文档库 最新最全的文档下载
当前位置:文档库 › 阀控式密封铅酸蓄电池充电芯片系统的设计

阀控式密封铅酸蓄电池充电芯片系统的设计

阀控式密封铅酸蓄电池充电芯片系统的设计
阀控式密封铅酸蓄电池充电芯片系统的设计

阀控式密封铅酸蓄电池充电芯片系统的设计

发布:2011-09-05 | 作者: | 来源: zhongruizheng| 查看:396次 | 用户关注:

引言20世纪中后期,信息、通信、电子技术等蓬勃发展,大大地推动了电池工业的进程。历史悠久的电池采用新技术、新材料和新工艺,研发和生产出一批高性能、高可靠性的现代二次电池。蓄电池充电器也将是21世纪IC界的一个热门。铅酸蓄电池是最早的可充电电池之一,在各行各业有着广泛的用途。阀控式密封铅酸蓄电池充电器(VRLACHARGER)采用充电控制集成电路,以高频脉动电流给电池充电以解决极化效应,根据不同的电池特性检测不同的参

引言

20世纪中后期,信息、通信、电子技术等蓬勃发展,大大地推动了电池工业的进程。历史悠久的电池采用新技术、新材料和新工艺,研发和生产出一批高性能、高可靠性的现代二次电池。蓄电池充电器也将是21世纪IC界的一个热门。

铅酸蓄电池是最早的可充电电池之一,在各行各业有着广泛的用途。阀控式密封铅酸蓄电池充电器(VRLA CHARGER)采用充电控制集成电路,以高频脉动电流给电池充电以解决极化效应,根据不同的电池特性检测不同的参数来准确判断电池是否充满,并提供温度保护等措施和初始充电前的放电等附加功能,这样就能很好的对电池进行快速、有效、安全的充电,也解决了大电流充电过程中会出现的极化效应和电池发热等问题。

本设计就是基于上述形式,对阀控式密封铅酸蓄电池充电技术进行了研究。特别是对VRLACHARGER芯片的原理、控制方式以及系统设计上的一些问题进行了深入细致的研究。

2阀控式铅酸蓄电池充电技术

2.1铅酸蓄电池技术概述

蓄电池通过化学反应来取得能量,是一种通过化学反应来获取电能的器件,又叫化学电源。化学电源是在氧化还原的电化学过程中将化学能转化微电能的。它的结构跟普通电池一样,是由正极、负极、电介质构成。在工作时,正极和负极发生化学反应而放电,因此蓄电池在使用后,必须用充电器对其进行充电。铅酸蓄电池通过极板生成,在正极板上生成二氧化铅,在负极板上生成海绵状铅。在硫酸电解液中,正极负极电位不同,分别为1.682V一0.395V(对于单个电压为2V的铅酸蓄电池而言)。可以在很大的温度范围正常工作,一般厂家的铅酸蓄电池工作的温度范围都在一40℃一65℃之间。

2.2 VRLA电池的特性

阀控密封铅酸蓄电池(VRLA)的寿命通常分为循环寿命和浮充寿命两种。阀控密封铅酸蓄电池的容量减少到规定值以前,其充放电循环次数称为循环寿命。在正常维护下,阀控密封铅酸蓄电池(VR-LA)浮充供电的时间称为浮充寿命。阀控密封铅酸蓄电池(VRLA)的浮充寿命可达10年以上。

2.2.1初始充电

充电时间与充电速率有关。当充电速率大于C/5(C为蓄电池额定容量)时,阀控密封铅酸蓄电池(VRLA)容量恢复到放出容量的80%左右,就开始过充电反应,而过充电的后果比较严重,因此充电速率大于C/5时就算大电流充电。当充电速率小于C/:100时,阀控密封铅酸蓄电池(VRLA)容量恢复到100%后再开始过充电反应,这种充电叫涓流充电。为了加快充电速率,缩短充电时间,需要采用较大速率来充电。为了使阀控密封铅酸蓄电池容量恢复到100,必需允许一定的过充电,当发生过充电反应后,单个阀控密封铅酸蓄电池的电压迅速上升,达到一定数值后,上升速率开始减小,然后电池端电压也开始缓慢下降。

由此可知,阀控密封铅酸蓄电池充足电后,维持其容量的最佳方法是在阀控密封铅酸蓄电池组两端输入恒定的电压,这个电压叫浮充电压,因为它实际上已经不在充电,只是维持了VRLA蓄电池充满水平。因此,最佳的充电方法就是阀控密封铅酸蓄电池(VRLA)充足电后,充电器应输出恒定的浮充电压。

2.2.2浮充电

(1)浮充电压

阀控密封铅酸蓄电池(VRLA)的浮充电压等于开路电压和极化电压之和。而VRLA蓄电池的开路电压为电解液比重核电结业比差系数之和,电解液比差系数一般是0.85。由市场上流行的阀控密封铅酸蓄电池参数可以得知,他们的极化电压通常为0.10-0.18V。例如美国圣帝公司生产的阀控密封铅酸蓄电池(单体电压为2V的阀控密封铅酸蓄电池)电解液比重为1.24g/cm3,所以它的浮充电压为2.09V。日本YUASA公司生产的阀控密封铅酸蓄电池的浮充电压为2.23V。

(2)浮充电流

阀控密封铅酸蓄电池的浮充电流有三个作用:其一是补充阀控密封铅酸蓄电池自放电的损失;其二是向日常性负载提供电流;其三是浮充电流值要足以维持阀控密封铅酸蓄电池内部的氧循环。

浮充电压不能过高,如果太高了的话充电电流太大,会引起VRLA蓄电池过充,这样会缩短它的寿命。因浮充电流的主要作用是补充阀控密封铅酸蓄电池自放电而失去的电量、维持其内部的氧循环及向日常性生活负载提供电流,因此浮充电压可以设的低一些,比如单体额定电压为2伏的,浮充电压在2.10V一2.30V之间都可以。

2.2.3充电操作

VRLA蓄电池组放电后,应立即转入充电。一般的充电开始需要控制充电电流,以不大于O.2C为宜(比如3Ah的蓄电池,充电电流应不大于3X0.2=O.6A)。当电流变小时,可慢慢提高阀控密封铅酸蓄电池组的充电电压,达到均充电压值后再充电6h,然后再调回浮充电压值。阀控密封铅酸蓄电池初充电流大小的设计一般按额定值的0.1来进行。使用中正常充电时,最好采用分级定流充电方式,即在充电初期用较大的电流,充电一定时间后,改用较小的电流,到了充电后期,改用涓充电流。这种充电方法的效率较高,所需时间较短,充电效果也好,对延长电池寿命有利。但是有一个缺点,可能在充电初期造成热失控。对于端电压为12V(单节为2V的串连6节)的阀控密封铅酸蓄电池来说,正常的浮充电压在13.5-13.8V之间,即单节电压在2.25V一2.30V之间作浮充电压比较合适。若浮充电压低于22.25v,则阀控密封铅酸蓄电池充不满;若浮充电压高于2.30V,则会造成过电压充电。上述情况都是在室温25℃的情况下,如果环境改变情况也不相同。

3 VRLA充电芯片系统的设计

3.1系统方案

当前市场上己经有很多充电芯片,根据电池的种类不同可以分为:铅酸蓄电池充电器、锅镍电池充电器、镍氢电池充电器、铿离子电池充电器等。从充电方式又可以分为:线性充电器和开关充电器。其中还有一些是多功能充电器,比如MAX2003A充电芯片、LT l769芯片、UBA2008芯片等。

电路的控制方式一般分为两种:电压反馈环控制方式和电流反馈环、电压反馈环同时存在的双环控制方式。第一种控制方式能够跟踪充电电压和电池电压的变化,但是如果是电流的变化,则它一定要反应到输出端才可以检测,因此具有一定的延时。因此不能很灵敏的控制充电电流的大小。充电电流在充电芯片里是需要精确控制的一个指标,因此只有一个电压反馈环不能满足需要。

按照阀控密封铅酸蓄电池的特点,采用恒压或者恒流的充电都不是最佳选择。如果采用小电流恒流充电,则速度太慢,一次充电要一个多星期,没有效率;如果采用大电流恒流充电,则在充电初期容易引起极化效应,阀控密封铅酸蓄电池内阻增大,产生大量的热量散发不出去,会造成热失控。严重了会产生爆炸和火灾,所以这种也不理想:如果采用恒压充电,电压低了充不满,高了又过充,这两种情况都严重损害阀控密封铅酸蓄电池的寿命。根据以上分析。对阀控密封铅酸蓄电池充电最好的方案就是采用多阶段线性浮充模式。具体如下图所示:

其中:

AB段为涓流充电(TriekleCharge),充电电流为22mA,VTH=2V;

BC段为大电流充电(BulkCharge),充电电流为1.122A,Voc=2.43V;

CD段为过压充电(0VER CHARGE),Voc=2.43V,1ocT=22mA;

DE段为浮充充电(Float Charge),VFOAT=2.275V。

TI公司的UC3906,这是一款线性充电芯片。它的优点是控制方法简单,外接元件少,只需要接少量几个电阻电容就可以实现应用。它的缺点是效率低,这也是线性充电器的普遍缺点。而且温度补偿做在芯片内部,这种方法有一个问题需要考虑到,就是基准电压感应到的芯片的温度而不是电池的温度,所以这个补偿并不准确。基于此种考虑,在本次设计中,温度补偿放在外围电路中做,充电电压也由外电路来确定。下面是提出的系统解决方案:

整个解决方案由六个部分组成,Charger和MCtT是核心,Charger提供控制电路,MCU给出控制的信号,充电由Power Stage提供,这里用的是BUCK 降压电路,BUCK后面接需要充电的电池,然后接负载,给负载供电。SENSOR要检测电池的温度,当电池温度升高时,MCU按一0.4mV/c的标准来改变充电的电压.通过一个整体的系统来实现了对充电电池的温度补偿。还要检测电流和电压,它们的信号分别反馈给Charger的电流环和电压环,来控制充电电流和充电电压使它们的值在控制范围内。这样做的好处是:

(1)对电池的控制更迅速更到位;

(2)节省了保护电路,包括过流保护、过压保护和过热保护,电路得以简化;

(3)芯片面积得到缩减:

3.2控制环的设计

为了比较精确的控制输出电压和输出电流的变化,在普通功能实现的基础上增加了电流环和电压环的双环控制。电流环作为内环,电压环作为外环。它有两个输出量,一个是输出电压一个是输出电流。从最优控制的角度出发,实现全状态反馈是最优控制方法。

3.2.1 电流环的设计

如图3所示,虚线内部分为电流环所包括的部分:电流感应电阻,Buck 充电电路,电流误差放大器。其中BUCK电路的小信号传递函数为

其中,V1是BUCK电路的输人电压,RsENSE是电流感应电阻,LBUCK是BUCK转换器的输出电感,VP是振荡器的峰值电压。我们取交叉频率为开关频率的十分之一,大约是5KHz。在这个频率下,BUCK的增益大约为1.19。并且,在这个频率下,GPs*GEA=l,因此电流误差放大器的增益应该是

R1的值设为10KΩ,所以HF计算值是8.4KΩ.我们使用9.1KΩ。在交叉频率Fcl处设一个零点,以获得45%的相位裕量,在Fs一般的频率处设一个极点,以降低开关噪声,并完成电流环的补偿。

3.2.2电压环的设计

当电流环被关闭以后,可以当作一个跨导来看,它的值相当于l/RsENSE,频率在到达Fcl之前,增益是平稳的,超过之后的斜率为20dB/dec,因此BUCK的小信号传输函数为:

Rout是输出阻抗,它主要由蓄电池的内阻和电流感应电阻RSENSE组成,小信号增益是由跨导乘以BUCK电路的输出阻抗。我们把电压环的交叉频率设为电流环频率的十分之一,也就是500Hz,这个带宽很低.但是由于蓄电池充电不需要很快的瞬态响应,所以这个是可以满足的,并且零极点的频率也超过了这个频率。在500Hz的时候,BUCK电路的增益是2.3。电压放大器的增益与BUCK的增益之积为1,因此电压放大器的增益为0.43。将R6取值为80K.那么C4就可以计算出来:

在频率500Hz处设一个极点,在交叉频率的十分之一(fcv)处设一个零点,即50Hz处设一个零点。这个零点完成了电压环路的补偿。下面分别计算出补偿电容和补偿电阻:

3.2.3模块及设计指标

根据整个系统的概念以及电流环电压环的设计.据此提出的模块包括:欠压锁定电路、电压基准源、电压误差放大器、电流误差放大器、振荡器、PWM 比较器、RS触发器、若干运算放大器、以及部分数字电路。引脚有14个,如图4所示,几个典型模块指标如下:

(1)电压基准源

温度系数(一40/%:一125/~C)时,变化率<25ppm 电源电压变化(9V-14V)时,输出电压波动「0.2mV,20mV」

输出电流变化(0-20mA)时,输出电压波动『5mV,25mV]

输出电压5.0V

(2)电压误差放大器

失调电压(25qC)时≤5mV

开环增益典型值90dB

共模抑制比CMRR90dB

电源抑制比PSRR(Vdd在9到14V时)≥60dB

输出电压变化范围(OV一5V)

(3)振荡器

震荡频率典型值(100KHzl[50K,500K]

电压调整率(10-14V时)士l%

温度稳定性Tv(一15cI=一85%:之间≤2.5%

峰值电压(1'A=25~C,Vdd=12V)3V

(4)脉冲宽度调制器输出高电平4.5V

输出低电平0.1 V

延迟时间[300nS,'700nS]

(5)电流误差放大器

输入失调电压(在25cI=时)≤2m V

低电平输入电压3mV

开环增益90dB

共模抑制比90dB

电源抑制比≥60dB

输出高电平(15K到地负载)4.5V4结束语本系统具有以下特点:

①自动调整充电波形;

②实时跟踪电池状态;

③自动在电池停充期判断电压值的变化;

④采用多重充满判定规则;

⑤高效可靠的充满判据保证了电池在任何情况下的充满度、有效控制了电池地析气,从而有效提高了电池的寿命:可靠的浮充模式保证了电池的浮充寿命。

铅酸蓄电池常见故障分析及处理方法

铅酸蓄电池常见故障分析及处理方法 常见故障不良现象故障产生的原因故障的处理方法 蓄电池充电不足1.静止电压低 2.密度低,充电结束后达不 到规定要求 3.工作时间短 4.工作时仪表显示容量下降 快 1.充电器电压、电流设置 过低 2.初充电不足 3.充电机故障 1.调整,检修充电 器 2.蓄电池补充充电 3.严重时需更换新 电池 蓄电池过充电1.注液盖篓色泽变黄,变红 2.外壳变形 3.隔板炭化、变形 4.正极腐蚀、断裂 5.极柱橡胶套管上升、老 化、开裂 6.经常补水,充电时电解液 浑浊 1.充电器电压,电流设置 过高 2.充电时间过长 3.频繁充电 4.放电量小而充电量大 5.充电机故障 1.调整,检修充电 器 2.调整充电制度 3.严重时需更换新 电池

铅酸蓄电池热失控故障分析 当电池处于充电状态时,电池温度发生一种积累性的增强作用。当增温过程的热量积累到一定程度,电池端电压会突然出现降低,迫使电流骤然增大,电池温度高升而损坏蓄电池的现象称之为热失控。 1.故障现象 充电时特别到了末期,充电器不转绿灯,同时电池严重发热,如果测量充电电流会发现电流很高可达到2A或2A以上。发热严重时,析气压力过高,会导致电池壳受热变形,直至电池报废。 2.故障产生原因 ⑴电池失水 失水后,蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变得很差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过电池槽散热,如散热小于发热量,即出现温度上升现象。温度上升,使蓄电池析气过电位降低,析气量增大,正极大量的氧气通过“通道”,在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的“热失控”。最

阀 控 式 密 封 铅 酸 蓄 电 池

阀控式密封铅酸蓄电池 1.1. UPS系统常用的储能装置 碱性镉镍蓄电池(Alkaline Cd-Ni batteries) 碱性蓄电池是以KOH,NaOH的水溶液做为电解质的,镉镍蓄电池是碱性蓄电池,碱性镉镍 蓄电池相对于铅酸蓄电池是长寿命、高倍率、,可以做到密封。IEC285、IEC623标准规定循环寿命500—1000次可以工作5-10年,高低温性能好,高倍率(5-10倍率)放电性能好,除有记忆效应,制造工艺复杂,组成镉镍蓄电池的材料昂贵短缺外,其它各方面都优于铅酸蓄电池,其价格是铅蓄电池的几十倍,单体电压低(1.25V)。一般UPS系统不宜选用镉镍蓄电池,尤其是大功率UPS系统用镉镍蓄电池造价非常可观。 阀控铅酸蓄电池AGM体系(Valve-reguleted lead-acid batteries Absorptive glass mat) 组成蓄电池材料资源丰富,价格便宜,单体电压高(2V),经过阀控达到密封,现在工艺都很成熟,大电流高倍率放电性能基本满足UPS系统工作要求,工作其间对环境没有污染,价格相对镉镍蓄电池便宜很多,尤其是大功率UPS系统所用电池。是目前UPS系统首选的蓄电池。 富液免维护铅酸蓄电池Freedom体系(最早以美国Delco公司命名为依据Vented lead acid battery) 富液免维护铅酸蓄电池国外也称Flooded Sealed Maintenance Free lead acid batteries,其工作原理除氧气阴极复合不如AGM、,其化学反应机理相同。由于将AGM体系的贫液式改为富液式Freedom体系,用PE (polythylene)隔板、富液密封,能克服AGM贫液体系所产生的热失控、干涸、内阻大等缺点。由于该体系的流动性大、低温内阻小,从电化学动力学的理论分析,高速放电传质速度优于AGM体系和gel体系。由于采用过剩电解液气体可以自由进出,通过特殊的复合盖结构设计 通过分子筛性质的滤气安全阀,实现了对电池的完全密封,永不漏液。由于生产工艺简单单体电容易实现一致,电液量高于AGM, Gel体系1.2倍,使用寿命5--10年。根据以上几点分析和比较能,目前为UPS系统配套首选VRLA蓄电池和Flooded体系和Gel胶体蓄电池。 关于胶体密封铅酸蓄电池(Gel electrolyte sealed lead-acid batteries) 1.2. 关于硅胶体(Gelled)

铅酸蓄电池最佳充电方法

铅酸蓄电池最佳充电方法 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线。 目录 1原理简介

蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。 2详细内容 蓄电池充电器原理 蓄电池里面有大量的硫酸等可供电离的溶液,当插上电源,电流就通过里面的铅板(有些电池不是铅)电离溶液,这样就将电能转化为化学能;如果要使用,溶液就会转化为电能通过电极输送出去。这是原理上的描述,事实上,真实的情况十分复杂,可参考相关专业书籍。 充电方法制度 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,

铅酸蓄电池充电安全操作规程

铅酸蓄电池充电安全操作规程 1.充电前的准备工作: 1.1.工作人员必须戴防护眼镜、口罩和橡胶手套,系橡胶围裙,穿胶鞋。 1.2.提前做好中和溶液(碳酸钠溶液),以防电解液灼伤时使用。 1.3.由于蓄电池大量放电、或长期存放导致电池亏电,因此应定期从设备上拆下 蓄电池,在充电间对蓄电池进行补充充电。补充充电一般每个月进行一次,以提高其使用可靠性,延长使用寿命。进入冬天时最好进行一次补充充电。 1.4.充电前应先用万用电表测量电池的电压并进行记录,以便根据各电池的亏电 情况确定充电方案。 1.5.检查交流电源是否符合使用要求,电源应为220V,50Hz交流电。 1.6.先接蓄电池,将充电机“+”极接至蓄电池“+”极,充电机“-”极接至蓄电池“—” 极接线柱上,注意防止负载短路。 1.7.选择充电电压。若充电电池为12V,则电压选择档应旋转到12V档,若充电电 池为24V,则电压选择档应旋转到24V档,不得选错,否则将损坏充电机或蓄电池。 2.充电操作: 2.1.初充电、补充充电常采用恒流充电(恒流充电是在一定的时间段始终 以一定不变的电流对电池进行充电,其优点是充电比较完全,但是后期电流几乎全部被消耗在水的分解和热的发生上)。补充充电电流为 0.1C20A(如 60Ah蓄电池用 6A),充电时间为 3~ 5 h,或根据存放时间长短确定充电时间。 2.2.维护充电常采用恒压充电(恒压充电是始终以一定不变的电压对电池

进行充电,其优点是气体产生很少,耗水量小,存在充电不完全的缺点。单体电压通常设定在2.3~2.4V(12 V电池为13.8~14.4 V,6 V电池为6.9~ 7.2 V),直到充足电为止)。 2.3.将充电机电流选择档位调至最低档位。 2.4.确保红、黑夹没有接触才可以通电,否则会造成短路并损坏机器; 2.5.充电采用二步充电法: 2.5.1.即第一步采用0.1C20A充电至12 V电池为1 3.8~1 4.4 V,6 V电池为6.9~ 7.2 V时。转入第二步充电,第二步充电采用0.05C20A至充电结束。2.5.2.接通220V电源,逐档调节充电电流,至最大充电电流0.1C20A,进行第 一步充电。 即:对于12V,54Ah电池其充电电流为0.1x54=5.4A, 对于12V,150Ah电池其充电电流为0.1x150=15A 2.5. 3.当电池电压达到13.8~1 4.4V时,转入第二步充电,第二步充电最大电流 为0.05C20A。 即对于12V,54Ah电池其充电电流为0.0511x54=2.7A, 对于12V,150Ah电池其充电电流为0.05x150=7.5A 2.5.4.充足电后,最后对电池进行一次均衡充电,以保证单格均衡。方法为:将 充足电的电池,用0.035C20A电流充电(即12V,54Ah电池充电电流为 0.035x54=1.89A;12V,150Ah电池充电电流为0.035x150=5.25A);当电池 冒出均匀气泡,温度上升时,停止充电1小时;如此重复3~4次,单格电池都能冒出均匀气泡,并且电池电压\电液密度趋于不变时结束。 2.6.充电时间的确定:

铅酸蓄电池充电器的设计与实现

// 铅酸蓄电池的制造成本低、容量大、价格低廉,使用十分广泛。由于其固有的特性,若使用不当,寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,采用正确的充电方式,能有效延长蓄电池的使用寿命。因此,设计一种全新的智能型铅酸蓄电池充电器是十分必要的。 1常规充电方式 铅酸蓄电池的常规充电方式有两种:浮充(又称恒压充电)和循环充电。 浮充时要严格掌握充电电压,如额定电压为12V的蓄电池,其充电电压应在13.5~13.8V 之间。浮充电压过低,蓄电池会充不满,过高则会造成过量充电。电压的调定,应以初期充电电流不超过0.3C(C为蓄电池的额定容量)为原则。 循环充电,其初期充电电流也不宜超过0.3C,充电的安培小时数要略大于放电安培小时数。也可先以0.1C的充电速率恒流充电数小时,当充电安培小时数达到放电安培小时数的90%时,再改用浮充电压充电,直至充满。 以上为目前常用的铅酸蓄电池充电方式,但这两种方式存在着一些不足之处。在充电过程中,电池电压逐渐增高,充电电流逐渐降低。由于恒压充电不管电池电压的实际状态,充电电压总是恒定的,充电电流刚开始比较大,然后按指数规律下降;采用快速充电可能使蓄电池过量充电,易导致电池损坏。对于循环充电而言,采用较小电流充电,充电效果较好。但对于大容量的蓄电池,充电时间就会拖得很长,时效低,造成诸多不便。 2智能型充电器的充电过程分析 通过对上述两种充电方式的分析比较,综合其优点设计出具有快充和慢充的智能型铅酸蓄电池充电器。该充电器采用单片机控制,充电过程分为快充、慢充及涓流充三个阶段,充电效果更佳。图1所示为该充电器的充电电流、电压曲线。 从图1可以看出:在快充阶段(0~t1),充电器以恒定电流1C对蓄电池充电,由单片机控制快充时间,避免过量充电;在慢充阶段(t1~t2),单片机输出PWM控制信号,控制斩波开关通断,以恒定电压对蓄电池进行充电,此时充电电流按指数规律下降,当电池电压上升到规定值时,结束慢充,进入涓流充阶段;在涓流充阶段(t2~t3),单片机输出的PWM控制信号,使充电器以约0.09C的充电电流对蓄电池充电,在这种状态下,可长时间对蓄电池充电,从而能最大限度地延长蓄电池寿命。 3智能型充电器的工作原理 根据上述分析而设计的智能型铅酸蓄电池充电器,主要由开关稳压电源、斩波开关、控制器和辅助电源等四个部分组成,并具有过流保护、过压保护和超温保护功能。图2为充电器原理框图,图3为充电器电路原理图。 3.1开关稳压电源

铅酸蓄电池充电方法及特性说明

铅酸蓄电池充电方法及特性说明 铅蓄电池的充电特征就是指蓄电池在恒定流充电状态下,电解液相对密度ρ(15℃)、蓄电池端电压UC随充电时间的变化规律。图5-12是将某型号铅蓄电池以5A进行恒流充电时测得的规律曲线。充电过程中,电解液相对密度基本以直线逐渐上升。这是因为采用等流充电,充电机每单位时间向蓄电池输入的电量相等,每单位时间内电解液中的水变为硫酸的量也基本相等。充电过程中,铅蓄电池端电压上升的规律由四个阶段组成:第一阶段:充电开始,端电压上升较快。这是由于极板活性物质孔隙内部的水迅速变为硫酸,孔隙外部的水还未来得及渗透入补充,极板内部电解液相对密度迅速上升所致。 第二阶段:端电压上升较平稳,至单格电压2.4V。该阶段,每单位时间内极板内部消耗的水与外部渗入的水基本相等,处于动态平衡状态。 第三阶段:端电压由2.4V迅速上升至2.7V,该阶段电解液中的水开始电解,正极板表面逸出氧气,负极板处逸出氢气电解液中冒出气泡,出现所谓的电解液“沸腾”现象。 第四阶段:该阶段过充电阶段,端电压不再上升。为了观察端电压和电解液相对密度不再上升的现象,保证蓄电池充分充电,一般需要过充电2h~3h。由于过充电时剧烈地放出气泡会导致活性物质脱落,造成蓄电池容量降低,使用寿命缩短,因此应尽量避免长的时间过充电。过充电时,蓄电池逸出的氢气与氧气混合,混合气体具有易烯、易爆特点,因此充电的蓄电池附近应免明火出现。 铅蓄电池充电终了的特征是: (1)端电压和电解液相对密度上升到最大值,且2h~3h内不再上升。 (2)电解液中产生大量气泡,呈现“沸腾”状态。 3.蓄电池的充放电控制技术 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。 (1)充电过程阶段的划分 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。充电过程一般分为主充、均充和浮充3个阶段。充电末期主要是以恒小电流长时间充电的涓流充电流为主(充电倍率小于0.1C时,称为涓流充电)。

阀控式密封铅酸蓄电池技术规范书

阀控式密封铅酸蓄电池技术资料 1产品总则 1.1本规书为定货合同的附件,并与合同正文具有同等效力。 1.2如果法规和标准的要求低于供方的标准时,供方可以提出意见得到需方的许可, 为了本规书要求的设备成功地和连续运行,供方可以提供技术先进和更新经济的设计或材料。 1.3除本规书的法规和标准之外,供方还必须符合国家和地方的法律、法规和规定。1.4当这些标准、法规或规书之间发生任何明显矛盾的情况下,供方必须以书面形 式向需方提出这些矛盾的解决办法。 1.5本设备技术规书未尽事宜,由需、供双方协商确定。 1.6 本规书适用于XXXX变电站工程阀控式密封铅酸蓄电池的技术和有关方面的要求,其中包括技术指标、性能、结构、试验等要求,还包括资料交付及技术文件要求等。1.7 供方提供的设备的技术规,应与标书文件中规定的要求一致。在规书中提出的只是最低限度的技术要求,并未规定所有的技术要求和适用标准,供方应提供一套满足本规和所列标准要求的高质量产品及其相应服务。 1.7 如供方未对本规书的条文提出异议,则需方将认为供方提供的设备完全满足本协议书的要求。 2 技术要求 2.1法规和标准 2.1.1 所提供的直流电源柜设备必须符合,但不限于下列的到定货日期止有效的所有法规和标准,包括附录。 a)GB193《包装箱储运指示标记》 b)GB1957《形状和位置公差检测规定》 c)JB5777.3《电力系统二次电路用控制及继电保护屏(柜、台)基本试验方法》 d)《电力系统二次电路用控制及继电保护屏(柜、台)产品型号编制方法》 e)DL/T5044-95《火力发电厂、变电所直流系统设计技术规定》

f)GB/T 2900.1—1993 《电工术语基本术语》 y)GB/T 2900.11—1977 《电工术语蓄电池名词术语》 j)GB 4207—1993 《外壳防护等级》 k)GB2406《塑料燃烧性能试验方法》 l)GB2423《电工电子产品基本环境试验规程》 m)JB5777.2《电力系统二次电路用控制及继电保护屏(柜、台)通用技术条件》 n)GB/T 13374—1992 《机电产品包装通用技术条件》 q)DL/T 637—1997 《阀控式密封铅酸蓄电池订货技术条件》 p) DL/T 720—2000 《电力系统继电保护柜、屏通用技术条件》q)DL/T 459—2000 《电力系统直流电源柜订货技术条件》 r)GB 2900.11—77 《蓄电池名词术语》 s)GB 13337.1—91 《固定型防酸式铅酸蓄电池技术条件》 j)JISC 7707—1992 《阴极吸收式密封固定型铅酸蓄电池》 2.2气象特征与环境条件 2.2.1 海拔高度不超过1000m 2.2.4 温度(户外) -5℃~40℃ 2.2.5 地震烈度 7度 水平加速度 0.3g 垂直加速度 0.15g 安全系数 1.67(同时作用) 2.2.6振动:应能承受f≤10HZ振幅为0.3mm及f≥10~150HZ时加速度为1m/s2的振动。 2.2.2 最大月平均相对湿度 90% 2.2.3 最大日平均相对湿度 95% 对蓄电池的要求 2.3.1蓄电池在环境温度-10℃~+45℃条件下应能正常使用,使用的温度为5℃~30℃。 2.3.2蓄电池结构应保证在使用寿命期间,不得渗漏电解液。

铅酸蓄电池正确使用与充电管理

铅酸蓄电池正确使用与充电管理 在现今这个以工业为主的社会中,后备直流电源的应用越来越广泛了,作为后备直流电源重要组成部分的蓄电池,其性能状况的优劣状态对于保证后备直流电源的正常运行就显得尤为重要。在蓄电池家族中,阀控铅酸蓄电池在直流后备电源中的应用越来越广泛了。 虽然阀控式铅酸蓄电池在电力操作电源广泛使用,但由于阀控式铅酸蓄电池结构的特殊性,想尽可能地延长蓄电池的使用寿命,就必须在运行中正确的使用蓄电池,而可靠地检测蓄电池的性能,并有针对性地对蓄电池进行维护就变得非常迫切了。合理地选择及使用目前直流电源系统中的蓄电池和电池监测模块,对延长蓄电池的使用寿命及相关设备的正常运行有很大的作用,为获得最大的安全效益和经济效益有着很重要的意义。 方法/步骤 1. 1 一铅酸蓄电池的失效机理 铅酸电池的失效研究对于电源系统的安全运行具有重要的意义,我们对这一问题进行一下概要的讨论,以使读者对这一问题有一个概要的认识。 1.1电池失水 铅酸蓄电池失水会导致电解液比重增高、导致电池正极栅板的腐蚀,使电池的活性物质减少,从而使电池的容量降低而失效。 铅酸蓄电池密封的难点就是充电时水的电解。当充电达到一定电压时(一

般在2.30V/单体以上)在蓄电池的正极上放出氧气,负极上放出氢气。一方面释放气体带出酸雾污染环境,另一方面电解液中水份减少,必须隔一段时间进行补加水维护。阀控式铅酸蓄电池就是为克服这些缺点而研制的产品,其产品特点为: (1)采用多元优质板栅合金,提高气体释放的过电位。即普通蓄电池板栅合金在2.30V/单体(25℃)以上时释放气体。采用优质多元合金后,在2.35V/单体(25℃)以上时释放气体,从而相对减少了气体释放量。 (2)让负极有多余的容量,即比正极多出10%的容量。充电后期正极释放的氧气与负极接触,发生反应,重新生成水,即O2+2Pb→2PbO,PbO+H2SO4→H2O+PbSO4使负极由于氧气的作用处于欠充电状态,因而不产生氢气。这种正极的氧气被负极铅吸收,再进一步化合成水的过程,即所谓阴极吸收。 (3)为了让正极释放的氧气尽快流通到负极,必须采用和普通铅酸蓄电池所采用的微孔橡胶隔板不同的新超细玻璃纤维隔板。其孔率由橡胶隔板的50%提高到90%以上,从而使氧气易于流通到负极,再化合成水。另外,超细玻璃纤维板具有吸附硫酸电解液的功能,因此阀控式密封铅酸蓄电池采用贫液式设计,即使电池倾倒,也无电解液溢出。 (4)采用密封式阀控滤酸结构,使酸雾不能逸出,达到安全、保护环境的目的。 在上述阴极吸收过程中,由于产生的水在密封情况下不能溢出,因此阀控式密封铅酸蓄电池可免除补加水维护,这也是阀控式密封铅酸蓄电池称为免维电池的由来。

阀控式密封铅酸蓄电池测试方法

阀控式密封铅酸蓄电池测试方法 1.总则 1.1 本规范书主要用于对蓄电池运行状况进行检查、测试,以判断蓄电池性能状态。 1.2 本规范书所采用的方法主要依据标准YD/T799-2002《通信用阀控式密封铅酸蓄电池技术要求和检验方法》、JIS C 8702-1995《小型密封铅蓄电池》、DL/T 637-1997《阀控式密封铅酸蓄电池订货技术条件》。 2. 蓄电池外观及运行环境检查 2.1 蓄电池外观检查及处理 (1)电池壳体有无鼓胀变形。 □无;□有,处理方法:更换电池。 (2)有无发生电池槽盖、极柱、安全阀周围电解液渗漏。 □无;□有,处理方法:更换电池。 (3)电池连接处有无松动、腐蚀现象。 □无;□有,处理方法:紧固螺栓,端子除锈,更换连接件(电缆或铜排)。 (4)电池架及防震架防酸漆有无脱落、腐蚀。 □无;□有,处理方法:除锈重新喷漆。 2.2蓄电池运行环境检查 (1)环境温度:记录蓄电池运行环境温度。注意温度过高(45℃以上)会加快水分解及板栅腐蚀速度,严重缩短蓄电池使用寿命,同时由于高温环境下充电蓄电池发热量会增大(发热量Q=3.6×V×I×n,其中V为蓄电池每单格的浮充电压值;I为浮充电流值,常温可按2‰C10估算,高温浮充电流值按实际测量结果;n电池组单格总数;单位kJ/hr);温度过低(-15℃以下)会加速极板(尤其是负极板)硫酸盐化,造成蓄电池性能劣化。若蓄电池运行环境温度全年有1/3超过以上指标,建议对蓄电池运行环境进行必要改善(如安装空调)。

(2)通风换气条件:检查换气状况,保持蓄电池使用环境良好空气流动,避免蓄电池充电过程热量及氢气的积累。若通风换气不良(换气量Q≥C10×n ×5.5‰,其中C10为10小时率容量;n为电池单格数;单位m3/hr),建议加以改善(如安装排气扇)。 (3)防尘条件:检查蓄电池盖子灰尘累积情况,保持蓄电池表面清洁。尘埃积累如遇到潮湿环境,有产生端子之间短路甚至负极接地故障的危险。风沙积尘量较大的机房建议在换气通道加装防尘网。 (4)电源浮充电压检查:测量蓄电池组端电压,并和基准充电电压(厂家规定的单体电池浮充电压×电池个数)对照,如有偏离,对电源输出充电电压进行微调。 3. 蓄电池电气性能检测 3.1 浮充电压一致性检测 (1)检测方法:测量蓄电池组每个电池的端电压。 (2)判断基准:同组电池在运行6个月之后的浮充电压值应保持在100mV(2V); 240mV(6V);480mV(12V)范围内。 (3)处理:超过基准值时,对蓄电池组放电后先均衡充电,再转浮充观察1--2个月,若仍偏离基准值,与供应商联系。 (4)检测周期:每3个月一次。 3.2 核对性放电 (1)检测方法:以实际负载进行核对性放电,断开交流电带负载放电,放出电池额定容量的30~40%。 (2)判断基准:12V电池单只端压应大于11.70V,2V电池单只端压应大于1.95V。 (3)处理:低于基准值时,对蓄电池进行强制均充24小时~48小时,再转浮充观察1--2个月,然后采用3.3全容量检测方法对蓄电池进行放 电,若容量不合格,则应考虑更换。 (4)检测周期:每年一次。 3.3 全容量检测 (1)检测方法:以假负载对蓄电池组进行放电,放电参数如下:

铅酸蓄电池结构详解

铅酸蓄电池结构详解 一、蓄电池的功用 蓄电池种类较多,根据电解液不同,有酸性和碱性之分。由于铅酸蓄电池阻小,电压稳定,在短时间能供给较大的起动电流,而且结构简单,价格较低,所以在汽车拖拉机上被广泛采用。 蓄电池为一可逆直流电源,在汽车拖拉机上与发电机并联,它的主要作用是:(1)发动机起动时,蓄电池向起动机和点火装置供电。起动发动机时,蓄电池必须在短时间(5~10s)给起动机提供强大的起动电流(汽油机为200~600A。柴油机有的高达1000A)。 (2)在发电机不发电或电压较低发动机处于低速时,蓄电池向点火系及其它用电设备供电,同时向交流发电机供给他激励磁电流。 (3)当用电设备同时接入较多,发电机超载时,蓄电池协助发电机共同向用电设备供电。 (4)当蓄电池存电不足,而发电机负载又较少时,可将发电机的电能转变为化学能储存起来,即充电。 (5)蓄电池还有稳定电网电压的作用。当发动机运转时,交流发电机向整个系统提供电流。蓄电池起稳定电器系统电压的作用。蓄电池相当于一个较大的电容器,可吸收发电机的瞬时过电压,保护电子元件不被损坏。延长其使用寿命。 二、蓄电池的构造 车用12V蓄电池均由6个单格电池串联而成,每个单格的标称电压为2V,串联成12V的电源,向汽车拖拉机用电设备供电。

蓄电池主要由极板、电解液、格板、电极、壳体等部分组成。 1.极板 极板分为正极板和负极板两种。蓄电池的充电过程是依靠极板上的活性物质和电解液中硫酸的化学反应来实现的。正极板上的活性物质是深棕色的二氧化铅(PbO2),负极板上的活性物质是海绵状、青灰色的纯铅(Pb)。 正、负极板的活性物质分别填充在铅锑合金铸成的栅架上,加入锑的目的是提高栅架的机械强度和浇铸性能。但锑有一定的副作用,锑易从正极板栅架中解析出来而引起蓄电池的自行放电和栅架的膨胀、溃烂,从而影响蓄电池的使用寿命。 负极板的厚度为1.8mm,正极板为2.2mm,为了提高蓄电池的容量,国外大多采用厚度为1.1~1.5mm的薄型极板。另外,为了提高蓄电池的容量,将多片正、负极板并联,组成正、负极板组。在每单格电池中,负极板的数量总比正极板多一片,正极板都处于负极板之间,使其两侧放电均匀,否则因正极板机械强度差,单面工作会使两侧活性物质体积变化不一致,造成极板弯曲。 2.隔板 为了减少蓄电池的阻和体积,正、负极板应尽量靠近但彼此又不能接触而短路,所以在相邻正负极板间加有绝缘隔板。隔板应具有多孔性,以便电解液渗透,而且应具有良好的耐酸性和抗碱性。 隔板材料有木质、微孔橡胶、微孔塑料以及浸树脂纸质等。近年来,还有将微孔塑料隔板做成袋状,紧包在正极板的外部,防止活性物质脱落。 3.壳体

电动车铅酸蓄电池的脉冲快速充电设计

电动车铅酸蓄电池的脉冲快速充电设计 [作者:杜娟娟裴云庆王兆安转贴自:电源技术应用点击数:276 更新时间:2005-11-29 文 章录入:ebike ] 【字体:】 摘要:对快速充电原理进行了阐述,针对蓄电池充电过程中出现的种种问题,采用了分级定电流的脉冲快速充电方案,提出了充电器的硬件电路和控制软件的设计方案。该充电方案对充分发挥蓄电池的功效,提高对蓄电池的充电速度,减少充电损耗,延长蓄电池的使用寿命具有重要意义。 关键词:电动车;铅酸蓄电池;脉冲快速充电 0 引言 以动力蓄电池为能源的电动车被认为是21世纪的绿色工程,它的出现将汽车工业的发展带入了一个全新的领域。目前,电动车核心部件中的电动机、控制器和车体三大部件在理论和技术上已较为成熟,而另两大部件蓄电池、充电器的发展还不能满足电动车的要求,有一些理论和技术问题还有待攻关,现已成为影响电动交通工具发展的瓶颈。 目前,我国的电动车用动力蓄电池大多为铅酸蓄电池,这主要是由于铅酸蓄电池具有技术成熟、成本低、电池容量大、跟随负荷输出特性好、无记忆效应等优点。当然,也有一些高性能电池,比如锂电池、燃料电池等。锂离子电池电动车在深圳已投入试运营,由上海研制的第二代燃料电池轿车“超越二号”也于2004年5月在北京的国际氢能大会上露面,但都还未能得到广泛的推广应用。虽然近年来蓄电池自身的技术有了不小的进步,但作为其能量再次补充的充电器的发展非常缓慢,传统的常规充电时间过长,快速充电技术至今仍未能完全解决,严重地制约着电动车的发展。 自铅酸蓄电池问世以来,由于各种技术条件的限制,所采用的充电方法均未能遵从电池内部的物理化学规律,使整个充电过程存在着严重的过充电和析气等现象,充电效率低。电动车用动力蓄电池与一般蓄电池还有所不同,它以较长时间中等电流持续放电为主,间或以大电流放电,用于起动、加速或爬坡。一般来说,电动车用蓄电池多工作在深度充放电工作状态。因此,对电动车用动力蓄电池的快速充电提出了不同于常规电池的要求,它必须具有充电时间短、对蓄电池使用寿命影响小以及充满电判断准确的特点。

电动车用铅酸蓄电池充电方法

我的电池是用在电动车上的,我的电动车是今年过了春节才买的,用了没到一年就不耐要了。我以前充满电时可以跑50多公里,现在30公里都不到就没电了。储电量少了一半有没有人知道我这个问题可以修吗? 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化! 这个说法对吗? ⑴维护: 及时充电,不要过放电。 ②也不要过充电,以电池不感觉很热为标志。 ③在时间允许的情况下,用小电流充电。 ④及时补足电解液。一般情况下,电解液不会损失,损失的是水(蒸发),请补蒸馏水!不可补电解液!! ⑵区别:①锂离子电池和铅酸电池的化学原理和材料不同,但都是以可逆的电化学过程为技术支持。 ②相对于铅酸电池,锂电具有重量轻,容量大,电流量大,无记忆效应等优点。但缺点是目前太贵。预计,锂电必将淘汰铅酸,镍镉,镍氢电池。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初

固定型阀控式密封铅酸蓄电池的标准

固定型阀控式密封铅酸蓄电池的标准 1 范围 本标准规定了固定型阀控式密封铅酸蓄电池的产品型号、技术要求、试验方法、检验规则以及标志、包装、运输、贮存。 本标准适用本企业生产的用于电讯、电气设备、应急电源、报警系统、太阳能贮能系统、安全系统等使用的固定型阀控式密封铅酸蓄电池(以下简称蓄电池)。 2 引用标准 GB5781/T-2000 六角头螺栓-全螺纹-C级 JB3076-1999 铅酸蓄电池槽 JB/T2599-1993 铅酸蓄电池产品型号编制办法 JB/-1998 铅酸蓄电池超细玻璃纤维隔板 YD/T799-1996 通信用阀控式密封铅酸蓄电池技术要求和检验方法。 3 符号 C10 — 10小时率额定容量(Ah); C3 — 3小时率额定容量(Ah),数值为; C1 — 1小时率额定容量(Ah),数值为; I10 — 10小时率放电电流(A),电流值为C10/10; I3 — 3小时率放电电流(A),电流值为C3/3; I1 — 1小时率放电电流(A),电流值为C1/1; 4 产品分类与命名 蓄电池的型号编制应符合JB/T2599的规定 5 技术要求 蓄电池的工作环境 蓄电池在环境温度为-15℃~+45℃条件下应能正常使用。 电池结构 一般结构

蓄电池由正极板、负极板、隔板、蓄电池槽、蓄电池盖、电解液、端子、安全阀等组成。 蓄电池槽 蓄电池槽应符合JB3076标准规定或与用户商定。 蓄电池隔板 蓄电池隔板应符合JB/T 标准要求。 蓄电池尺寸 蓄电池外形尺寸应符合表1中尺寸的要求,外型尺寸允差为±2mm。 外形尺寸也可根据用户要求制定。 外观 蓄电池外观不应有裂纹、裂痕、明显变形及污迹,标志应清晰。 气密性 蓄电池应能承受50kPa的正压或负压而不破裂、不开胶,压力释放后壳体无残余变形。 容量 蓄电池按条试验时,10h率容量第一次循环不低%C10,1h率容量、3h率容量应在前5次内达到。放电终止电压应符合表2规定。 最大放电电流 蓄电池按条试验时,导电部件不应熔断,外观不得出现异常现象。 耐过充电能力 蓄电池按条试验时,不应有漏液和明显变形。 荷电保持能力 蓄电池按条试验时,荷电保持能力不低于85%。 密封反应效率 蓄电池按条试验时,密封反应效率不低于95%。 安全阀要求 蓄电池按条试验时,安全阀的开阀压力为:10KPa~49KPa,闭阀压力为:1KPa~10KPa 。 过充电寿命

阀控式密封铅酸蓄电池验收运行管理强条

阀控式密封铅酸蓄电池运行维护管理规定 第一章总则 为保证变电站阀控式密封铅酸蓄电池及其高频开关电源(以下简称直流设备)保持良好的运行状态,延长使用寿命,保证变电站直流母线保持合格电压和蓄电池的放电容量,特制定本规定。 第二章安装要求 2.1直流设备通风应良好,运行环境温度应保持在5℃~35℃,安装地点应装设温度调节装置。 2.2直流系统可采用单、双充电器、电池组和电源母线。220kV变电站可采用双电池组,500kV变电站应采用双电池组、双母线方式。 2.3独立的蓄电池室应有充足的照明,并采用防爆灯具。 2.4蓄电池采用串联接线,蓄电池之间应保持2cm以上距离,若电池安装在柜内,上下层之间距离不应小于15cm。蓄电池应保持清洁,极板、极柱接触应良好,连接螺丝应牢固,不得有放电现象。 第三章交接验收项目及标准 3.1检查蓄电池容量。对电池组进行三次充放电试验,放电终止电压根据制造厂的规定,2V蓄电池为1.8V。其中一只蓄电池防到了终止电压,应停止放电。在三次充放电循环之内,若达不到额定容量值的100%,此组蓄电池不合格。

3.2测量电池的绝缘电阻。220V电池组的绝缘电阻不小于0.2MΩ,1 10V电池组的绝缘电阻不小于0.1MΩ。 3.3测量充电设备的稳流精度不大于±(0.5%-1%),稳压精度不大于±(0.1%-0.5%),及直流母线纹波系数不大于(0.2%-0.51%)。 3.4测量每只电池端电压符合厂家规定。 3.5检查厂方提供的安全阀开启闭合试验报告,闭阀压力应在1kPa~10kPa范围内,开阀压力应在10kPa~49kPa范围内。 第四章运行维护要求 4.1为提高蓄电池的使用寿命,要做好初充电(一般初充电由厂方进行)。 4.2蓄电池组在正常运行中以浮充电方式运行,浮充电电压宜控制在(2.23-2.28)V×N,均衡充电电压宜控制在(2.30-2.35)V×N。 4.3运行中主要监视蓄电池组的端电压值,浮充电流值,每只蓄电池的电压值,蓄电池组及直流母线的对地电阻值和绝缘状况。 4.4蓄电池一般3个月进行一次补充充电,充电装置应自动或手动进行一次恒流限压充电→恒压充电→浮充电。使蓄电池组随时具有满容量,确保运行安全可靠。 4.5投运后的蓄电池组,每2-3年应进行一次核对性充放电试验,运行6年以后的蓄电池组,每年应进行一次核对性放电试验。 4.5.1一组蓄电池。站内只有一组蓄电池,不能退出运行、也不能做全核对性放电,只能用I10电流恒流放出额定容量的50%,在放电过程中,蓄电池组端电压不得低于2V×N。放电后应立即用I10电流

铅酸蓄电池的充电

铅酸蓄电池的充电
铅酸蓄电池的充电 在铅酸蓄电池的使用过程中,充电是一项重要的工作? 它与铅酸蓄电池工作效率的 提高? 使用寿命的延长有着密切的联系? b5E2RGbCAP (一)充电设备 蓄电池是直流电源,必须用直流电源对其进行充电? 充电时,充电电源的正极接铅酸 蓄电池的正极,充电电源的负极接铅酸蓄电池的负极? 汽车上的充电设备是由发动机驱 动的交流发电机,充电时多采用硅整流充电机? 晶闸管整流充电机和智能充电机等?
p1EanqFDPw
(二)充电方法 通常蓄电池的充电方法有定流充电? 定压充电和快速脉冲充电? 1.定流充电 在铅酸蓄电池的充电过程中,始终保持充电电流恒定的充电方法,称为定流充电? 它 是蓄电池的基本充电方法,广泛用于初充电? 补充充电和去硫化充电等? 为缩短充电时间, 充电过程分为两个阶段:第一阶段采用规定的充电电流(铅酸蓄电池额定容量的 1/15) 进行充电,直至单格电池电压升到 2.4V,电解液开始产生气泡,在此阶段蓄电池的容量 得到迅速恢复,活性物质基本还原,并开始电解水;第二阶段将充电电流减小一半,直到 铅酸蓄电池的单格电池电压达到 2.7V,且在 2~3h 内不再上升,蓄电池内部剧烈冒出气 泡时为止? 定流充电的适应性强,DXDiTa9E3d 可任意选择和调整充电电流的大小,有利于保持蓄电池的技术性能和延长使用寿命, 其缺点是充电时间长,要经常调节充电电流? RTCrpUDGiT
1/8

2.定压充电 在铅酸蓄电池充电过程中,始终保持充电电压恒定的充电方法,称为定压充电? 由 I c=(U-E)/R 可知,随着蓄电池电动势 E 的增加,充电电流 I c 逐渐减小,如果充电电压调 节得当,就必然会在充电终了(充满电)时使充电电流 I c 变为零? 采用定压充电时,必须 适当采用充电电压? 一般每个单格电池充电电压约需 2.5V,那么对于 6V 蓄电池充电电源, 电压应为 7.5V,对于 12V 蓄电池应为 15V? 若充电电压过高,不但初充电电流过大,而且会 发生过充电,使极板弯曲? 活性物质脱落? 温升过高;若充电电压过低,则蓄电池不能充足 电? 在定压充电初期,充电电流较大,4~5h 内即可达到额定容量的 90%~95%,因而充电时 间较短,而且不需要调整充电电流,适用于补充充电? 由于充电电流不可调节,所以不适 用于初充电和去硫化充电? 汽车上蓄电池和发电机是并联的,所以蓄电池始终是在发电 机的恒定电压下进行充电? 5PCzVD7HxA 3.快速脉冲充电 快速脉冲充电必须用快速脉冲充电机进行? 快速脉冲充电的过程是:先用 0.8~1 倍 额定容量的大电流进行定流充电,使蓄电池在短时间内充至额定容量的 50%~60%,当单 格电池电压升至 2.4V,开始冒气泡时,由充电机的控制电路自动控制,开始快速脉冲充 电;首先停止 jLBHrnAILg 充电 25~40ms(称为前停充),然后再放电或反向充电,使蓄电池反向通过一个较大 的脉冲电流(脉冲深度一般为充电电流的 1.5~2 倍,脉冲宽度为 100~150ms),然后再停止 充电 40ms(称为后停充),以后的过程为正脉冲充电—前停充—负脉冲瞬放电后停充— 正脉冲充电的循环进行,直至充足电? 快速脉冲充电的优点是充电时间可大大缩短(新蓄 电池充电仅需 5h,补充充电需 1h);缺点是对蓄电池的寿命有一定的影响,并且快速脉冲 充电机结构复杂? 价格昂贵,适用于电池集中? 充电频繁? 要求应急的场合? xHAQX74J0X
2/8

铅酸蓄电池基础常见问题

铅酸蓄电池基础常见问题 字体大小:大- 中- 小chinaddm发表于09-08-06 11:10 阅读(323) 评论(0) 1.什么是电池、电源? 电池一般指将化学能转变为电能的装置。电源指把其他形式的的能量转变为电能的装置;在电子设备中有时也把变换电能的装置(如整流器、变压器等)也称为电源。 2.什么是蓄电池?开路电压多少? 能将化学能和直流电能相互转化且放电后能经充电能复原重复使用的装置叫蓄电池。常用的蓄电池有铅酸、镉镍、氢镍和锂离子电池。铅蓄电池开路电压2.0V,镉镍、氢镍电池开路电压1.2V,锂离子电池开路电压3.6V。 3.什么是铅酸蓄电池?由那几部分组成? 电极主要由铅制成,电解液是硫酸溶液的一种蓄电池。一般由正极板、负极板、隔板、电池槽、电解液和接线端子等部分组成。 4.铅酸蓄电池什么时间由谁发明的? 1859年普兰特发明。 5.铅酸蓄电池在电池大家族中占有多大比重? 整个电池中铅酸蓄电池占有很大的比重,据统计大约在65%以上。 6.目前国内铅酸蓄电池厂家有多少? 本网站共收录了国内从事铅酸蓄电池生产的有2500多家(不含研究大学等研究机构)的有关情况,其中铅酸蓄电池厂2000多家,原材料、配件、设备等500多家。 7.常用的铅酸蓄电池有那些种类? 按用途可主要分为:起动型蓄电池、固定型、牵引动力型等。 8.什么是铅酸蓄电池的容量如何计算? 在规定的条件下,完全充电的蓄电池能够提供的电量,通常用安时(Ah)表示。容量=单格正极板片数×单片极板的容量。 9.铅酸蓄电池电解液主要成分是什么?

是硫酸和蒸馏水(或去离子水)的混合物。 10.铅酸蓄电池电解液对人体有什么危害? 铅酸蓄电池电解液是一种强酸,对人的皮肤、眼睛有一定的危害,一旦接触后应立即用大量清水清洗,严重时应及时到医院诊治。 11.铅酸蓄电池中的铅对人体有什么危害? 铅酸蓄电池中的铅和铅的氧化物对人体神经系统、消化系统、造血系统以及肾脏有一定的影响,通常最好不要解剖废弃的电池。需解剖时请注意防护和有关人员的指导。 12.铅吸收或中毒后应怎样治疗? 铅吸收或中毒后应进入专业治疗机构进行诊治,从事铅作业的人员在饮食方面可多饮用牛奶、豆浆等有利于铅排除体外。 13.常见的蓄电池槽有那些种? 常见的电池槽有硬质橡胶和聚丙烯制成的汽车、摩托车、牵引蓄电池槽,ABS制成的密封电池槽以及少量的聚苯乙烯电池槽。 14.常见的蓄电池隔板有那些? 常见的蓄电池隔板有橡胶隔板、PP隔板、PE隔板、PVC隔板及AGM隔板。 15.日常饮用的纯净水是否可用于蓄电池使用? 不能应用因日常人们所饮用的纯净水其杂质含量远远高于蓄电池用水要求,只是水中的某些元素对人体有益而细菌泥沙较少。蓄电池用水应达到JB/T10053—1999标准要求。 16.铅蓄电池制造常用的合金有那些? 用于制造铅酸蓄电池的合金主要有铅锑合金、铅低锑合金、铅锑镉合金和铅钙合金等。 17.铅蓄电池充电方法有那些? 主要有恒流充电、恒压充电、恒流限压充电、均衡充电、浮充电和脉冲快速充电等。 18.铅蓄电池的电解液密度与开路电压有什么关系? 开路电压=0.85+电解液密度(经验公式) 19.铅蓄电池的极板容量取决于什么?

相关文档
相关文档 最新文档