文档库 最新最全的文档下载
当前位置:文档库 › 浅析电流互感器饱和对继电保护的影响及对策

浅析电流互感器饱和对继电保护的影响及对策

浅析电流互感器饱和对继电保护的影响及对策
浅析电流互感器饱和对继电保护的影响及对策

电流互感器使用注意事项

电流互感器使用注意事项 主要注意下面七个方面 1)电流互感器的接线应遵守串联原则 即一次绕阻应与被测电路串联 而二次绕阻则与所有仪表负载串联。 2)按被测电流大小 选择合适的变化 否则误差将增大。同时 二次侧一端必须接地 以防绝缘一旦损坏时 一次侧高压窜入二次低压侧 造成人身和设备事故 3)二次侧绝对不允许开路 因一旦开路 一次侧电流I1全部成为磁化电流 引起φm和E2骤增 造成铁心过度饱和磁化 发热严重乃至烧毁线圈;同时 磁路过度饱和磁化后 使误差增大。电流互感器在正常工作时 二次侧近似于短路 若突然使其开路 则励磁电动势由数值很小的值骤变为很大的值 铁芯中的磁通呈现严重饱和的平顶波 因此二次侧绕组将在磁通过零时感应出很高的尖顶波 其值可达到数千甚至上万伏 危机工作人员的安全及仪表的绝缘性能。 另外 二次侧开路使E2达几百伏 一旦触及造成触电事故。因此 电流互感器二次侧都备有短路开关 防止一次侧开路。如图l中K0 在使用过程中 二次侧一旦开路应马上撤掉电路负载 然后 再停车处理。一切处理好后方可再用。 4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等

装置的需要 在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2 8个二次绕阻的电流互感器。对于大电流接地系统 一般按三相配置;对于小电流接地系统 依具体要求按二相或三相配置 5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如 若有两组电流互感器 且位置允许时 应设在断路器两侧 使断路器处于交叉保护范围之中 6)为了防止支柱式电流互感器套管闪络造成母线故障 电流互感器通常布置在断路器的出线或变压器侧。 7)为了减轻发电机内部故障时的损伤 用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障 用于测量仪表的电流互感器宜装在发电机中性点侧。

变电运行中电流互感器的运用浅析

变电运行中电流互感器的运用浅析 发表时间:2018-10-19T09:44:35.320Z 来源:《电力设备》2018年第18期作者:崔鹏磊[导读] 摘要:在改革开放的新时期,我国的国民经济的得到快速的发展,人们的生活水平得到了显著的提升,我国对于电力的需求在不断的加大,介绍了一起220kV电流互感器金属膨胀器冲顶缺陷。 (大庆油田化工有限公司甲醇分公司供电车间黑龙江大庆 163000) 摘要:在改革开放的新时期,我国的国民经济的得到快速的发展,人们的生活水平得到了显著的提升,我国对于电力的需求在不断的加大,介绍了一起220kV电流互感器金属膨胀器冲顶缺陷。通过对电流互感器开展例行试验、诊断性试验及解体检查,确定电流互感器由于中间屏绝缘纸未完全干燥,导致运行过程中发生低能放电,产生大量气体,造成金属膨胀器冲顶。最后对预防该缺陷发生提出了相关的措 施与建议。 关键词:变电;电流互感器;运用 引言 电流互感器作为电力系统中的关键部件,其属于高压设备,对电力系统的安全稳定运行起到重要的保障作用。随着电力系统的发展,电路传输的容量不断提升,随之电压等级也在不断升高,传统电磁式电流互感器已经无法在继续承受较大的容量与电压负荷。为了满足现代电力系统发展的需求,电子式电流互感器要逐渐替代电磁式电流互感器,成为电力系统中的主要传感设备,担负起推动电力事业发展的责任。 1电流互感器的原理 电流互感器是根据电磁感应原理制成的一种测量电流的仪器,它是将一次侧大的电流经过转化变成二次侧小电流的。电流互感器的组成也很简单,是由闭合的铁心和绕组构成的。而对于电流互感器本身来说,它的一次侧的绕组匝数少,二次侧的绕组匝数比较多;使用时一次侧绕组需要串联使用,串联在需要测量的电流线路里,二次侧同样也是串联,需要串联在测量仪表和起保护作用的电路中,而且当电流互感器运行工作的时候,它的二次侧回路是闭合的,这样的话,因为测量的仪表和保护电路的电阻很小,所以此时电流互感器的状态可以看做是短路。 2使用原则 一是电流互感器的接线应遵守串联的原则也就是说一次侧绕组与应该被测的电路采取串联的方式,二次侧绕组与所有的仪表设备采取负载串联的方式。二是根据被测电路电流的大小,调整出一个合适的变比,不然的话会使误差增加。而且二次侧绕组的一侧必须要与地连接,避免因为电流互感器里的绝缘物的损坏,造成设备出现问题,严重的话还可能出现人身事故。三是无论是按照规定还是理论来说,二次侧绕组都不能开路,因为一旦二次侧绕组来路的话,一次侧绕组通过的电流将会转化为磁化的电流,这样的后果最终可能会导致整个电流互感器发热发烫甚至会烧毁线圈。上面提到了电流互感器在正常运行的时候,二次侧绕组与仪表设备和继电器等设备的电流线圈应该串联使用,又因为仪表和继电器等设备的电流线圈的电阻很小,所以二次侧就会产生一种就像是短路的状态。值得注意的是因为电流互感器的二次侧绕组都备有短路的开关,以免出现特殊情况使二次侧绕组开路,这样被触到的话会造成触电事故的。还有就是一旦二次侧绕组开路,要立刻去掉该电路的负载,然后立刻关掉电闸再处理突发情况,解决好故障后才能继续使用,不然会出现重大事故的。四是在实际情况中为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等设备的需要,会在发电机、变压器、出线和母线的地方进行装置分段断路器、母断和旁断的断路器等的回路电路中设两个到八个二次侧绕组的电流互感器。五是出于保护设备的目的,那些保护用电流互感器的装置地应该采取以消除主保护装置的原则来设计。比如说这里两组电流互感器,在装置地能够满足的地对于情况下,最后设在断路器的两边,这样能够使断路器处于交叉的保护范围内。六是为了避免支柱式电流互感器因形状的性出现的套管闪络而使母线出现故障的问题,这种情况下电流互感器通常装在断路器的出线位置。七是当电力设备运行时,发电机的内部经常出现这样那样的故障,我们为了减缓运行故障的伤害,此时电流互感器应该布在发电机定子绕组的出线以侧。而且为了更好的分析和发现发电机的故障,如果是用于测量仪表的电流互感器就可以装置在发电机的中性点一侧。 3对电流保护的影响 3.1电流保护的依据 在电力系统中,将电压的等级分为500kV、220kV、110kV、10kV等。其中的10kV电气设备的电流一般很小,尤其是远离电源的时候电力系统本身的阻抗会越来越大的,因为10kV的电压系统的话短路电流是随着系统规模的改变而改变的,通常情况下会是一次额定电流的几百倍,甚至会有造成成电流互感器出现饱和状态。还有,短路的电流中的不同期的分量不仅会使电流互感器的饱和速度加快,还会使感应电流变小的,在这个时候如果采用由主变低压侧开关来解决故障的话,不但使拖延了时间,还会使断电的范围扩大,影响电力系统的供电。使电力运行设备的安全失控。 3.2电流保护对策 说起电流互感器的饱和,能够真正导致电流互感器饱和的有两种,当电流互感器处于严重饱和时,原来一次电流就会转为励磁电流,这样二次感应电流和电流继电器的电流就转为了零,一旦为零,保护装置就发挥作用了,会立刻出现拒绝反应,而出于保护的目的,可以采取以下方式:一是选择电流互感器的时候不要选择变比小的互感器,要选择合适的互感器,同时要充分考虑线路出现短路时,电流互感器的饱和;二是要避免增加二次负载阻抗,尽量减少二次的负载阻抗,另外可以通过缩小二次电缆的长度来保护电流互感器。 4在智能变电站中的运用 电子式互感器作为智能化一次设备,它的应用是智能变电站的重要标志之一。而对于电子式互感器的智能化研究,关键在于采样值通信接口问题以及一、二次设备功能集成的问题。IEC61850标准作为变电站自动化系统(SAS)中第一套全面的通信规约,其对电子式互感器带来的作用及影响可概括为以下几个方面:(1)互操作性要求。在IEC61850中,互操作性指的是智能装置(intelligentelectronicdevice,IED)间的通信接口标准化,即来自不同生产厂家的IED可以在同一个网络中交换信息。互操作性是电力公司、设备供应商和标准制定机构共同的目标,所有的通信都必须允许来自多个供应商提供的IED装置实现无缝连接并成为整体,故电子式互感器的通信接口需要符合互操作性这一要求。 (2)合并单元。合并单元定义在IEC60044-8中有详细说明,其作用在于给电子式互感器提供了数字化接口。合并单元同步收集多路采样值信息,并将相应采样值(SMV)报文发送至间隔层的保护、测量二次设备。

如何计算电流互感器的饱和点

如何计算电流互感器的饱和点 点击次数:380 发布时间:2010-3-14 10:22:10 1前言 保护用电流互感器要求在规定的一次电流范围内,二次电流的综合误差不超出规定值。对于有铁心的电流互感器,形成误差的最主要因素是铁心的非线性励磁特性及饱和。电流互感器的饱和可分为两类:一类是大容量短路稳态对称电流引起的饱和(以下称为稳态饱和);另一类是短路电流中含有非周期分量和铁心存在剩磁而引起的暂态饱和(以下称为暂态饱和)。这两类饱和的特性有很大不同,引起的误差也差别很大。在同样的允许误差条件下,考虑暂态饱和要求的互感器铁心截面可能是仅考虑稳态饱和的数倍至数十倍。因而对互感器造价及安装条件提出了严峻的要求。以往在中低压系统和发电机容量较小的情况下,互感器暂态饱和的影响较轻,一般未采取专门对策。而对当前的超高压系统和大容量机组,为保证继电保护的正确动作,暂态饱和已成为必须考虑的因素。由于互感器暂态饱和的机理和计算较复杂,要求互感器暂态不饱和所需代价很高,因而在实际工程中应用情况较混乱。本文根据国内外的标准和应用经验,提出较规范的考虑暂态饱和的互感器选择和计算方法,供工程应用参考。作为示例,本文给出大型发电机变压器组差动保护用电流互感器的选择计算及 参数选择的建议。

2电流互感器的稳态饱和特性及对策 当电流互感器通过的稳态对称短路电流产生的二次电动势超过一定值时,互感器铁心将开始出现饱和。这种饱和情况下的二次电流如图1所示,其特点是:畸变的二次电流呈脉冲形,正负半波大体对称,畸变开始时间小于5ms(1/4周波),二次电流有效值将低于未饱和情况。对于反应电流值的保护,如过电流保护和阻抗保护等,饱和将使保护灵敏度降低。对于差动保护,差电流取决于两侧互感器饱和特性的差异。 例如某一1200/5的电流互感器,制造部门提供的规范为[1]:5P20,30VA。其中5P为准确等级,30VA为二次负荷额定值,20为准确限值系数(ALF)。电流互感器在额定负荷下的二次极限电动势E s=(ALF)· I sn·(R ct+R bn),此时综合误差应不超过5%。综合误差也可选用10%。选择保护用电流互感器时,一般要求ALF与额定一次电流乘积大于保护校验用短路电流,二次负荷小于互感器额定负荷,实际二次电动势不超过极限二次电动势。当前工程中经常遇到的问题是短路电流过大,ALF不满足要求,但实际负荷比额定负荷小得多。对于低漏磁电流互感器[2],可以在实际负荷下的二次电动势不超过极限

零序电流互感器的原理及应用

零序电流互感器的原理及应用 在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0 如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。 三相电路不对称时,电流均可分解正序、负序和零序电流。正序指正常相序的三相交流电(即A、B、C三相空间差120度,相序为正常相序),负序指三相相序与正常相序相反(三相仍差120度,仍平衡),零序指(A、B、C电流分解出来三个大小相同、相位相同的相量。零序电流互感器套在三芯电缆上,三相不平衡时在外部就表现出零序电流(因为相量相同加强) 零序电流互感器 零序电流互感器为一种线路故障监测器,一般儿只有一个铁芯与二次绕组,使用时,将一次三芯电缆穿过互感器的铁芯窗孔,二次通过引线接至专用的继电器,再由继电器的输出端接到信号装置或报警系统。在正常情况下,一次回路中三相电流基本平衡,其所产生合成磁通也近于零。在互感器的二次绕组中不感生电流,当一次线路中发生单相接地等故障时,一次回路中产生不平衡电流(意即零序电流),在二次绕组中感生微小的电流使继电器动作,发生信号。这个使继电器动作的电流很小(mA级),称作二次电流或零序电流互感器的灵敏度(也可用一次最小动作电流表示),为主要动作指标。 零序电流互感器保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电

TPS系列套管式电流互感器技术要求

一、TPS系列套管式电流互感器适用于全封闭组合电器(GIS)和变压器套管使用,为电力系统做电流、电能计量及继电保护与自动控制用。其性能完全符合GB1208-2006《电流互感器》和GB 16847-1997《保护用电流互感器暂态特性技术要求》. TPS级,一种低漏磁电流互感器,其性能由二次励磁特性和匝数比误差限值规定。 二、主要性能指标 准确级:TPS 额定负荷:30VA 额定一次电流:2500A 额定二次电流:1A 额定对称短路电流倍数Kssc:25 极性:减极性 绝缘电阻:>100MΩ 工频耐压:3KV?1min 工作电压:154kV 三、其他性能指标 一次时间常数Tp 二次时间常数Ts 工作循环:C-O或C-O-C-O 剩磁系数Kr≤10% 暂态误差≤10% 四、产品尺寸和外形 产品尺寸和外形符合技术要求确定,外形尺寸误差一般在±3mm以内. TPS产品照片

一、LRB系列套管式电流互感器适用于全封闭组合电器(GIS)和变压器套管使用,为电力系统做电流、电能计量及继电保护与自动控制用。其性能完全符合GB1208-2006《电流互感器》和GB 16847-1997《保护用电流互感器暂态特性技术要求》.电流互感器型号字母含义如下: L:电流互感器R:装入式B:带保护准确级.型号后面为所配套的GIS装置及变压器套管的电压等级的千伏数. 二、技术数据 准确等级:5P 额定负荷:20VA 额定一次电流:2500A 额定二次电流:1A 准确限值系数:20 极性:减极性 绝缘电阻:>100MΩ 工频耐压:3KV?1min 工作电压:154kV 三、产品尺寸和外形 产品尺寸和外形符合技术要求确定,外形尺寸误差一般在±3mm以内. LRB产品照片

电流互感器的保护级应用

5P10是一种电流互感器的保护级,后面的10是准确限值系数,5P10表示当一次电流是额定一次电流的10倍时,该绕组的复合误差≤±5% 其他类推 这是客户一封信里关于电流互感器的参数, Primary current 300A Secondary current 5/5/5 three cores core 1 for metering 10 VA class 0.5 Fs 5 core 2 for protection 15VA class 5 P10 core 2 for protection 5 VA class 5 P 10 希望老鸟能给我讲解下各部份是什么意思,谢谢! Primary current 300A ---为一次电流额定值300A Secondary current 5/5/5 three cores 二次分三部分绕组额定电流均为5A core 1 for metering 10 VA class 0.5 Fs 5 ,测量用绕组,额定容量10VA core 2 for protection 15VA class 5 P10 保护用额定容量15VA core 2 for protection 5 VA class 5 P 10保护用额定容量5VA 电流互感器中的FS表示仪表保安系数,仅仅适用于测量级的电流互感器,具体规定如下: FS=额定仪表限值一次电流 / 额定一次电流; 仅仅在用户有要求时,确定该数值,其推荐值为5,或10; 主要是在系统故障电流通过电流互感器时,对二次仪表起保护作用,FS越小,二次仪表越安全。 额定仪表限值一次电流是在额定负荷下,复合误差大于等于10%的最小一次电流。 列如,经计算,你需要装设保护的地方,在最大运行方式下短路电流是4KA,你选用的电流互感器是150/5,5P10,也就是说该电流互感器在150A*10倍 =1500A=1.5KA时,能保证绕组的复合误差≤±5%;而很可能短路后,电流超过1.5KA,甚至达到4KA,这时就达不到复合误差≤±5%,如果选用150/5,5P30的电流互感器,电流互感器在150A*30倍=4500A=4.5KA时,能保证绕组的复合误差≤±5%,但最大短路电流才4KA,故在全量程中,均能保证保护用电流互感器的精度。 但实际应用中,为降低成本,保护并不需要太高的精度,10P已经能满足需要,且在选择电流互感器时,也没有必要保证在最大短路电流时还保证精度,一般在保护定值附近能保证精度就可以了。 比如:"5P20 4000-2000/1A 80VA" 准确级为5P的保护用电流互感器的误差限值在额定频率及额定负荷下其电流误差相位差和复合误差不应超过下列值: 额定一次电流下的电流误差不超过正负1%;

电流互感器的精度 ()

电流互感器的精度5P20,表示当一次侧电流为CT一次侧额定电流的20倍时,CT的复合误差能保证在5%以内。这是保护级CT的精度要求。 一、精度等级定义 互感器的精度是制造时就规定好的。常用的精度是0.1级、0.5级、10P 级。不同的负载使用不同的精度。计量要求准确,使用0.1级。当发生短路时,电流很大、考虑互感器线圈的磁饱和问题,所以保护一般选择10P 级。测量选用0.5级。 5P10,5P20,10P10,10P20 是电流互感器保护用绕组的准确级标示。以该准确级在额定准确限值一次电流下所规定的最大允许复合误差百分数标称,其后标以字母“P”(表示保护)。保护用电流互感器的标准准确级有:5P和10P。例如5P10后面的10是准确限值系数,5P10表示当一次电流是额定一次电流的10倍时,该绕组的复合误差≤±5% 5P20表示当一次电流是额定一次电流的20倍时,该绕组的复合误差≤±5% 测量用电流互感器的标准准确级有:0.1,0.2,0.5,1,3,5。 特殊使用要求的电流互感器的准确级有0.2S和0.5S。 带S的是特殊电流互感器,要求在1%-120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围; 0.2,0.5等一般就是测量线圈,要求误差20%-120%负荷范围内精度足够高,一般取4个负荷点测量其误差小于规定的范围(误差包括比差和角差,因为电流是矢量,故要求大小和相角差)。

而5P,10P是保护用电流互感器的精度要求,即要求在短路电流下复合误差小于一定的值,5P即小于5%,10P即小于10%。 另外还有一种保护用CT,即差动保护用CT,采用D级电流互感器,这是一种非标准的准确级。其特点是CT的抗饱和特性非常好,在短路情况下,不会像其他保护用CT一样容易饱和。 所以电流互感器根据用途规定了不同的准确度,也就是不同电流范围内的误差精度。

电流互感器介绍(典藏版)

电流互感器

一.基本概念和基本原理 1.基本概念 互感器:一种变压器,供测量仪器、仪表、继电器和其它类似电器用。 电流互感器:一种互感器,在正常使用条件下其二次电流与一次电流实质上成正比,而其相位差在联结方法正确时接近于零的互感器。 电流互感器主要分为两大类:测量级互感器和保护级互感器。 电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电流变换成较小的标准电流值,一般是5A或1A,这样可以减小仪表和继电器的尺寸,简化其规格,有利于这些设备的小型化、标准化,所以说电流互感器的主要作用是: a. 传递信息供给测量仪表、仪器或继电保护、控制装置; b. 使测量、保护和控制装置与高电压相隔离; c.有利于测量仪器、仪表和保护、控制装置的小型化、标准化。 测量级互感器:专门用于测量电流和电能的电流互感器。 如:3、1、、、、、、、、、、1M、2M 保护级互感器:专门用于继电保护和自动控制的电流互感器。 如:5P、10P、C类互感器(如C800)、5PR、10PR、PX、X、PS、PL 、TPX、TPY、TPS 铁心开气隙的目的:控制剩磁 铁心需开气隙的电流互感器:5PR、10PR、TPY 执行标准: 国标:GB 1208-2006 电流互感器 GB 16847-1997 保护用电流互感器暂态特性技术要求 国际标准:IEC 60044-1、IEC 60044-6 其它国家标准:IEEE/、CAN3-C13、AS 、BS等

600/1A的CT二次匝数为600÷1=600

3.套管型电流互感器的基本参数及基本常识 额定电流比: 例1:300-400-600/5A,即表示此互感器有三个变比,其额定一次电流分别为300、400及600A,额定二次电流为5A,二次匝数应分别为60、80及120匝。 S1-S2:300/5、60匝 S1-S3:400/5、80匝 S1-S4:600/5、120匝 例2:600/5MR、C800 (美国标准IEEE Std ) MR:多变比 C类互感器:相当于10P20 800:二次端电压(V) C800:相当于10P20、200V A 出线标记――X2-X3 50/5 10匝 X1-X2 100/5 20匝 X1-X3 150/5 30匝 X4-X5 200/5 40匝 X3-X4 250/5 50匝 X2-X4 300/5 60匝 X1-X4 400/5 80匝 X3-X5 450/5 90匝 X2-X5 500/5 100匝 X1-X5 600/5 120匝 20匝10匝50匝40匝 X1X2X3X4X5 准确级要求

电流互感器饱和度计算

电流互感器饱和计算: 估算,当一次侧电流达到电流互感器额定电流的10倍时,保护用电流互感器就认为饱和了。 电流互感器的暂态饱和及应用计算 1前言 保护用电流互感器要求在规定的一次电流范围内,二次电流的综合误差不超出规定值。对于有铁心的电流互感器,形成误差的最主要因素是铁心的非线性励磁特性及饱和。电流互感器的饱和可分为两类:一类是大容量短路稳态对称电流引起的饱和(以下称为稳态饱和);另一类是短路电流中含有非周期分量和铁心存在剩磁而引起的暂态饱和(以下称为暂态饱和)。这两类饱和的特性有很大不同,引起的误差也差别很大。在同样的允许误差条件下,考虑暂态饱和要求的互感器铁心截面可能是仅考虑稳态饱和的数倍至数十倍。因而对互感器造价及安装条件提出了严峻的要求。以往在中低压系统和发电机容量较小的情况下,互感器暂态饱和的影响较轻,一般未采取专门对策。而对当前的超高压系统和大容量机组,为保证继电保护的正确动作,暂态饱和已成为必须考虑的因素。由于互感器暂态饱和的机理和计算较复杂,要求互感器暂态不饱和所需代价很高,因而在实际工程中应用情况较混乱。本文根据国内外的标准和应用经验,提出较规范的考虑暂态饱和的互感器选择和计算方法,供工程应用参考。作为示例,本文给出大型发电机变压器组差动保护用电流互感器的选择计算及参数选择的建议。 2电流互感器的稳态饱和特性及对策 当电流互感器通过的稳态对称短路电流产生的二次电动势超过一定值时,互感器铁心将开始出现饱和。这种饱和情况下的二次电流如图1所示,其特点是:畸变的二次电流呈脉冲形,正负半波大体对称,畸变开始时间小于5ms(1/4周波),二次电流有效值将低于未饱和情况。对于反应电流值的保护,如过电流保护和阻抗保护等,饱和将使保护灵敏度降低。对于差动保护,差电流取决于两侧互感器饱和特性的差异。 例如某一1200/5的电流互感器,制造部门提供的规范为[1]:5P20,30VA。其中5P为准确等级,30VA为二次负荷额定值,20为准确限值系数(ALF)。电流互 感器在额定负荷下的二次极限电动势E s =(ALF)· I sn ·(R ct +R bn ),此时综合误 差应不超过5%。综合误差也可选用10%。选择保护用电流互感器时,一般要求ALF 与额定一次电流乘积大于保护校验用短路电流,二次负荷小于互感器额定负荷,实际二次电动势不超过极限二次电动势。当前工程中经常遇到的问题是短路电流过大,ALF不满足要求,但实际负荷比额定负荷小得多。对于低漏磁电流互感器[2],可以在实际负荷下的二次电动势不超过极限值的条件下,适当提高ALF的可用值。但应指出,对于某些不符合低漏磁要求的互感器,如U型电流互感器、一次多匝的互感器等,在一次短路电流倍数超过ALF时,由于铁心局部饱和可能引起二次极限电动势降低,不能在降低二次负荷时,按反比提高ALF。有些制造厂提供的

低压电流互感器的应用及发展

低压电流互感器简介 江阴市星火电子科技有限公司蒋大维所谓低压,标准中一般根据设备最高电压(Um)定义,IEC61869-2007默认将低压定义为0.72KV以下,(所谓默认,即是没有明确指出0.72KV以下就是低压,标准只是分了一个电压等级)。而GB20840.1-2010《互感器第一部分:通用技术要求》根据中国的实际电力系统情况默认将0.72KV修改为0.66KV以下。目前拟稿的IEC38标准系列,将低压定义为1KV以下。 在行业标准,又将低压定义为3KV、1.2KV、0.5KV等等,当然这是根据不同行业的需要。在将来新的IEC或者GB的低压标准,低压应该会被定义为1KV。但目前我们主要遵循国家标准GB20840,即是默认低压为0.66KV,当然同时默认等同于IEC标准0.72KV。它的规则一般是这样的,国内销售的低压电流互感器电压等级标注为0.66KV,而出口产品标注为0.72KV。所以我们暂且认定低压电流互感器的标准为0.66KV。 低压电流互感器为什么要认定设备最高电压呢? 0.66KV的低压电流互感器能不能使用在电压为3.6KV的设备中呢。很明显是不可以的,因为这个就要涉及到互感器的绝缘水平了,不同的设备电压所要求的绝缘水平是不一样的。虽然设备电压是0.66KV,但在特殊的时段,这个电压有可能成倍的上升,如果互感器内部绝缘水平不够,那很有可能内部击穿,从而损坏互感器。GB20840中规定0.66KV互感器的额定绝缘水平是要达到3KV的工频耐受电压,而设备电压3.6KV的互感器则要达到不低于18KV的工频耐受电压,所以0.66KV的互感器假设误用在3.6KV的电压设备中,有可能会因为它的绝缘水平不够而导致绝缘击穿,轻则互感器无法测量保护,严重时可发生安全事故。 低圧电流互感器从使用功能上分为测量用电流互感器和保护用电流互感器。测量用电流互感器是为测量仪器和仪表传送信息信号的电流互感器。保护用电流互感器是为保护和控制装置传送信息信号的电流互感器(见GB20840.2-2014)。下面,我们分别说说这两类互感器的区别及应用。 首先测量用互感器顾名思义它着重测量,所以它对准确级的要求非常严格,GB20840.2-2010中将测量用互感器的准确级分别定义为0.1、0.2、0.5、1、3,特殊测量用电流互感器准确级定义为0.2S和0.5S。具体准确级要求见表1、表2和表3。

电流互感器饱和问题

电流互感器饱和引起的保护误动分析及试验方法 近年来,广东省内多个发电厂出现过高压厂用变压器或起动-备用变压器在区外故障时或厂用大容量电动机起动时差动保护误动作的情况。究其原因,除个别是因为整定值的问题外,大多数是因电流互感器特性不理想甚至饱和而导致的。 众所周知,设计规程中对电流互感器的选型有严格的规定,要求保护用的电流互感器在通过15倍甚至是20倍额定电流的情况下,误差不超过5%或10%,即不出现饱和。而上面提及的出现差动保护误动的情况,无一例外地都选用了保护级的电流互感器。经过对几个电厂的大容量电动机起动电流的核算,最大容量的电动机起动时电流大概是变压器额定电流的3~5倍,远达不到电流互感器额定电流的15倍。那为什么差动保护还会因为电流互感器饱和而误动呢? 下面就电流互感器的工作原理、工作特性对保护的影响及其检验方法进行探讨。 1电流互感器工作原理简述 电流互感器的工作原理与变压器基本相同,因此可以使用变压器的等值电路分析电流互感器。电流互感器的等值电路如图1所示[1]。图1中,Z1为电流互感器原方漏抗,Z2为电流互感器副方漏抗,ZL为电流互感器二次回路的负载阻抗,其 次侧的参量。 正常运行时,漏抗Z1和Z2很小,负载阻抗ZL也很小,而励磁阻抗Zm因为电流互感器铁心磁通不饱和而很大。因此,可忽略励磁电流Im。根据磁势平衡原理,原、副方电流成固定的比例关系为其中N1和N2分别为原、副方绕组匝数。 当铁心磁通密度增大至饱和时,励磁阻抗Zm会随着饱和的程度而大幅下降。此时Im 已不可忽略,即I1与I2不再是线性的比例关系。 电流互感器饱和的原因有两种[2]:一是一次电流过大引起铁心磁通密度过大;二是二次负载(即ZL)过大,在同样的一次电流下,要求二次侧的感应电动势增大,也即要求铁心中的磁通密度增大,铁心因此而饱和。原、副方绕组感应电动势有效值与磁通的关系为 2确定电流互感器饱和点的方法 要研究电流互感器的工作特性,确认其在保护外部故障通过大电流时是否会饱和而影响保护动作的正确性,可通过一些试验方法进行检测。 显然,最直接的试验方法就是二次侧带实际负载,从一次侧通入电流,观察二次电流找出电流互感器的饱和点。但是,对于保护级的电流互感器,其饱和点可能超过15~20倍额定电流,当电流互感器变比较大时,在现场进行该项试验会有困难。 除此之外,还可通过伏安特性试验测出电流互感器的饱和点。如前所述,电流互感器饱和是由于铁心磁通密度过大造成的,而铁心的磁通密度又可通过电流互感器的感应电动势反映出来。因此由伏安特性曲线上的饱和电压值,通过式[3](1)可以计算出电流互感器的饱和电流。伏安特性的试验方法为:原方开路,从副方通入电流,测量副方绕组上的电压降。由于电流互感器的原方开路,没有原方电流的去磁作用,在不大的电流作用下,铁心很容易就会饱和。因此,伏安特性试验并不需要加很大的电流,在现场较容易实现。 3试验 以一次电流互感器的试验为例,说明通过伏安特性试验确定电流互感器饱和点的方法。 试验的电流互感器的额定变比为300 A /5 A,二次额定负载为0.2Ω。 3.1电流互感器变比试验 用电阻约为0.2Ω的导线短接电流互感器副方绕组,从原方通入电流并逐渐加大直至副

差动保护用的电流互感器需要满足两个条件

差动保护用的电流互感器需要满足两个条件,其一是稳态误差必须控制在10%误差范围之内,因为整定计算中采用的不平衡稳态电流是按10%误差条件计算。其二是暂态误差,影响电流互感器暂态特性的参数主要有:短路电流及其非周期分量,一次回路时间常数,电流互感器工作循环及经历时间,二次回路时间常数等。电流互感器剩磁对于饱和影响很大,当剩磁与短路电流暂态分量引起的磁通极性相同时,加重二次电流的畸变,因此电流互感器铁心中存在剩磁,则电流互感器可能在一次电流远低于正常饱和值即过早饱和。差动保护的暂态不平衡电流比稳态时大得多,仅在整定计算时将稳态不平衡电流增大二倍是不够安全的。采取抗饱和的办法是使用带有气隙的TPY级电流互感器。但是差动保护广泛使用的是P级电流互感器,对P级电流互感器规定允许稳态误差不超过10%,暂态误差必然要超过稳态误差,在实用上可在按稳态误差选出的技术规范基础上通过“增密”以限制暂态误差。采用增密的方法有以下几种[2]:(1)将准确限值系数增大二倍(允许短路电流为额定电流的倍数);(2)将二次额定负担增大一倍;(3)增大二次电缆截面使二次回路的总电阻减半;(4)改用5P 级电流互感器(复合误差由10%降为5%)。目前110kV及以下电压等级均采用P级电流互感器,220kV变压器亦采用P级电流互感器或5P级、PR级(剩磁系数小于10%)电流互感器,因此差动保护需要采取抗电流互感器饱和的措施。500kV变压器在500kV侧、220kV 侧均用TPY级电流互感器,对于600MW大型发电机变压器组保护,500kV侧均采用TPY级电流互感器,在发电机侧已有TPY级电流互感器可选用。

电流互感器介绍(典藏版)

电流互感器 基本概念和基本原理 1.基本概念 互感器:一种变压器,供测量仪器、仪表、继电器和其它类似电器用。 电流互感器:一种互感器,在正常使用条件下其二次电流与一次电流实质上成正比,而其相位差在联结方法正确时接近于零的互感器。 电流互感器主要分为两大类:测量级互感器和保护级互感器。电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电流变换成较小的标准电流值,一般是5A或1A ,这样可以 减小仪表和继电器的尺寸,简化其规格,有利于这些设备的小型化、标准化,所以说电流互感器的主要作用是: a. 传递信息供给测量仪表、仪器或继电保护、控制装置; b. 使测量、保护和控制装置与高电压相隔离; c. 有利于测量仪器、仪表和保护、控制装置的小型化、标准化。 测量级互感器:专门用于测量电流和电能的电流互感器。

女口:3、1、0.5、0.2、0.1、0.5S、0.2S 0.1S、0.3、0.6、1.2、1M、2M 保护级互感器:专门用于继电保护和自动控制的电流互感器。 女口:5P、10P、C 类互感器(如C800)、5PR、10PR、PX、X、PS PL、TPX、TPY、TPS 铁心开气隙的目的:控制剩磁 铁心需开气隙的电流互感器:5PR、10PR、TPY 执行标准: 国标:GB 1208-2006 电流互感器 GB 16847-1997 保护用电流互感器暂态特性技术要求 国际标准:IEC 60044-1、IEC 60044-6 其它国家标准:IEEE/C57.13、CAN3-C13、AS 60044.1、BS 等

型号说明: 2. 基本原理 P1-P2:互感器的原边,即一次绕组。 套管型电流互感器:一次绕组匝数为 1匝(即高压套管); 独立式电流互感器:一次绕组为1匝或多匝(如供上海ABB 产品、间隙电流互 感器)。 S1-S2:互感器的副边,即二次绕组。 Rct :互感器二次绕组直流电阻(折算到 75C ); Z :额定二次负荷,用VA 或Ω表示,功率因数cos φ =0.8(没有特殊指定时); 套管型电流互感器常用计算公式: 额定二次匝数Z 2=额定一次电流÷额定二次电流 女口: 600/5A 的 CT 二次匝数为 600÷ 5=120 600/1A 的CT 二次匝数为600÷仁600 3. 套管型电流互感器的基本参数及基本常识 3.1额定电流比: 51 52 I2 RCt '般为 5A 或 1A JL Z 压匝 T

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

电流互感器饱和对差动保护的影响

电流互感器饱和对差动保护的影响 差动保护主要判断变压器的绕组、匝间等内部故障。因此加强保护装置的管理与动作分析是设备管理工作的重点。 1故障现象 自2005年5月,沙站变电站改造投运以来,因10kV线路故障,引起主变压器差动保护动作。两年来因线路故障,引起差动保护动作达十几次,检修工区组织人员多次查找与分析,始终没有得到有效解决,使检修人员承受着较大的压力和繁重的工作量。 2故障检修 故障发生后,对差动保护装置进行了全面检查。 对差动继电器进行了校验,并将正常运行的继电器进行了更换,检验合格。 检查差动保护整定值,与定值通知单的数据相符。 检查差动保护二次回路接线正确,二次回路绝缘符合规程要求。 测量相位角与差流均正确。 测量电流互感器的变化,变流比符合通知单要求。 差动保护传动试验,差动继电器动作正确,信号继电器掉牌正确,保护出口继电器动作正确,保护装置无误动或拒动现象。 以上各项目检查全部合格,说明差动保护装置及二次回路接线良好,没有故障。 3综合分析

根据以上常规的故障查找方法,均未查出明显的问题,因此查阅了有关资料,认为既然差动保护装置各项检查都合格,只有对TA作进一步分析,看TA是否有问题。但从历史统计数据来看,差动保护从未因TA 引起过误动,所以没有引起足够重视。但从故障性质进行分析,都是因为10kV线路速断动作引起的。也就说明短路电流较大时,造成TA 铁芯饱和,产生二次不平衡电流。因此,又查阅了关于电流互感器的反事故措施。反事故措施中强调要适度增大主变压器电流互感器变比,以减小电流互感器大电流时的饱和度。 目前常用的电流互感器的精度等级,0.2级用于测量,0.5级用于计量,3级、10P级用于保护,D级用于差动保护。另外10P级又分为:10P/10、10P/15、10P/20等,10P/10级型电流互感器,表示在10倍一次额定电流下,复合误差不超过5%。 根据这一原则,对高低压TA进行了详细的排查,结果发现,10kVTA差动保护为10P级,35kV断路器套管差动保护TA为0.2级。原因是这台断路器原来是线路断路器,变电站改造时,将其作为主变断路器,因TA变比过大,故进行更换,更换后厂家误更换为0.2级;没有更换铭牌。所以安装人员将其作为差动用TA。这样当外部产生较大的短路电流时,高低压侧TA的饱和状态和饱和程度不成正比,因此产生较大的不平衡电流,造成差动保护动作。 问题分析确认后,将套管TA,更换为10P/10级,差动保护误动作问题得到了有效的解决。

电流互感器的应用

电流互感器在开关电源中的应用 陶洪山,吴燮华 (浙江大学电气工程学院,浙江 杭州 310027) 摘 要 : 电 流 互 感 器 可 以 用 来 检 测 高 频 开 关 电 源 中 的 单 极 性 电 流 脉 冲 。 分 析 了 电 流 互 感 器 构 成 的 电 流 检 测 电 路 工 作 过 程 。 比 较 了 磁 芯 自 复 位 、 强 迫 复 位 的 特 点 。 给 出 了 试 验 结 果 。 关键词: 电 流 互 感 器 ; 磁 芯 复 位 ; 开 关 电 源 1 引 言 在 高 频 开 关 电 源 中 , 需 要 检 测 出 开 关 管 、 电 感 等 元 器 件 的 电 流 提 供 给 控 制 、 保 护 电 路 使 用 。 电 流 检 测 方 法 有 电 流 互 感 器 、 霍 尔 元 件 和 直 接 电 阻 取 样 。 采 用 霍 尔 元 件 取 样 , 控 制 和 主 功 率 电 路 有 隔 离 , 可 以 检 出 直 流 信 号 , 信 号 还 原 性 好 , 但 有 μ s级 的 延 迟 , 并 且 价 格 比 较 贵 ; 采 用 电 阻 取 样 价 格 非 常 便 宜 , 信 号 还 原 性 好 , 但 是 控 制 电 路 和 主 功 率 电 路 不 隔 离 , 功 耗 比 较 大 。 电 流 互 感 器 具 有 能 耗 小 、 频 带 宽 、 信 号 还 原 性 好 、 价 格 便 宜 、 控 制 和 主 功 率 电 路 隔 离 等 诸 多 优 点 。 在 Push Pull、 Bridge等 双 端 变 换 器 中 , 功 率 变 压 器 原 边 流 过 正 负 对 称 的 双 极 性 电 流 脉 冲 , 没 有 直 流 分 量 , 电 流 互 感 器 可 以 得 到 很 好 的 应 用 。 但 在 Buck、 Boost等 单 端 应 用 场 合 , 开 关 器 件 中 流 过 单 极 性 电 流 脉 冲 ; 原 边 包 含 的 直 流 分 量 不 能 在 副 边 检 出 信 号 中 反 映 出 来 , 还 有 可 能 造 成 电 流 互 感 器 磁 芯 单 向 饱 和 ; 为 此 需 要 对 电 流 互 感 器 构 成 的 检 测 电 路 进 行 一 些 改 进 。 2 电 流 互 感 器 检 测 单 极 性 电 流 脉 冲 的 应用 电 路 分 析 根 据 电 流 互 感 器 磁 芯 复 位 方 法 的 不 同 , 可 有 两 种 电 路 形 式 : 自 复 位 与 强 迫 复 位 。 自 复 位 在 电 流 互 感 器 原 边 电 流 脉 冲 消 失 后 , 利 用 激 磁 电 流 通 过 电 流 互 感 器 副 边 的 开 路 阻 抗 产 生 的 负 向 电 压 实 现 复 位 , 复 位 电 压 大 小 与 激 磁 电 流 和 电 流 互 感 器 开 路 阻 抗 有 关 。 强 迫 复 位 电 路 在 原 边 直 流 脉 冲 消 失 期 间 , 外 加 一 个 大 的 复 位 电 压 ,实 现 磁 芯 短 时 间 内 快 速 复 位 。 2.1 电 流 互 感 器 检 测 电 路 常 用 的 电 流 互 感 器 检 测 电 路 如 图 1(a)所 示 。 图 1(b)表 示 原 边 有 电 流 脉 冲 时 的 等 效 电 路 , 电 流 互 感

相关文档