文档库 最新最全的文档下载
当前位置:文档库 › ADC0809_模数转换

ADC0809_模数转换

ADC0809_模数转换
ADC0809_模数转换

实验二十一ADC0809 模数转换实验

一、实验目的:

1、掌握ADC0809 模/数转换芯片与单片机的连接方法及ADC0809 的典型应用。

2、掌握用查询方式、中断方式完成模/数转换程序的编写方法。

二、实验设备:

电脑和THGZ-1单片机.CPLD/FPGA综合开发实验装

三、实验说明:

本实验使用ADC0809 模数转换器,ADC0809 是8 通道8 位CMOS 逐次逼近式A/D 转换芯片,片内有模拟量通道选择开关及相应的通道锁存、译码电路,A/D 转换后的数据由三态锁存器输出,由于片内没有时钟需外接时钟信号。下图为该芯片的引脚图。

各引脚功能如下:

IN0~IN7:八路模拟信号输入端。

ADD-A 、ADD-B 、ADD-C:三位地址码输入端。八路模拟信号转换选择由这三个端口控制。

CLOCK:外部时钟输入端(小于1MHz)。

D0~D7:数字量输出端。

OE:A/D 转换结果输出允许控制端。当OE 为高电平

时,允许A/D 转换结果从D0~D7 端输出。ALE:地址锁存

允许信号输入端。八路模拟通道地址由

A、B、C 输入,在ALE 信号有效时将该八路地址锁存。

START:启动A/D 转换信号输入端。当START 端输入一个

正脉冲时,将进行A/D 转换。EOC:A/D 转换结束信号输

出端。当 A/D 转换结束后,EOC 输出高电平。Vref(+)、

Vref(-):正负基准电压输入端。基准正电压的典型值为+5V。VCC 和GND:芯片的电源端和地端。

四、实验内容及步骤:

1、单片机最小应用系统的 P0 口接A/D 转换的D0~D7 口,单片机最小应用系统的Q0~Q7 口接

0809 的A0~A7 口,单片机最小应用系统的WR、RD、P2.0、ALE 、INT1 分别接A/D 转换的WR、RD、P2.0 、CLOCK 、INT1,A/D 转换的IN 接入+5V ,单片机最小应用系统的RXD、TXD 连接到串行静态显示实验模块的DIN、CLK。

2、安装好伟福仿真器,用串行数据通信线连接计算机与仿真器,把仿真头插到模块的单片机插

座中,打开模块电源,插上仿真器电源插头。

3、推上左侧空气开关,启动计算机,打开伟福仿真软件Keil Uvsion2,进入仿真环境。选择仿

真器型号、仿真头型号、CPU 类型;选择通信端口,测试串行口。

⑴、建立工程项目:

点击主菜单 PROJEKT→NEW PROJECT→工程名 XXX.UV2(保存在桌面上)

⑵、进行仿真器的设置:

打开 View →PROJECT WINDOW 界面,右键点击TARGET1 选择 OPTION FOR TARGET TARGET1

a、CPU选择:

DEVICE → ATMEL → AT89C51

STANDARD 8051 STARTUP CODE……? 否

b、目标机晶振选择:

TARGET → XTAL → 11.0592 MHZ

c、调试选项:

DEBUG →⊙USE KEIL MONITOR DRIVER-51

点击其旁边的”SETTING”

设置串口 PORT :COM1

传输波特率 BAUDRATE : 38400

⑶、创建程序文件:

FILE→NEW FILE→

在 TEXT 文本界面输入源程序

ORG 0000H.

.

END

输入完毕,另存 SAVE AS 文件名 XXX.ASM(保存在桌面上)

⑷、添加程序到工程组:

点开TARGET1→SOURCE GROUP →ADD FILES TO

GROUP “SOURCE GROUP1”

在文件类型窗口选择: ALL FILES

在文件名窗口输入要调试的程序文件名 : 桌面: XXX.ASM,

或 E:\实验程序\AD0809.ASM

点击“ADD”键,并关闭此窗口

⑸、查看源程序:

双击 SOURCE GROUP 下的文件名(SOURCE GROUP下只允许一个文件,其他用REMOVE FILE FROM SOURCE GROUP 删去)打开源程序,阅读、理解、分析该程序。

⑹、编译,连接程序:

点击项目菜单,选择全部编译,连接,编译、连接有误回到步骤⑶,打开文件修改直至编译,连接完全正确

⑺、调试运行程序:

点击 DEBUG →DEBUG START 后,实现连机后(否则,检查前边的设置,按仿真器上的复位键,再编译、连机直至连上),点击全速执行快捷按钮。

⑻、查看结果:

5LED 静态显示“Ad XX”,“XX”为AD 转换后的值,8 位逻辑电平显示“XX”的二进制值,调节模拟信号输入端的电位器旋钮,显示值随着变化,顺时针旋转值增大,AD 转换值

的范围是0~FFH。

3、点击 DEBUG →DEBUG STOP 后,点“RST”复位,可开始再次运行程序。运行结束,关闭程

序,关闭Keil软件,关闭电脑,断开空开。

五、流程图及源程序:

1、流程图:

DBUF0 EQU 30H TEMP EQU 40H ORG 0000H LJMP START ORG 0100H START: MOV R0,#DBUF0 MOV @R0,#0AH

INC R0

MOV @R0,#0DH

INC R0

MOV @R0,#11H

INC R0

MOV DPTR,#0FEF3H ;A/D MOV A,#0

MOVX @DPTR,A

WAIT: JNB P3.3,WAIT

MOVX A,@DPTR ; 读入结果

MOV P1,A

MOV B,A

SWAP A

ANL A,#0FH

XCH A,@R0

INC R0

MOV A,B

ANL A,#0FH

XCH A,@R0

ACALL DISP1

acall delay

AJMP START

DISP1: MOV R0,#DBUF0

MOV R1,#TEMP

MOV R2,#5

DP10: MOV DPTR,#SEGTAB

MOV A,@R0

MOVC A,@A+DPTR

MOV @R1,A

INC R0

INC R1

DJNZ R2,DP10

MOV R0,#TEMP

MOV R1,#5

DP12: MOV R2,#8

MOV A,@R0

DP13: RLC A

MOV 0B0H,C

CLR 0B1H

SETB 0B1H

DJNZ R2,DP13

INC R0

DJNZ R1,DP12

RET

SEGTAB: DB 3FH,6,5BH,4FH,66H,6DH ;0,1,2,3,4,5

DB 7DH,7,7FH,6FH,77H,7CH ;6,7,8,9,A,B

DB 58H,5EH,79H,71H,0,00H ;C,D,E,F,-

DELAY:MOV R4,#020H

AA1: MOV R5,#0FFH

AA: NOP

NOP

DJNZ R5,AA

DJNZ R4,AA1

RET

END

六、思考题:

1、转换程序有三种编制方式:中断方式、查询方式、延时方式,实验中使用了查询方式,请用另两种方式编制程序。

2、P0口是数据/地址复用的端口,请说明实验中ADC0809 的模拟通道选择开关在利用P0 口的数据口或地址口时,程序指令和硬件连线的关系。

七、电路图:

∑-△模数转换器的原理及应用

∑-△模数转换器的原理及应用 张中平 (东南大学微电子机械系统教育部重点实验室,南京210096) 摘要:∑-△模数转换器由于造价低、精度高、性能稳定及使用方便等特点,越来越广泛地使用在一些高精度仪器仪表和测量设备中,介绍该转换器的基本原理,并重点举例介绍AD7708芯片的应用,该芯片是16 bit模数转换器,与24 bit AD7718引脚相同,可直接升级。 关键词:模数转换器;寄存器;串行口 我们通常使用的模数转换器(ADC)大多为积分型和逐次逼近型,积分型转换效果不够好,转换过程中带来的误差比较大;逐次逼近型转换效果较好但制作成本较高,尤其是高位数转换,转换位数越多,精度越高,制作成本就越高。而∑-△ADC可以以相对逐次逼近型简单的电路结构,而得到低成本,高位数及高精度的转换效果∑-△ADC大多设计为16或24 bit转换精度。近几年来,在相关的高精度仪器制作领域该转换器得到了越来越广泛的应用[1]。 1 ∑-△ADC的基本工作原理简介 ∑-△模数转换器的工作原理简单的讲,就是将模数转换过后的数字量再做一次窄带低通滤波处理。当模拟量进入转换器后,先在调制器中做求积处理,并将模拟量转为数字量,在这个过程中会产生一定的量化噪声,这种噪声将影响到输出结果,因此,采用将转换过的数字量以较低的频率一位一位地传送到输出端,同时在这之间加一级低通滤波器的方法,就可将量化噪声过滤掉,从而得到一组精确的数字量[1,2]。 2 AD7708/AD7718,∑-△ADC的应用 AD7708/AD7718是美国ADI公司若干种∑ΔADC中的一种。其中AD7708为16 bit转换精度,AD7718为24 bit转换精度,同为28条引脚,而且相同引脚功能相同,可以互换。为方便起见,下面只介绍其中一种,也是我们工作中用过的AD7708。 2.1AD7708的工作原理 同其它智能化器件一样,AD7708也可以用软件来调节其所具有的功能,即通过微控制器MCU编程向AD7708的相应寄存器填写适当的参数。AD7708芯片中共有11个寄存器, 当模式寄存器(Mode Regis-ter)的最高位后,其工作方框图[2]如图1所示。

数模模数转换实验报告

数模模数转换实验报告 一、实验目的 1、了解数模和模数转换电路的接口方法及相应程序设计方法。 2、了解数模和模数转换电路芯片的性能和工作时序。 二、实验条件 1、DOS操作系统平台 2、数模转换芯片DAC0832和模数转换器ADC0809芯片。 三、实验原理 1、数模转换: (1)微机处理的数据都是数字信号,而实际的执行电路很多都是模拟的。因此微机的处理结果又常常需要转换为模拟信号去驱动相应的执行单元,实现对被控对象的控制。这种把数字量转换为模拟量的设备称为数模转换器(DAC),简称D/A。 (2)实验中所用的数模转换芯片是DAC0832,它是由输入寄存器、DAC 寄存器和D/A 转换器组成的CMOS 器件。其特点是片内包含两个独立的8 位寄存器,因而具有二次缓冲功能,可以将被转换的数据预先存在DAC 寄存器中,同时又采集下一组数据,这就可以根据需要快速修改DAC0832 的输出。 2、模数转换: (1)在工程实时控制中,经常要把检测到的连续变化的模拟信号,如温度、压力、速度等转换为离散的数字量,才能输入计算机进行处理。实现模拟量到数字量转换的设备就是模数转换器(ADC),简称A/D。

(2)模数转换芯片的工作过程大体分为三个阶段:首先要启动模数转换过程。其次,由于转换过程需要时间,不能立即得到结果,所以需要等待一段时间。一般模数转换芯片会有一条专门的信号线表示转换是否结束。微机可以将这条信号线作为中断请求信号,用中断的方式得到转换结束的消息,也可以对这条信号线进行查询,还可以采用固定延时进行等待(因为这类芯片转换时间是固定的,事先可以知道)。最后,当判断转换已经结束的时候,微机就可以从模数转换芯片中读出转换结果。 (3)实验采用的是8 路8 位模数转换器ADC0809 芯片。ADC0809 采用逐次比较的方式进行A/D 转换,其主要原理为:将一待转换的模拟信号与一个推测信号进行比较,根据推测信号是大于还是小于输入信号来决定增大还是减少该推测信号,以便向模拟输入逼近。推测信号由D/A 转换器的输出获得,当推测信号与模拟信号相等时,向D/A 转换器输入的数字就是对应模拟信号的数字量。ADC0809 的转换时间为64 个时钟周期(时钟频率500K 时为128S)。分辨率为 8 位,转换精度为±LSB/2,单电源+5V 供电时输入模拟电压范围为04.98V。 四、实验内容 1、把DAC0832 的片选接偏移为10H 的地址,使用debug 命令来测试 DAC0832 的输出,通过设置不同的输出值,使用万用表测量Ua 和Ub 的模拟电压,检验DAC0832 的功能。选取典型(最低、最高和半量程等)的二进制值进行检验,记录测得的结果。实验结果记录如下:

模数转换模块地位与作用

模数转换模块地位与作用 模数转换模块简介: DAM-6160是模数转换模块,可采集16路单端模拟信号;模块采用高性能12位AD芯片,通过电路处理及软件特殊算法,采集测量精度优于±0.2%。模块配置有RS232接口,方便与PC或PLC通信,模块配置有RS485接口,可单独与PC或PLC通信,也可以与多个485模块组网使用。DAM-6160采用逐次逼近型模数转换器,分辨率为12位,通过特殊软件处理,分辨率可达14位,测量精度优于0.2%(典型值)。用户可通过简单的命令对模块进行现场校准,提高现场测量精度。能满足大多数的工业现场及安防、智能楼宇、智能家居、电力监控、过程控制等场合。产品针对工业应用设计:通过DC-DC变换,实现测量电路和主控电路电源隔离;同时控制单元与信号采集单元采用高性能磁隔离技术实现电气隔离,与一般的光电隔离相比数据通信更快更可靠。采用485/CAN隔离电路,将通信与系统单独隔离开,消除通信设备之间共模干扰。模块配有瞬态抑制电路,能有效抑制各种浪涌脉冲,保护模块在恶劣的环境下可靠工作。 模数转换模块参数: 输入通道数:16路单端输入 输入范围:+20mA,+5V,+10V,+24V 转换速率:40次/秒(全通道) AD转换分辨率:优于12位 测量精度:±0.2%(典型值) 输入端过压保护,过流保护,并有低通滤波 常模抑制(NMR):60dB 隔离耐压:DC2500V

ESD保护:±15KV 供电范围:DC+8~+36V 地址/波特率/量程可由用户配置 支持MODBUS-RTU协议和ASCII 支持模块主动发送数据模式 支持RS485,RS232支持定制CAN RS485隔离通信 功耗:小于1W 工作温度:-40℃~+80℃ 工业级V0级防火塑料外壳保障产品应用各类环境安全 安装方式:标准DIN35导轨安装 型号输入类型通道数通讯接口 60同系列其他型号: DAM-6010模拟量1AI RS485和RS232 DAM-6020模拟量2AI RS485和RS232 DAM-6040模拟量4AI RS485和RS232 DAM-6080模拟量8AI RS485和RS232 DAM-6084模拟量、开关量8AI+4IO RS485或RS232 DAM-6044模拟量、开关量4AI+4IO RS485或RS232 DAM-6160模拟量16AI RS485和RS232 模数转换模块接线: 所谓模拟量信号是指连续的,任何时刻可为任意一个数值的信号,例如我们常见的温度、压

单片机实验(AD转换)

实验三 A/D、D/A转换实验 一、实验目的 1.熟悉DAC0832并行接口数模转换器和TLC2543串行接口模数转换器的基本原理和编程方 法。 2.进一步熟悉单片机应用系统开发步骤和方法。 二、实验电路 实验所用元件清单如下表所示: 1. 串行A/D转换器TLC2543 2.并行D/A转换器DA0832 三、相关知识 (一)串行A/D转换器TLC2543 1. TLC2543的特性与引脚 TLC2543是TI公司的TLC2543 12位串行A/D转换器,使用开关电容逐次逼近技术完成A/D转换过程。由于是串行输入结构,能够节省80C51系列单片机的I/O资源,而且价格适中。

主要特点如下: ●12位分辨率A/D转换器。 ●在工作温度范围内10 s转换时间。 ●11个模拟输入通道。 ●3路内置自测试方式。 ●采样率为66kbps。 ●线性误差+1LSB(max)。 ●有转换结束(EOC)输出。 ●具有单、双极性输出。 ●可编程的MSB或LSB前导。 ●可编程的输出数据长度。 2. TLC2543的工作过程 TLC2543的工作过程分为两个周期:I/O 周期和实际转换周期。 1)I/O周期 I/O周期由外部提供的I/O CLOCK定义,延续8、12或16个时钟周期,决定于选定的输出数据长度。器件进入I/O周期后同时进行两种操作。 (1)在I/O CLOCK的前8个脉冲的上升沿,以MSB前导方式从DA TA INPUT端输入8位数据流到输入寄存器。其中前4位为模拟通道地址,控制14通道模拟多路器从11个模拟输入和3个内部自测电压中,选通一路送到采样保持电路,该电路从第4个I/O CLOCK脉冲的下降沿开始,对所选信号进行采样,直到最后一个I/O CLOCK脉冲的下降沿。I/O周期的时钟脉冲个数与输出数据长度(位数)有关,输出数据长度由输入数据的D3、D2选择为8、12或16位。当工作于12或16位时,在前8个时钟脉冲之后,DATA INPUT无效。

数模及模数转换器习题解答

数模及模数转换器习题 解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

自我检测题 1.就实质而言,D/A 转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D 6.8位D/A 1时,输出电压为,若输入数字量只有最高位为1时,则输出电压为 V 。 A . B .2.56 C . D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D .参考电压 8.图所示R-2R 网络型D/A 转换器的转换公式为 。 V REF v O 图 A .∑=?- =3 3 REF o 2 2 i i i D V v B .∑=?- =3 4 REF o 2 232i i i D V v D .∑=?= 3 4 REF o 2 2i i i D V v 9.D/A 转换器可能存在哪几种转换误差试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A 转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。

DAC_ADC模数及数模转换器的发展综述

DAC_ADC模数及数模转换器的发展综述 1 概述 随着数字技术,特别是计算机技术的飞速发展普及,在现代控制、通讯及检测领域中,对信号的处理广泛采用了数字计算机技术。由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量往往也需要将其转换成为相应的模拟信号才能为执行机构所接收。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路——模数转换电路或数模转换电路。 能将模拟信号转换成数字信号的电路,称为模数转换器(简称ADC转换器);而将能反数字信号转换成模拟信号的电路称为数模转换器(简称DAC转换器),ADC转换器和DAC 转换器已经成为计算机系统中不可缺少的接口电路。 2 数模转换电路 2.1 数模转换电路原理 数字量是用代码按数位组合起来表示的,对于有权码,每位代码都有一定的权。为了将数字量转换成模拟量,必须将每1位的代码按其权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的总模拟量,从而实现了数字—模拟转换。这就是构成DAC转换器的基本思路。 2.2 数模转换电路的主要性能指标 DAC转换器的主要性能指标有:转换速度、转换精度、抗干扰能力等。在选用D/A转换器时,一般应根据上述几个性能指标综合进行考虑。 2.3 二进制加权架构 从概念上讲,最简单的DAC采用的是二进制加权架构,在该架构中,将n个二进制加权元件(电流源、电阻器或电容器)进行组合以提供一个模拟输出(n = DAC分辨率)。这种架构虽然最大限度地减少了数字编码电路,但MSB和LSB加权之间的差异却随着分辨率的增加而增大,从而使得元件的精确匹配变得很困难。采用该架构的高分辨率DAC不仅难以制造,而且还对失配误差很敏感。 2.4 开尔文(Kelvin)分压器架构

AD转换技术的发展历程及其趋势

目录 1 引言 (3) 2 A/D转换器的发展历史 (3) 3 A/D转换技术的发展现状 (3) 3.1 全并行模拟/数字转换 (4) 3.2 两步型模拟/数字转换 (4) 3.3 插值折叠型模拟/数字转换 (5) 3.4 流水线型模拟/数字转换 (6) 3.5 逐次逼近型模拟/数字转换 (7) 3.6 Σ-Δ模拟/数字转换 (8) 4 A/D转换器的比较与分类 (9) 5 A/D转换技术的发展趋势 (10)

A/D转换电路的外特性研究以及A/D转换技术的发 展历程和趋势 1 引言 随着电子产业数字化程度的不断发展,逐渐形成了以数字系统为主体的格局。A/D转换器作为模拟和数字电路的接口,正受到日益广泛的关注。随着数字技术的飞速发展,人们对A/D转换器的要求也越来越高,新型的模拟/数字转换技术不断涌现。本文主要介绍了当前几种常用的A/D转换技术;并通过对数字技术发展近况的分析,探讨了A/D转换技术未来的发展趋势。 2 A/D转换器的发展历史 计算机、数字通讯等数字系统是处理数字信号的电路系统。然而,在实际应用中,遇到的大都是连续变化的模拟量,因此,需要一种接口电路将模拟信号转换为数字信号。A/D转换器正是基于这种要求应运而生的。1970年代初,由于MOS工艺的精度还不够高,所以模拟部分一般采用双极工艺,而数字部分则采用MOS工艺,而且模拟部分和数字部分还不能做在同一个芯片上。因此,A/D转换器只能采用多芯片方式实现,成本很高。1975年,一个采用NMOS工艺的10位逐次逼近型A/D转换器成为最早出现的单片A/D转换器。 1976年,出现了分辨率为11位的单片CMOS积分型A/D转换器。此时的单片集成A/D转换器中,数字部分占主体,模拟部分只起次要作用;而且,此时的MOS工艺相对于双极工艺还存在许多不足。1980年代,出现了采用BiCMOS工艺制作的单片集成A/D转换器,但是工艺复杂,成本高。随着CMOS工艺的不断发展,采用CMOS工艺制作单片A/D转换器已成为主流。这种A/D转换器的成本低、功耗小。1990年代,便携式电子产品的普遍应用要求A/D转换器的功耗尽可能地低。当时的A/D转换器功耗为mW级,而现在已经可以降到μW级。A/D转换器的转换精度和速度也在不断提高,目前,A/D转换器的转换速度已达到数百MSPS,分辨率已经达到24位。 3 A/D转换技术的发展现状 通常,A/D转换器具有三个基本功能:采样、量化和编码。如何实现这三个功能,决定

实验2.6模数转换

实验2.6模数转换(ADC)实验 ?实验目的 ●学习模数转换的原理,了解其应用方向; ●学习模数转换芯片TLV0832的原理及使用; ●学习掌握ICETEK-DM6437-A板扩展ADC功能的原理和具体实现方式; ●学习并掌握模数转换的程序设计。 ?实验设备 ●PC一台,安装WindowsXP或以上版本操作系统;安装ICETEK-DM6437-A所需实验 和开发环境。 ●ICETEK-DM6437-A实验箱一台。如选择脱离实验箱测试,则配备ICETEK-XDS100v2+ 仿真器和ICETEK-DM6437-A,+5V电源一只,ICETEK-SG-A信号源一台及相关线缆电 源。 ●标准USB A口转Mini口电缆一条。 ●示波器一台(20M或以上)。 ?实验原理 通用计算机(包括单片机、DSP等)采用数字电路,其输入和输出的信号都是数字量,即高电压和低电压代表的1和0信号。但物理世界中存在的事物并不是按这种方式存在的,现实世界中的电信号也不一定与计算机的电平相同。我们管现实世界存在的信号(转化为电信号后)为模拟量,而计算机用的输入输出信号量叫数字量。那么就存在个问题:如何让我们要解决的物理世界中的各种信号输入到计算机(输入模拟量),计算机通过运算得到的解决方案再通过一定方式能影响到现实世界中的事物(输出模拟量)呢? 计算机输入外部信号的过程叫做信号采集,对于模拟量,使用专门的电路,将被采集的模拟量变换成计算机可以识别的数据,进行分时多次采集后输入计算机系统,我们管这种方式叫做信号的数字化,由于这个采集工作并非连续进行,而是要间隔一段时间(由于电路转换需要一定时间才能完成,在转换完成过程中的信号则无法转换而被舍弃),所以又称被测信号的离散化。 ●模数转换 对于将连续的模拟信号转换为离散的数字信号的过程,称之为模数转换(ADC),实现这一转换的电子电路称为模数转换器(ADC转换器,Analog-to-Digital Converter)。 ●模数转换用途 通过将实际模拟信号转换成数字信号,对于计算机来说实现了信号采集工作环节,这些信号能被计算机加以利用,进行快速数学解析运算后得到计算结果,以便进行智能决策。 模数转换一般应用在视频采集、音频采集、气象信息采集、针对各种对象的传感器。比如:电话拾音器、数字温度计、数字示波器、摄像头、电子秤、心电图仪器、CT扫描,等等等等运用非常广泛。 模数转换最常见的例子就是电视摄像了,我们使用摄像机将现实世界的连续画面进行拍摄(采样),得到的影像转换成数字信息,经过压缩、音视频合成,之后通过互联网进行传递,到了用户端再用一种能将数字信号恢复回模拟信号的装置(机顶盒),解码数据后送电视进行显示。视频信号是连续变化的,而我们在摄像时,一般采用 25帧每秒或30帧每秒的速度进行快速摄影,这就是对信号的离散化,这种离散化由于人眼的视觉暂留现象是可行的。

模数转换器ADC0809应用原理

AD0809应用原理--很全面的资料 1. 0809的芯片说明: ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS 组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。 (1)ADC0809的内部逻辑结构 由上图可知,ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当O E端为高电平时,才可以从三态输出锁存器取走转换完的数据。 (2).引脚结构 IN0-IN7:8条模拟量输入通道

如下图所示,从ADC0809的通道IN3输入0-5V之间的模拟量,通过ADC0809转换成数字量在数码管上以十进制形成显示出来。ADC0809的VREF接+5V电压。 4.电路原理图 5.程序设计: (1).进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P0端口读入,经过数据处理之后在数码管上显示。 (2).进行A/D转换之前,要启动转换的方法: ABC=110选择第三通道 ST=0,ST=1,ST=0产生启动转换的正脉冲信号 . (3). 关于0809的计算: ad0809是根据逐位逼近的方法产生数据的。。 参考电压为0-5V的话。以0809八位255的转换精度每一位的电压值为(5-0)/255≈0. 0196V 设输入电压为X则: X-27*0.0196>=0则AD7=1否则AD7=0。 X-26*0.0196>=0则AD6=1否则AD6=0。 X-20*0.0196>=0则AD0=1否则AD0=0。 (27指2的7次方。26-------20同理) 若参考电压为0-1V (1-0)/255≈0.0039V精度自然高了。。可测量范围小了。 1)汇编源程序: CH EQU 30H DPCNT EQU 31H DPBUF EQU 33H GDATA EQU 32H ST BIT P3.0

单片机AD模数转换实验报告

1、掌握单片机与ADC0809的接口设计方法。 2、掌握Proteus软件与Keil软件的使用方法。 二、设计要求。 1、用Proteus软件画出电路原理图,在单片机的外部扩展片外三总线,并通过片外三总线与0809接口。 2、在0809的某一模拟量输入通道上接外部模拟量。 3、在单片机的外部扩展数码管显示器。 4、分别采用延时和查询的方法编写A/D转换程序。 5、启动A/D转换,将输入模拟量的转换结果在显示器上显示。 三、电路原理图。 图1、电路仿真图 四、实验程序流程框图和程序清单。

1、 查询法: ORG 0000H START: LJMP MAIN ORG 0100H MAIN: MOV SP, #2FH NT: MOV DPTR, #0FF78H MOVX @DPTR, A LOOP: JB , LOOP MOVX A, @DPTR MOV B, #51 DIV AB MOV R0, A MOV A, B MOV B, #5 DIV AB MOV R1, A MOV R2, B LCALL DIR SJMP NT DIR: MOV R7, #0 SJMP LOOP1 BH: MOV A, R1 MOV R2, A LOOP1: MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R2 MOVC A, @A+DPTR MOV P1, A LCALL DELAY INC R7 CJNE R7, #2, BH MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R0 MOVC A, @A+DPTR ANL A, #7FH MOV P1, A LCALL DELAY RET DELAY: MOV R5, #01H DL1: MOV R4, #8EH DL0: MOV R3, #02H DJNZ R3, $ DJNZ R4, DL0 DJNZ R5, DL1 RET WK: DB 10H DB 20H DB 40H DK: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H END display 送百分位字符代码送位选信号延时1ms 送十分位字符代码送位选信号延时1ms 送个位及小数点字符代码送位选信号延时1ms 熄灭第四位数码管延时1ms 返回

实验五 DAAD转换实验 完整版

实验五 D/A、A/D转换实验 一、实验目的 了解数/模、模/数转换基本原理, 掌握DAC0832、ADC0809的使用方法; 掌握定时数据采集程序的编制方法。 二、实验内容 1、D/A转换实验 通过0832D/A转换输出一个从0V开始逐渐升至5V,再从5V降至0V的可变电压输出驱动直流电机。 (1)实验接线图 D/A转换实验接线图 (2)实验程序框图 (3)实验程序清单 CODE SEGMENT ;H0832-2.ASM 0-->5v ASSUME CS:CODE DAPORT EQU 0FF80h PA EQU 0FF20H ;字位口 PB EQU 0FF21H ;字形口 PC EQU 0FF22H ;键入口 ORG 1110H START: JMP START0 BUF DB ?,?,?,?,?,?

data1: db 0c0h,0f9h,0a4h,0b0h,99h,92h db 82h,0f8h,80h,90h,88h,83h,0c6h,0a1h db 86h,8eh,0ffh,0ch,89h,0deh,0c7h db 8ch,0f3h,0bfh,8FH START0: call buf1 DACON0: MOV AL,00H DACON1: MOV DX,DAPORT OUT DX,AL push ax call conv MOV CX,0040H DISCON: PUSH CX call disp POP CX LOOP DISCON pop ax INC AL CMP AL,00H JNZ DACON1 MOV AL,0FFH DACON2: MOV DX,DAPORT OUT DX,AL push ax call conv MOV CX,0040H DISCON2: PUSH CX call disp POP CX LOOP DISCON2 pop ax DEC AL CMP AL,0FFH JNZ DACON2 JMP DACON0 CONV: MOV AH,AL AND AL,0FH MOV BX,OFFSET BUF MOV [BX+5],AL MOV AL,AH AND AL,0F0H MOV CL,04H SHR AL,CL MOV [BX+4],AL RET DISP: MOV AL,0FFH ;00H MOV DX,PA OUT DX,AL MOV CL,0DFH ;20H; 5ms显示子程序 MOV BX,OFFSET BUF DIS1: MOV AL,[BX] MOV AH,00H

单片机AD模数转换实验报告

一、实验目的和要求 1、掌握单片机与ADC0809的接口设计方法。 2、掌握Proteus软件与Keil软件的使用方法。 二、设计要求。 1、用Proteus软件画出电路原理图,在单片机的外部扩展片外三总线,并通过片外三总线与0809接口。 2、在0809的某一模拟量输入通道上接外部模拟量。 3、在单片机的外部扩展数码管显示器。 4、分别采用延时和查询的方法编写A/D转换程序。 5、启动A/D转换,将输入模拟量的转换结果在显示器上显示。 三、电路原理图。 图1、电路仿真图

四、实验程序流程框图和程序清单。 1、 查询法: ORG 0000H START: LJMP MAIN ORG 0100H MAIN: MOV SP, #2FH NT: MOV DPTR, #0FF78H MOVX @DPTR, A LOOP: JB P3.3, LOOP MOVX A, @DPTR MOV B, #51 DIV AB MOV R0, A MOV A, B MOV B, #5 DIV AB MOV R1, A MOV R2, B LCALL DIR SJMP NT DIR: MOV R7, #0 SJMP LOOP1 BH: MOV A, R1 MOV R2, A LOOP1: MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R2 MOVC A, @A+DPTR MOV P1, A LCALL DELAY INC R7 CJNE R7, #2, BH MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R0 MOVC A, @A+DPTR ANL A, #7FH MOV P1, A LCALL DELAY RET DELAY: MOV R5, #01H DL1: MOV R4, #8EH DL0: MOV R3, #02H DJNZ R3, $ DJNZ R4, DL0 DJNZ R5, DL1 RET WK: DB 10H DB 20H DB 40H DK: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H display 送百分位字符代码送位选信号延时1ms 送十分位字符代码送位选信号延时1ms 送个位及小数点字符代码 送位选信号延时1ms 熄灭第四位数码管 延时1ms 返回

实验六ADC模数转换实验

实验六、ADC0809模数转换实验 一、实验目的 1、掌握ADC0809模数转换芯片与单片机的连接方法及ADC0809的典型应用 2、掌握用查询的方法、中断方法完成模数转换程序的编写方法 二、实验说明 本实验使用ADC0809模数转换器,ADC0809是8通道8位CMOS逐次逼近式AD转换芯片,片内有模拟量通道选择开关及相应的通道锁存、译码电路、AD转换后的数据由三态锁存器输出,由于片内没有时钟需外接时钟信号,下图为芯片的引脚图 各引脚功能如下: (1)IN0-IN7:八路模拟信号输入端 (2)ADDA、ADDB、ADDC:三位地址译码输入端,八路模拟信号选择由这三个端口控制 (3)CLOCK:外部时钟输入端 (4)D0-D7:数字量输出端 (5)OE:AD转换结果输出允许控制端,当OE为高电平时,允许AD转换结果从D0~D7端输出。 (6)ALE:地址锁存允许信号输入端。八路模拟通道地址由A、B、C输入,在ALE 信号有效时将八路地址锁存。 (7)START:启动AD转换信号输入端,当START端输入一个正脉冲时,将进行AD 转换 (8)EOC:AD转换结束信号输出端,当AD转换结束以后,EOC输出高电平。 (9)VREF(+)、VREF(-):正负基准电压输入端,基准正电压为+5V。 (10)VCC、GND:芯片的电源端和接地端。 三、实验步骤 1、单片机最小应用系统1的P0口接AD转换的D0~D7,单片机最小应用系统1的Q0~Q7接AD转换的A0~A7,单片机最小应用系统1的WR、RD、P2.0、ALE、INT1分别连接AD转换的WR、RD、P2.0、CLOCK、INT1,AD转换的IN接+5V,单片机最小应用系统的P1口接LED灯。 2、用串行数据通信线连接计算机与仿真器,把仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。

AD转换实验报告

A/D转换实验报告

摘要 本设计是利用AT89C51、ADC0809、CD4027芯片为核心,加以其他辅助电路实现对信号的A/D转换,其中以单片机AT89C51为核心控制A/D转换器。先是对信号进行采集,然后用ADC0809对信号实现从模拟量到数字量的转换。改变采样数据,调整电路,使其达到精确转换。

目录 1.方案设计与论证 (1) 1.1理论分析 (1) 1.2输出、输入方案选择 (1) 1.3显示方案 (2) 1.4时钟脉冲选择 (2) 2.硬件设计 (2) 2.1A/D转换器模块 (2) 2.2单片机模块 (3) 2.3JK触发器模块 (4) 3软件设计 (4) 4.仿真验证与调试 (5) 4.1测试方法 (5) 4.2性能测试仪器 (7) 4.4误差分析 (7) 5.设计总结及体会 (5) 附录(一)实物图 (6) 附录(二)软件程序 (6)

1.方案设计与论证 1.1理论分析 8位A/D转换由芯片内部的控制逻辑电路、时序产生器、移位寄存器、D/A转换器及电压比较器组成,它具有将模拟量转换成数字量的特性,其原理图如下: AD转换原理图(1) 1.2输出、输入方案选择 A/D转换器有多路选择器,可选择八路模拟信号IN0~IN7中的一路进入A/D转换。现在选择IN0通道作为输入,则对应的地址码位ADD C=0、ADD B=0、ADD A=0。当转换完成后,OE=1,打开三态输出锁存缓冲器,将转换数据从D7~D0口输出到单片机的P0端口。 IN口输入D端口输出 A/D转换器 图(2)

1.3显示方案 单片机控制数码管显示有两种动态和静态两种方法,由于静态控制数码管每次只能显示一位,造成资源浪费,所以选择动态扫描,并增加变换频率。 1.4时钟脉冲选择 方案一:可以直接用矩形波来控制 方案二:ALE通过JK触发器完成二分频,然后 Q端接CLK。因为晶振的频率是12MHz,ALE的频率为12NHz×1/6=2MHz,经过JK 触发器二分频后就是1MHz. 2.硬件设计 2.1 A/D转换器模块 A/D转换电路图(3) 模拟量从IN0端口输入,经电压比较器后输入到控制电路,转换后从D0~D7口输出,地址码位ADD C=0、ADD B=0、ADD A=0。OE 端输出允许控制信号,EOC转换结束控制信号,EOC=0,转换结束后EOC=1。START转换启动信号,上升沿将片内寄存器清零,下降

AD_DA原理及主要技术指标

一.产生原因 随着现代科学技术的迅猛发展特别是数字系统已广泛应用于各种学科领域及日常生活微型计算机就是一个典型的数学系统。但是数字系统只能对输入的数字信号进行处理其输出信号也是数字信号。而在工业检测控制和生活中的许多物理量都是连续变化的模仿量如温度、压力、流量、速度等这些模拟量可以通过传感器或换能器变成与之对应的电压、电流或频率等电模拟量。为了实现数字系统对这些电模拟量进行检测、运算和控制就需要一个模拟量与数字量之间的相互转换的过程。即经常需要将模拟量转换成数字量简称为AD转换完成这种转换的电路称为模数转换器(Analog to Digital Converter) 简称ADC;或将数字量转换成模拟量简称DA转换完成这种转换的电路称为数模转换器(Digital to Anal og Converter) 简称DAC图1是某微机控制系统框图。 二.ADC和DAC基本原理及特点 2.1 模数转换器(ADC)的基本原理 模拟信号转换为数字信号一般分为四个步骤进行即取样、保持、量化和编码。前两个步骤在取样-保持电路中完成后两步骤则在ADC中完成。 常用的ADC有积分型、逐次逼近型、并行比较型/串并行型、Σ -Δ调制型、电容阵列逐次比较型及压频变换型。下面简要介绍常用的几种类型的基本原理及特点: 1)积分型(如TLC7135) 。 积分型ADC工作原理是将输入电压转换成时间或频率,然后由定时器/计数器获得数字值。其长处是用简朴电路就能获得高分辨率,但缺点是由于转换精度依靠于积分时间因此转换速率极低。 初期的单片ADC大多采用积分型,现在逐次比较型已逐步成为主流。双积分是一种常用的AD 转换技术具有精度高,抗干扰能力强等优点。但高精度的双积分AD芯片价格较贵,增加了单片机系统的成本。 2)逐次逼近型(如TLC0831) 。 逐次逼近型AD由一个比较器和DA转换器通过逐次比较逻辑构成从MSB开始顺序地对每一位将输入电压与内置DA转换器输出进行比较经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低在低分辨率( 12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) 。 并行比较型AD采用多个比较器仅作一次比较而实现转换又称FLash型。由于转换速率极高n位的转换需要2n - 1个比较器因此电路规模也极大价格也高只适用于视频AD 转换器等速度非凡高的领域。串并行比较型AD结构上介于并行型和逐次比较型之间最典型的是由2个n /2位的并行型AD转换器配合DA转换器组成用两次比较实行转换所以称为Halfflash型。 二.4)Σ-Δ调制型(如AD7701) 。 Σ- Δ型ADC以很低的采样分辨率( 1位)和很高的采样速率将模拟信号数字化通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率然后对ADC输出进行采样抽取处理以降低有效采样速率。Σ-Δ型ADC的电路结构是由非常简单的模拟电路和十分复杂的数字信号处理电路构成。 5)电容阵列逐次比较型。 电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式也可称为电荷再分配型。一般的

AD转换实验报告

8292924809 基于单片机的AD转换电路 专业: 班级: 学号: 组员: 指导老师: 年月日

目录 键入章标题(第 1 级) (1) 键入章标题(第2 级) (2) 键入章标题(第3 级) (3) 键入章标题(第 1 级) (4) 键入章标题(第2 级) (5) 键入章标题(第3 级) (6)

引言 A/D转换是指将模拟信号转换为数字信号,这在信号处理、信号传输等领域具有重要的意义。常用的A/D转换电路有专用A/D集成电路、单片机ADC模块,前者精度高、电路复杂,后者成本低、设计简单。基于单片机的A/D转换电路在实际电路中获得了广泛的应用。 一般的A/D转换过程是通过采样、保持、量化和编码4个步骤完成的,这些步骤往往是合并进行的。当A/D转换结束时,ADC输出一个转换结束信号数据。CPU可由多种方法读取转换结果:a查询方式;b中断方式;c DMA方式。 通道8为A/D转换器,ADC0809是带有8为A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输出,共用A/D转换器进行转换。三台输出锁存器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。 一个实际系统中需用传感器把各种物理参数测量出来,并转换为电信号,在经过A/D转换器,传送给计算机;微型计算机加工后,通过D/A转换器去控制各种参数量。

模数转换器综述_ADC

模数转换器ADC_综述 随着数字技术,特别是计算机技术的飞速发展普及,在现代控制、通讯及检测领域中,对信号的处理广泛采用了数字计算机技术。由于系统的实际处理对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别和处理这些信号,必须首先将这些模拟信号转换成数字信号。这样,就需要一种能将模拟信号转换为数字信号的电路,即模数转换电路(Analog to Digital Converter, ADC)。 模数转换过程 模数转换包括采样、保持、量化和编码四个过程。采样就是将一个连续变化的信号x(t)转换成时间上离散的采样信号x(n)。根据Nyquist-Shannon theorem采样定理,采样频率至少要大于或等于模拟信号最高频率的两倍,才可以无失真地重建恢复原始信号x(t)。通常采样脉冲的宽度是很短的,故采样输出是截断的窄脉冲。要将一个采样输出信号数字化,需要将采样输出所得的瞬时模拟信号保持一段时间,这就是保持过程。图1即为采样过程。 图1采样过程 量化是将连续幅度的抽样信号转换成离散时间、离散幅度的数字信号,数字信号最低有效位中的1表示的数量大小,就等于量化单位Q,如图2所示。把量化的数值用二进制代码表示,称为编码,见图3。这个二进制代码就是ADC转换的输出信号。 量化的主要问题就是量化误差。既然模拟电压是连续的,那么它就不一定能被Q整除,因而不可避免的会引入误差,我们把这种误差称为量化误差。在把模拟信号划分为不同的量化等级时,用不同的划分方法可以得到不同的量化误差。 图2采样过程

图3编码过程 要提高ADC的精度,可以通过提高采样间隔Ts和分辨率Q来实现。实际中,输入模拟信号的频率由于存在无限次谐波,因此要在采样前加入抗混叠滤波器,该滤波器与采样频率的关系一般为:f s≈ (3…5)*f filter。图4描述了这一过程。 图4加入抗混叠滤波器 模数转换技术是现实各种模拟信号通向数字世界的桥梁,作为将模拟信号转换成数字信号的模数转换技术主要有以下几种。 分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。下面对各种类型的ADC作简要介绍。 并行比较型 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash型。由于转换速率极高,转换需要很多个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。其原理如图5所示。

数模转换器和模数转换器实验报告

实验报告 课程名称微机原理与接口技术 实验项目实验五 数/模转换器和模/数转换器实验实验仪器 TPC-USB通用微机接口实验系统 系别计算机系 专业网络工程 班级/学号 学生 _ 实验日期 成绩_______________________ 指导教师王欣

实验五数/模转换器和模/数转换器实验 一、实验目的 1. 了解数/模转换器的基本原理,掌握DAC0832芯片的使用方法。 2. 了解模/数转换器的基本原理,掌握ADC0809的使用方法。 二.实验设备 1.PC微机系统一套 2.TPC-USB通用微机接口实验系统一套 三.实验要求 1.实验前要作好充分准备,包括程序框图、源程序清单、调试步骤、测试方法、对运行结果的分析等。 2.熟悉与实验有关的系统软件(如编辑程序、汇编程序、连接程序和调试程序等)使用方法。在程序调试过程中,有意识地了解并掌握TPC-USB通用微机接口实验系统的软硬件环境及使用,掌握程序的调试及运行的方法技巧。 3.实验前仔细阅读理解教材相关章节的相关容,实验时必须携带教材及实验讲义。 四.实验容及步骤 (一)数/模转换器实验 1.实验电路原理如图1,DAC0832采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub),编程产生以下锯齿波(从Ua和Ub输出,用示波器观察) 图1 实验连接参考电路图之一 编程提示: 1. 8位D/A转换器DAC0832的口地址为290H,输入数据与输出电压的关系为:

(UREF表示参考电压,N表示数数据),这里的参考电压为PC机的+5V电源。 2. 产生锯齿波只须将输出到DAC0832的数据由0循环递增。 3. 参考流程图(见图2): 图2 实验参考流程图之一 (二)模/数转换器 1. 实验电路原理图如图3。将实验(一)的DAC的输出Ua,送入ADC0809通道1(IN1)。 图3 实验连接参考电路图之二 2. 编程采集IN1输入的电压,在屏幕上显示出转换后的数据(用16进制数)。编程提示: 1. ADC0809的IN0口地址为298H,IN1口地址为299H。 2. IN0单极性输入电压与转换后数字的关系为:

AD-DA转换技术的发展历程及其趋势

AD/DA转换技术的发展历程及其趋势 引 言 随着电子产业数字化程度的不断发展,逐渐形成了以数字系统为主体的格局。A/D转换器作为模拟和数字电路的接口,正受到日益广泛的关注。随着数字技术的飞速发展,人们对A/D转换器的要求也越来越高,新型的模拟/数字转换技术不断涌现。本文着重介绍了当前几种常用的模拟/数字转换技术;并通过对数字技术发展近况的分析,探讨了模拟/数字转换技术未来的发展趋势。 A/D转换器的发展历史 计算机、数字通讯等数字系统是处理数字信号的电路系统。然而,在实际应用中,遇到的大都是连续变化的模拟量,因此,需要一种接口电路将模拟信号转换为数字信号。A/D转换器正是基于这种要求应运而生的。1970年代初,由于MOS工艺的精度还不够高,所以模拟部分一般采用双极工艺,而数字部分则采用MOS工艺,而且模拟部分和数字部分还不能做在同一个芯片上。因此,A/D转换器只能采用多芯片方式实现,成本很高。1975年,一个采用NMOS工艺的10位逐次逼近型A/D转换器成为最早出现的单片A/D转换器。 1976年,出现了分辨率为11位的单片CMOS积分型A/D转换器。此时的单片集成A/D 转换器中,数字部分占主体,模拟部分只起次要作用;而且,此时的MOS工艺相对于双极工艺还存在许多不足。1980年代,出现了采用BiCMOS工艺制作的单片集成A/D转换器,但是工艺复杂,成本高。随着CMOS工艺的不断发展,采用CMOS工艺制作单片A/D转换器已成为主流。这种A/D转换器的成本低、功耗小。1990年代,便携式电子产品的普遍应用要求A/D转换器的功耗尽可能地低。当时的A/D转换器功耗为mW级,而现在已经可以降到μW级。A/D转换器的转换精度和速度也在不断提高,目前,A/D转换器的转换速度已达到数百MSPS,分辨率已经达到24位。 模拟/数字转换技术的发展现状 通常,A/D转换器具有三个基本功能:采样、量化和编码。如何实现这三个功能,决定了A/D转换器的电路结构和工作性能。A/D转换器的类型很多,下面介绍几种目前常用的模拟/

相关文档
相关文档 最新文档