稳定程序)是汽车电控的一个标志性发明。不同的研发机构对这一系统的命名不尽相同,如博世(BOSCH)公司早期称为汽车动力学控制(VDC),现在博世、梅赛德—奔驰公司称为ESP;丰田公司称为汽车稳定性控制系统(VSC)、汽车稳定性辅助系统(VSA)或者汽车电子稳定控制系统(ESC);宝马公司称为动力学稳定控制系统(DSC)。尽管名称不尽相同,但都是在传统的汽车动力学控制系统,如ABS和TCS的基础上增加一个横向稳定控制器,通过控制横向和纵向力的分布和幅度,以便控制任何路况下汽车的动力学运动模式,从而能够在各种工况下提高汽车的动力性能,如制动、滑移、驱动等。ESP在国外已经批量生产,在国内尚处于研究阶段,要达到产业化的程度,还有大量的工作要做。 图1:汽车ESP的构成示意图 图1所示为汽车ESP的构成示意图,其电子部件主要包括电子控制单元(ECU)、方向盘传感器、纵向加速度传感器、横向加速度传感器、横摆角速度传感器、轮速传感器等。ESP作为保证行车安全的一个重要电控系统,其各个传感器的正常工作是进行有效控制的基础。本文介绍了ESP常用传感器的特点,设计了传感器硬件接口和软件接口,并在实车测试中得到验证。 二、ESP常用传感器介绍

图2:ESP常用的传感器 如图1、图2所示,ESP常用的传感器如下: 1.方向盘转角传感器 ESP通过计算方向盘转角的大小和转角变化速率来识别驾驶员的操作意图。方向盘转角传感器将方向盘转角转换为一个可以代表驾驶员期望的行驶方向的信号,方向盘转角一般是根据光电编码来确定的,安装在转向柱上的编码盘上包含了经过编码的转动方向、转角等信息。这一编码盘上的信息由接近式光电耦合器进行扫描。接通点火开关并且方向盘转角传感器转过一定角度后,处理器可以通过脉冲序列来确定当前的方向盘绝对转角。方向盘转角传感器与ECU的通讯一般通过CAN总线完成。 2.横摆角速度传感器 横摆角速度传感器检测汽车沿垂直轴的偏转,该偏转的大小代表汽车的稳定程度。如果偏转角速度达到一个阈值,说明汽车发生测滑或者甩尾的危险工况,则触发ESP控制。当车绕垂直方向轴线偏转时,传感器内的微音叉的振动平面发生变化,通过输出信号的变化计算横摆角速度。 3.纵向/横向加速度传感器 ESP中的加速度传感器有沿汽车前进方向的纵向加速度传感器和垂直于前进方 向的横向加速度传感器,基本原理相同,只是成90°夹角安装。ESP一般使用微机械式加速度传感器,在传感器内部,一小片致密物质连接在一个可以移动的悬

相关文档