文档库 最新最全的文档下载
当前位置:文档库 › 化工专业实验指导书

化工专业实验指导书

化工专业实验指导书
化工专业实验指导书

北方民族大学

Beifang Ethnic University

《化工专业实验》课程实验

指导书

北方民族大学教务处

目录

实验一催化反应精馏法制乙酸乙酯 ................. 错误!未定义书签。实验二乙醇脱水反应研究实验 (8)

实验三中空纤维超过滤膜分离实验 (16)

实验四二元系统气液平衡数据的测定 (23)

实验五三釜串联停留时间分布测定 (26)

实验六十二烷基苯磺酸钠的合成(磺化反应) (32)

实验七2,4-二硝基苯酚的制备(羟基化反应) (38)

实验八超临界CO2萃取实验 (42)

实验九煤的工业分析实验 (45)

实验十煤炭发热量测定实验 (47)

实验十一内压薄壁容器的应力测定实验 (54)

实验十二外压薄壁圆筒形容器失稳实验 (60)

实验十三厚壁圆筒爆破实验 (63)

实验十四用废旧铝制品制备超细AL(OH)3粉体 (68)

附录1:实验报告的封面 (78)

附录2:实验报告的要求 (80)

实验一催化反应精馏法制乙酸乙酯

一、实验目的

1、了解反应精馏是既服从质量作用定律又服从相平衡规律的复杂过程,是反应和分离过程的复合,通过实验数据和结果,了解反应精馏技术比常规反应技术在成本和操作上的优越性。

2、了解玻璃精馏塔的构造和原理,学习反应精馏玻璃塔的使用和操作,掌握反应精馏操作的原理和步骤。

3、学习用反应工程原理和精馏塔原理,对精馏过程做全塔物料衡算和塔操作的过程分析。

4、了解反应精馏与常规精馏的区别,掌握反应精馏法适宜的物系。

5、学习气相色谱的原理和使用方法,学会用气相色谱分析塔内物料的组成,了解气相色谱分析条件的选择和确定方法,并学习根据出峰情况来改变色谱条件。

6、学习用色谱分析,进行定量和定性的方法,学会求取液相分析物校正因子及计算含量的方法和步骤。了解气相色谱仪以及热导池检测器的原理,了解分离条件的选择和确定。

二、实验原理

1、反应精馏原理

反应精馏是随着精馏技术的不断发展与完善,而发展起来的一种新型分离技术。通过对精馏塔进行特殊改造或设计后,采用不同形式的催化剂,可以使某些反应在精馏塔中进行,并同时进行产物和原料的精馏分离,是精馏技术中的一个特殊领域。

本实验为乙醇和乙酸的酯化反应,一般情况下,反应受平衡影响,转化率最大只能是平衡转化率,而实际反应中只能维持在低于平衡转化率的水平。而在精馏塔中进行的酯化反应,往往因为生成物中有低沸点或高沸点物质存在,而多数会和水形成最低共沸物,从而可以从精馏塔顶连续不断的从系统中排出,使塔中的化学平衡发生变化,永远达不到化学平衡,从而导致反应不断进行,不断向右移动,最终的结果是反应原料的总体转化率超过平衡转化率,大大提高了反应效率和能量消耗。同时由于在反应过程中也发生了物质分离,也就减少了后续工序分离的步骤和消耗,在反应中也就可以采用近似理论反应比的配料组成,既降低了原料的消耗,又减少了精馏分离产品的处理量。

乙醇和乙酸的酯化反应精馏的催化剂用浓硫酸,是由于其催化作用不受塔内温度限制,在全塔内都能进行催化反应。反应的化学方程式为

O H CH COOCH CH OH CH CH COOH CH 2323233+?+

2. 应精馏塔原理

反应精馏塔用玻璃制成。直径20~25mm ,塔总高约1400mm ,填料高度约1300mm ,塔内装φ2.5*2.5不锈钢θ网环型填料(316L )。

塔身分两段,上面是精馏段,下面是提馏段,长度各为700mm 。全塔有5个取样口,也可以当进样口使用。取样口在常压操作时使用,里面用硅胶垫密封,每取样20次以上应根据密封情况,检查是否需要更换。塔身外壁镀有半导体金属膜,用于控制塔身的散热,并尽可能保持塔身和环境为绝热状态,保温电流能使塔身的半导体加热保温。加热温度的设定需要根据实验物系的性质决定,由仪表来控制加热的温度,加热电流可以用仪表或手动来调节,一般为0.15~0.3A 。通常可以设定保温的温度比塔内的温度低5~12℃。仪表采用AI708型,可以参加仪表使用说明书来调节或改变仪表设置,精馏段和提馏段各使用一块仪表加热。

塔内蒸汽到达塔顶后被冷凝器冷凝,顶气相的温度由仪表显示。塔顶冷凝采用自来水,冷凝液体进入塔顶回流头,采用摆动式回流比控制器操作,一部分液体被从右面采出进入到塔顶储罐,另一部分进入到塔内回流。回流比由仪表面板的回流比控制器控制,实验中一般为3~5,此控制系统由塔头上摆锤、电磁铁线圈、回流比计数拨码电子仪表组成。

本实验是间歇式反应精馏,在500ml 间歇塔釜一次性加入原料的混合物和催化剂,然后加热到反应温度进行反应。通常乙醇的摩尔数和乙酸摩尔数比为1.03~1.05:1.0,浓硫酸加入量按应加入乙酸理论重量的比例加入,一般在0.2~0.3%(wt ),加入量越大,反应速度越快。反应完全发生在塔釜内,反应生成的产物在塔内发生分离,轻组分乙酸乙酯和水的共沸物不断向上移动,并最终从塔顶排出。而塔釜内的乙醇和乙酸,随着反应的进行,浓度不断减少,水量不断增加,反应温度也开始慢慢升高。最后,在塔顶得到的都是含水的乙酸乙酯,有时候能自己分层,但通常是加入少量的水,使它们分层,上层就是乙酸乙酯,下层为含少量乙酸乙酯的水。

3. 色谱分析原理

产物的分析由于比较复杂,含有多种成分,一般不能用滴定或折光仪分析,而采用气相色谱法。实验所用的色谱柱固定相为101白色担体,固定液为邻苯二甲酸二壬酯,固定液含量一般为10%。需要测定的样品分别为乙醇、乙酸、水和乙酸乙酯,色谱采用热导池检测

器,出峰顺序为水、乙醇、乙酸、乙酸乙酯。汽化室温度150℃,柱箱温度130~140℃,检测器温度150℃,桥电流140mA ,衰减1,进样量0.2μl 。

全塔物料总平衡如图所示

物料平衡方程如下:

对第j 块理论板上的i 组分进行物料衡算如下:

L j-1X i ,j-1+V j+1Y i ,j+1+F j Z j ,i +R i ,j =V j Y i ,j +L j X i ,j 2≤j ≤n ,i =1,2,3,4 (1) (1) 气液平衡方程

对平衡级上某组分i 有如下平衡关系:

K i,j ?X i ,j -Y i ,j =0 (2)

每块板上组成的总和应符合下式:

∑∑====n

i j i n

i j

i X Y

1

,1

,1;1 (3)

(2) 反应速率方程

52,,,,10)(

???=∑j

i j

i j

i j j j i X Q

X P K R (4)

式(4)指原料中各组分的浓度相等条件下才能成立,否则应予修正。 (3) 热量衡算方程

对平衡级上进行热量衡算,最终得到下式:

L j-1h j-1-V j H j-L j h j+V i+1H j+1+F j H rj-Q j+R j H rj=0(5)

式中:

F j—j板进料流量

h j—j板上液体焓值

H j—j板上气体焓值

H rj—j板上反应热焓值

L j—j板下降液体量

K i,j—i组分的汽液平衡常数

P j—j板上液体混合物体积(持液量)

R i,j—单位时间j板上单位液体体积内i组分反应量

V j—j板上升蒸汽量

X i,j—j板上组分i的液相摩尔分数

Y i,j—j板上组分i的气相摩尔分数

Z i,j—j板上i组分的原料组成

θi,j—反应混合物i组分在j板上的体积

Q j—j板上冷却或加热的热量

三、装置及试剂

1、装置

玻璃精馏塔,天平,烧杯,量筒,胶头滴管,三角烧瓶,分液漏斗,气相色谱(TCD),色谱工作站。

2、试剂

无水乙醇(分析纯),含量99.0%;冰乙酸(分析纯),含量99.0%;乙酸乙酯(分析纯),含量99.0%;浓硫酸(化学纯),含量﹥98.0%

四、实验步骤

1、打开色谱载气的氢气发生器。调节氢气减压阀的压力为0.2Mpa,检查色谱后面的稳压阀是否打开并调到合适位置?此时,色谱仪前面的两个压力表应该能调节到0.15Mpa左右。

2、在用皂沫确定色谱柱两个尾气出口都有气体后,打开启色谱仪主开关。调节面板上的两个载气压力调节阀,使两路色谱柱的载气H2流量为25~30ml/min,可以用皂沫流量计和秒表来测定出口处的流量,一般应使两路的流量基本相同。

3、调节完毕载气速度后,分别打开柱温、汽化器、检测器加热开关,然后按下柱温设定的琴键开关,调节旋钮,使显示窗口的柱温设定为140℃(可以根据出峰分离情况来调节),

然后可以将琴键开关切换到显示状态,此时,能观察到色谱柱箱的温度会快速升高,否则,应按色谱使用说明书检查色谱保险和加热电路。

4、设定气化室温度为140℃,检测器温度为150℃,打开桥电流开关,并调节旋钮,使桥电流为140mA,信号衰减为1。色谱柱、汽化器、检测器的温度都稳定后,再用秒表和皂沫流量计准确测定色谱柱载气出口气体流量,并记录室温。在标准压力表上读出柱前压。

5、开色谱记录仪或色谱工作站(根据用户自己的配置情况),调节色谱面板下面的调零旋钮,此时,记录仪或色谱工作站的指针或读数应发生变化。待色谱仪基线稳定后,调节基线的位置在―0‖以上。

6、分别用量筒大约量取110ml乙酸(99.5%)和120ml乙醇(99.7%)加入到250ml烧杯中,并在天平上用滴管加入直到乙酸为120.0克,乙醇为96.0克,用滴管在乙酸中加入浓硫酸20~30滴,然后把乙醇和乙酸一起加入到500ml的塔釜中。

7、打开塔顶冷却水,观察是否有水?如果正常,则打开控制柜加热开关,分别打开塔釜、精馏段、提馏段加热控制温度仪表,并设定塔釜加热温度为95℃,精馏段和提馏段加热保温温度为80℃。调节塔釜加热电流为0.3A,保温电流暂时不打开。记录实验开始的时间,每隔15或30分钟记录各种实验数据一次。

8、分别准确称取33、8、40、20克左右的蒸馏水、分析纯乙醇、分析纯乙酸、分析纯乙酸乙酯,混合后用气相色谱分析,并最少分析三次,用于计算每个组分的校正因子。

9、在塔釜温度达到60℃时,开始慢慢调节保温加热电流,精馏段为0.15A、提馏段0.20A,注意不同季节和环境温度,可以适当改变加热电流的大小。

10、在塔顶开始回流后,保持全回流15分钟,使塔内填料被充分润湿。打开回流比开关,设置回流比为3,此时,能观察到回流头的摆锤开始来回摆动,有液体开始流到塔顶产品储罐中,保持这个回流比操作30分钟,然后把回流比改成5。

11、在塔釜温度开始从74℃左右突然开始升高时,反应可能接近终点。在塔釜内的液面不能足够循环时,可以停止采出,把回流比关闭,使塔为全回流操作,关闭塔身保温加热电流,将仪表温度设定为室温。关闭塔釜加热仪表,将加热电流调节调节到零。

12、将塔顶储罐的产品倒入到烧杯里,加入100ml蒸馏水,充分震荡,然后加入到分液漏斗中,放置在试管架上静止分离20~30分钟。仔细放出分液漏斗下部的水准确称重,然后将上部的产品乙酸乙酯也准确称重,分别用色谱进行分析。最少重复两次。

13、等待15分钟使塔内液体完全流回到釜内,待釜液温度降低到40℃时,可以打开塔釜,将釜内液体准确称重,并用色谱进行分析。

14、停止通冷却水。在分析完毕后,首先关闭桥电流和色谱检测器加热,再关闭汽化器加热。等检测器温度降到70~90℃以下时,再关闭色谱载气和柱箱加热。关闭色谱仪,关闭氢气钢瓶减压阀,并等减压阀压力为零时,再关闭钢瓶总阀。将产品废液收集到废液瓶中,清洗各种玻璃仪器,结束全部实验。

五、实验数据及处理

根据实验情况,记录数据如下,室温25℃,大气压力760.0mmHg。分析用气相色谱为双气路910T型。使用热导池检测器,分析数据用色谱工作站处理。

表一:色谱分析条件原始数据记录表

原始记录表

表二:色谱分析标样混合物组成x

i

表三:反应温度原始记录表

表四:馏出物组成原始数据表

表五:实验结果数据记录表

六、思考题

1、怎样改变色谱分析条件,才能使分析的峰形最好?

2、反应精馏的原料转化率和收率受那些因素影响?如何改变实验条件才能尽可能提高转化率和收率?

3、怎样对反应精馏塔做物料衡算?试举例说明。

4、与常规反应和精馏相比,反应精馏有什么优点?试从工艺和能耗两方面分析。

实验二乙醇脱水反应研究实验

一、实验目的:

1.掌握乙醇脱水实验的反应过程和反应机理、特点,了解副反应和生成副产物的过程。

2.学习气固相管式催化反应器的构造、原理和使用方法,学习反应器正常操作和安装,掌握催化剂评价的一般方法和获得适宜工艺条件的研究步骤和方法。

3.学习自动控制仪表的使用,如何设定温度和加热电流大小。怎样控制床层温度分布。

4.学习气体在线分析的方法和定性、定量分析,学习如何手动进样分析液体成分。了解气相色谱的原理和构造,掌握色谱的正常使用和分析条件选择。

5.学习微量泵和蠕动泵的原理和使用方法,学会使用湿式流量计测量流体流量。二、实验原理:

乙醚是一种应用广泛的化工产品。目前,在工业生产中主要是用硫酸作用下催化乙醇脱水的方法制备。但是这种方法存在着一定的缺陷,如,劳动强度大、设备腐蚀严重、产品酸度高需要进行碱中和、对环境污染严重,使生产成本提高等[1]。这些问题引起了化工学者的关注,着手开发可以取代硫酸的新型催化剂体系。

目前,国内国外已有大量关于乙醇脱水制乙醚固体催化剂研究开发的科技报道。经过化工学者的努力已有一部分理想的催化剂投入到乙醚的工业生产中去,且实际使用情况非常好,基本上解决了硫酸催化乙醇脱水制乙醚所带来的生产问题,显示出了很高的实际应用价值,使工业生产简单化,给工业化生产乙醚带来了革命性的曙光。

当今,乙醚的工业生产方法主要采用乙醇硫酸脱水法,乙醇氧化铝催化脱水法和乙烯水合生产乙醇副产乙醚法。国外主要采用乙烯水合法,其次采用乙醇氧化铝催化脱水法来弥补。

乙醇硫酸法:

2CH3CH2OH H2SO4CH3CH2-O-CH2CH3 + H2O

140℃

反应温度不得超过170℃,否则产生乙烯,工业上用乙醇脱水法制乙醚,常用氧化铝作为催化剂,在300℃左右进行脱水反应

(乙醇氧化铝催化脱水法)

Al2O3

2CH3CH2OH —————CH3CH2-O-CH2CH3 + H2O

300℃

催化剂简介(ZSM-5分子筛):

取1.0L水玻璃[长岭炼油化工厂催化剂厂生产,SiO2含量250g/L,Na2O78.4g/L,密度(20℃)1.259g/ml]加热至100℃,向其中加入21.0g ZSM一5分子筛[齐鲁石化公司周村催化剂厂生产,相对结晶度90%,硅铝比60,干基含量90%(质量分数)]并搅拌均匀;76.5ml 硫酸铝溶液(长岭炼油化工厂催化剂厂生产,Al2O3含量92.7g/L,d204=1.198)和175.7ml稀硫酸(质量分数56%,d204 =1.192)所组成的酸化硫酸铝溶液,在搅拌下加入到上述已加热的水玻璃中制成反应混合物,所得物料总体积为1260ml,将该反应混合物装如反应釜,于180℃下搅拌、干燥后,得ZSM一5产品170g(干基),其相对结晶度95%,热崩塌温度1105℃,BET比表面354m2/g,单釜产量增加了1.7倍

ZMS-5沸石是一类具有独特孔道结构形状的沸石,它与熟知的大孔八面沸石的孔道不同,它们具有非常好的催化选择性和高的热稳定性,ZSM-5沸石属高硅五元环形沸石,其基本结构有八个五元环,组成这种基本结构单元,通过共边界成链状结构,然后再围成沸石骨架。

ZSM-5晶体属理想的斜方晶系,空间群Pnma,晶格常数为:a=2.01nm ,b=1.99nm,

c=1.34nm ,也发现有单斜对称的Na型的单晶包组成的为Na n[Al n Sai96-nO].16H2o,n代表晶包

中的铝原子数,可以从0--20左右,经过高温容烧或某些化学处理,ZMS-5沸石的晶体对称性有可能降低,其晶体结构可由正交晶系转变成单斜晶系。

ZSM-5 分子筛的催化性能:晶体具有均匀的孔结构,孔径的大小与通常分子相当,它们具有很大的表面积,且表面极性很高,一些具有催化活性的金属可以通过交换进入ZSM-5分子筛的内部,然后还原为金属元素状态,可获得较高的分散度,同时ZSM-5分子筛骨架结构的稳定性很高。这些结构性质,是分子筛不仅成为优良的吸附剂,而且成为良好的催化剂和催化剂载体,ZSM-5分子筛催化剂主要作为酸性催化剂和双功能催化剂。

对ZSM-5分子筛催化作用的广泛研究表明:在浓硫酸、卤化铝和无定形硅酸铝中发生的反应,同样可以在ZSM-5分子筛催化剂上进行。ZSM-5分子筛催化的显著特点是对于许多反应都有催化活性,就像酶催化一样,但酶催化的操作温度和PH值范围较小,而分子筛在非常宽阔的温度范围都有催化活性,许多反应仍有很高的转化率,分子筛起到酸催化剂的作用,分子筛不像AlCl3那样容易与反应物配合,也不像硫酸那样具有腐蚀性和容易发生磺化和氧化反应。在分子筛上的裂解,异构化,烃基化,歧化,水合和脱水等反应均属酸催化反应。ZSM-5分子筛作为催化剂最明显的特点是对分子的大小有很强的选择性,ZSM-5是Zeolite Socony Mobil 的缩写是美国Socony Mobil 公司研究和开发的一系列新型合成沸石,ZSM一5是公司在20世纪60年代合成的一种目前应用最广泛的沸石。

ZSM一5沸石分子筛的晶体,具有丰富的微孔通道和孔穴,在ZSM一5分子筛中进行的催化反应面临以下三种不同的条件和结果(即选择性):

(1)由于大多数活性中心都已被限制在孔结构之内,所以,只有那些半径与分子筛孔径相

当(较大或略大)的反应物分子,才有可能进入孔内,并在其中的活性中心上发生反应。

而无法进入孔内的反应物,只有在为数很少的外表面的活性中心上反应。

(2)只有那些进入孔后而又能再从孔中扩散出来的分子,才可能作为产品出现。当然,这

种分子也只占一部分,而其余的产物分子,或者体积较大,或裂解成堵塞孔道、或使催化剂失活的小分子,则也不能从孔中排除作为产物出现。

(3)某些孔内反应,因为需要形成体积较大的过度状态(或中间态)分子,由于它们受到分

子筛孔道孔穴尺寸的约束和限制,使得这些过度态的中间产物,难以在孔中形成;反之,分子较小的过度态产物,则可以形成。

由于ZSM-5分子筛具有巨大的内表面,因此分子筛的活性中心不仅存在于分子筛表面上,而且内表面业存在催化活性中心起到催化作用。

反应机理:

主反应:CH3CH2OH CH3CH2OCH2CH3+H2O

副反应:CH3CH2OH CH2CH2+H2O

在实验中,由于反应生成的产物乙醚和未反应的乙醇留在了液体冷凝器中,而其他几个副产物都是挥发气体,进入尾气湿式流量计计量总体积后排出。

对于不同的反应温度,通过计算不同的转化率和反应速率,可以得到不同反应温度下的反应速率常数,并得到温度的关联式。

三、实验仪器和药品:

乙醇脱水气固反应器,气相色谱及计算机数据采集和处理系统,精密微量液体泵。

乙醇脱水催化剂,化学纯乙醇,分析纯乙醚,蒸馏水。

四、实验步骤:

1.准备工作:

(1).色谱连接:

检查作为色谱载气的氢气钢瓶或氮气钢瓶压力是否大于 2.5kgf/cm2,如果小于2.5kgf/cm2,要更换钢瓶.检查无误后,接好色谱载气接口,处理好色谱尾气接口,检查色谱柱的连接情况.

(2).催化剂的装填:

先准备好催化剂,然后用干量筒量取催化剂5ml,在精密天平上称重并记录.根据反应管的内径,计算出5ml催化剂所占的高度,然后根据恒温区曲线确定其在反应管中的最好的装填位置.

准备2-3mm的碎瓷环(或颗粒度较大的石英砂),瓷环或石英砂应预先在稀盐酸中浸泡,并经过水洗、高温烧结,以除去催化活性.

从装置上拆下反应管,在反应器底部放入少量岩棉,然后放入适量高度的瓷环或石英砂(以确保催化剂处于恒温区的最佳位置为准),准确量取瓷环或石英砂高度并记录.再放入少量岩棉, 将称量好的催化剂,缓慢、全部加入到反应器中,并轻微震动,然后记录催化剂高度,确定催化剂在反应器内装填高度。再装入碎瓷环或石英砂至反应管口(切记不要填至反应管密封口处).装填过程中可以轻轻敲打反应管外壁,以保证不出现架桥现象. 然后将反应器顶部密封。

(3)进料泵准备及流量校正:

液体物料由进口高压微量液体泵控制。放在原料瓶中的液体物料,经过过滤器进入倒泵进口,该泵为单柱塞泵,但有特殊专利技术,能保证液体流量的准确和稳定。

液体从泵出口经三通阀V-5(三通阀的作用是选择排气与进料)打入到系统中

进入预热器预热。如果实验开始泵出口没有液体,而泵能正常运转,可以将三通阀转到排气状态,然后用泵自身配备的注射器从排气口抽气,一直到有液体出来为止,然后再将阀门扳回到进料状态。

液体的流量可以从面板上很方便的设置,读数从0.01-9.99可任意选择,单位ml/min。该流量不需要再进行校正,既可输送准确体积的液体。根据实验要求,设定好流量即可,详细的泵使用说明可以参考泵使用说明书。

(4).湿式流量计准备:

把湿式流量计拆下,拧下背面的溢水口接头,从顶口处往里灌水,到溢流口刚好有水流出,拧上接头,装回流量计,装好各配件,连好尾气出口.

2.将反应管放入到加热炉中,连接乙醇的进口,拧紧卡套。把预热器出口与反应器的进口连接,把反应器出口与六通阀连接,并把玻璃收集瓶放在放液调节阀出口。

3. 各流程及元件安装无误, 连接良好后, 插上设备电源开关。

4.打开钢瓶开关,调节钢瓶输出压力为0.2-0.3 Mpa,调节色谱两通道压力调节阀,控制尾气流

量在20-30ml/min(用皂膜流量计和秒表校正).

5.打开装置总电源开关,按照实验要求,调整好色谱条件:载气为氮气,柱箱温度:140℃

进样器温度:140℃,检测器温度:150℃,色谱柱:乙醇脱水专用(Ф4、3m)

6.将反应器加热温度设定为260—380℃,预热器温度设定为100℃(可以根据反应器温度

的分配情况调节)阀箱温度设定为100℃。温度设定无误后,打开加热开关,在开始加热时可用自整定设置。

7.在温度达到设定值后,继续稳定10~20分钟,然后开始加入乙醇。乙醇的加料速度为0.5~1.5ml/min。

8.反应进行20分钟后,正式开始实验。记录湿式流量计读数,应每隔一定时间记录反应温度,压力等实验条件。

9.反应开始每隔10~20分钟旋转六通阀进样一次,每个温度至少取两个数据,粗产品从分离器中放入量筒内,气体排空。

10.取少量液体样品,用气相色谱分析其组成,并计算出各组分的百分含量。

11.改变反应温度,每次提高20~30℃,重复上述实验步骤,则得到不同反应温度下的原料转化率、产物乙醚收率、副产物乙烯生成速率等,并根据动力学模型,可以得到反应速率常数。

五、实验数据记录及处理

数据记录:

1、实验中,应每隔一定时间记录反应器和预热器加热温度、催化剂床层温度。有必要,

也可以轻轻拉动反应器内的测温热电偶,测定催化剂床层的温度分布。

2、实验中,每次完成一个温度下的实验时,应记录实验前后尾气流量计的体积,同时

称量反应时间内得到的液体产物的重量,并用气相色谱进行分析。

3、至少分析两次所得液体产物的组成,并用校正因子校正所得的含量,对液体进行物

料恒算。

表1:原始记录

表2:粗产品分析结果

数据处理:

1.根据记录的数据,计算出原料乙醇的转化率,产物乙醚收率,乙醇的选择性。

(取320℃时的数据计算)

原料中乙醇的量–产物中乙醇的量

乙醇的转化率= —————————————————— × 100%

原料中乙醇的量

=23.8%

2×生成乙醚的量(mol)

乙醇的选择性= ———————————— × 100% (乙醚)

反应的乙醇量(mol)

=29.2%

乙醚的收率= 乙醇的转化率×乙醇的选择性

=6.95%

2×生成乙烯的量(mol)

乙醇的选择性= ———————————— × 100% (乙烯)

反应的乙醇量(mol)

=22.0%

乙烯的收率= 乙醇的转化率×乙醇的选择性

=1.4%

六、实验结果讨论

1.讨论原料乙醇的转化率,产物乙醚收率,副产物乙烯含率,乙醇的选择性等参数随反应温度变化的规律,并作图表示。

2.讨论反应温度变化对反应平衡常数的影响,反应动力学常数变化的影响,并作图讨论。

3 .回归温度和反应平衡常数、反应速率常数的关系式。

七、问答题

1.反应转化率的提高和那些因素有关系?

2.应如何提高反应的选择性?怎样使反应的平衡向有利于产物乙醚生成的方向发展?3.如何使用和改变气相色谱的条件?怎样确定最适宜的分析条件?

4.怎样对液体产物进行定性和定量分析?如何求取校正因子?

5.怎样对整个反应过程进行物料恒算?应该注意那些问题?

6.实验中,那些简化的处理方法可能造成实验误差?应怎样进一步改进?

7.谈谈在实验中得到的一些体会和对实验的建议。

实验三 中空纤维超过滤膜分离实验

一、实验目的

1. 了解和熟悉超过滤膜分离的工艺过程;

2. 了解膜分离技术的特点; 1. 培养膜分离的实验操作技能。 二、实验原理

膜分离法是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质与溶剂进行分离、分级、提纯和富集的方法。膜分离法可用于液相和气相。对于液相分离可用于水溶液体系、非水溶液体系、水溶胶体系以及含有其它微粒的水溶液体系。膜分离包括反渗透、超过滤、电渗析、微孔过滤等。膜分离过程具有无相态变化、设备简单、分离效率高、占地面积小、操作方便、能耗少、适应性强等优点。目前,在海水淡化、食品加工工业的浓缩分离、工业超纯水制备、工业废水处理待领域的应用越来越多。超过滤是膜分离技术的一个重要分支,通过实验掌握这项技术具有重要的意义。

根据溶解-扩散模型,膜的选择透过性是由于不同组分在膜中的溶解度和扩散系数不同而造成的。若假设组分在膜中的扩散服从Fick 定律,则可推出透水速率F w 及溶质透过速率F s 方程。

1.透水速率)()

('πδ

π?-?=?-?=

p A RT p V c D F M w w w

式中:F w —透水速率,g/cm 2·s ;

D w —水在膜中的扩散系数,cm 2·s ; c w —水在膜中的浓度,g/cm 3; V M —水的偏摩尔体积, cm 3/mol ; Δp —膜两侧的压力差,atm ; Δπ—膜两侧的渗透压差,atm ; R —气体常数; T —温度,K ;

Δ—膜的有效厚度,cm 。 A′—膜的水渗透系数(δ

RT V c D w

w w =),g/cm 2·s· atm 2.溶质透过速率

)()

(3232c c B c B c c K D c

K D F s s s s s -=?=-=

?=

δ

δ

式中,D s —溶质在膜中的扩散系数,cm 2/s ;

K s —溶质在溶液和膜两相中的分配系数; B —溶质渗透系数; Δc —膜两侧的浓度差。

有了上述方程,下面建立中空纤维在定态时的宏观方程。料液在管中流动情况如图所示。 取假设条件:

(1) 径向混全均匀;

(2) πA =BX A ,渗透压正比于摩尔分数; (3) N A ? N B ,X A3 ?1,B 组分优先透过; (4) D AM /K·δ,同X A1或K 无关; (5) ∞==

E

L

U peB 0,忽略轴向混合扩散。 由假设看出,其实质是一维问题,只是侧壁有液体流出的情况,因为关心的是管中组分的浓度分布,只需做出两个质量衡算方程即可求解。

由连续性方程:

)

(0源项

u dc P u divc t c

↓↓-=+??

和总流率方程:

)

(310

1渗透项压力项↓

↓-?-?=c c A P A J A t π

可推出

h

c c r V dx u

d w )(1[31--= (1) 式中,h 为装填系数,对于圆管h =R /2,R 为管半径。

P

r c P

A V A W 1

?=?=

π

由溶质A 的连续性方程

A A t

A

P u divc c '-=+?? 可推出

h

V c dx c u d W

31=- (2) 实际工作中更关心的是回收率,

1u u

-

=?,因此需要将式(1)和式(2)转化为Δ、c 1的方程。

)](1[V 31c c r dx

u d h dx u d dx d --=-=-=?? (3) ???--=→--=-→-=-→=--d cx c c dx dc dx u d c c dx dc u h V c dx u d c dx dc u h V c dx u d c dx dc u

W

W 1)(311311311311 (4)

由流率方程可推出c 1与 c 3的关系,为

式中

?=

=+++

=W

AM AM V K D K D L D rc l rc c c δ

θδλθλθ///]})

(1

exp[11{3331 (5)

式(3)、(4)为非线性方程,一般只能在特定条件下求得数值解。但当r=0时,则化为线性微分方程,可求得解析解。

附:分光光度计工作原理

分光光度计的基本原理是溶液中的物质在光的照射激发下,产生了对光吸收的效应,物质对光的吸收是具有选择性的,各种不同的物质都具有各自的吸收光谱,因此当某色光通过溶液时,其能量就会被吸收而减弱,光能量减弱的强度和物质的浓度有一定的比例关系,也即符合与比色原理—比耳定律。

0I I T =

KCL I

I =0

log

KCL A = A:测得 K ? C 待求? L ?

化工流动过程综合实验

一、实验目的: 1.学习直管摩擦阻力f P ?,直管摩擦系数λ的测定方法。. 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。. 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 5.熟悉离心泵的操作方法。 6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法、加深对离心泵性能的了解。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 4.熟悉离心泵的结构与操作方法。 5.测定某型号离心泵在一定转速下的特性曲线。 6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l h f P f λρ == ? (2) 整理(1)(2)两式得 22u P l d f ???= ρλ (3)

μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定 22 'u P h f f ζρ =?= ' 2'2u P f ?????? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5) 在b~b '之间列柏努利方程式: P b -P b ' = △P f ,bc +△P f ,b 'c '+△P 'f = △P f ,a b +△P f ,a 'b '+△P 'f (6) 联立式(5)和(6),则:'f P ?=2(P b -P b ')-(P a -P a ')

化工仪表及自动化实验讲义

化工自动化及仪表实验讲义 程万里编 过程装备与控制工程教学组 2002.9

目录实验须知 实验一热电偶温度计的使用 实验二电动温度变送器的调整和使用实验三电子电位计的校验 实验四温度控制系统实验(一) 实验五温度控制系统实验(二)

实验须知 1.必须自始自终以认真和科学态度进行实验。 2.实验课不能迟到,实验期间不得擅自离开岗位。 3.切实注意安全,不得穿背心和拖鞋进入实验室。在连接线路时应先切断电源,不许带电操作。 4.为了顺利地进行实验和取得好的实验效果,必须认真预习,写出预习报告,若指导教师发现有同学尚未预习,则不准其参加实验。 5.实验中如发生异常现象或事故,必须立即切断电源,并保持现场,即及时报告教师,共同处理。 6.要爱护公物,不得擅自拆开仪器仪表,非本实验仪器设备不得随便动用。 7.实验完成后,应切断电源,整理好一切仪器设备,并把原始记录交教师签字,经允许后方可离开实验。 8.实验后,每人应独立完成实验报告,报告与原始记录均按教师规定的时间上交。

实验一 热电偶温度计的使用 一.实验目的: 1.掌握热电偶与动圈仪的配套连接,测温方法及外阻影响。 2.掌握热电偶配手动电位计的测温方法。 3.掌握热电偶冷端温度影响及补偿方法。 二.实验仪器: 1.管状电炉 2.自耦变压器(带电流表) 3.广口保温瓶 4.动圈仪 5.热电偶 6.接线板(带调整电阻) 7.手动电位差计 8.30cm不锈钢直尺 三.实验内容 (一)热电偶配手动电位差计测温: 1.按图1-1接线,注意极性是否接对,接点是否牢固等。为保持热电偶冷端温度为零度,将热电偶冷端放置保温瓶中内冰水混合物中。

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工综合实验考试题A答案

哈工大 2006 年 秋 季学期 化工综合实验 A 答案 试 题 一 填空(每题1分,共10分) 1.雷诺实验的目的是为了测定流体流动的型态,临界雷诺数 。 2.在流动阻力测定实验中,对于固定的管道其摩擦系数是 雷诺数 的函数。 3.传热实验中由于忽略了污垢和管壁热阻,因此总的传热系数和热水的传热膜系数数值关系近似为 1/2,一半 。 4.吸收实验测定二氧化碳在水中的浓度时,空白实验取 10 mL 的氢氧化钡用标准盐酸溶液滴定。 5.蒸馏实验中,分析塔顶和塔釜样品乙醇和丙醇的摩尔分数时,我们使用 阿贝折光仪 测得的实验数据。 6.干燥实验湿空气的相对湿度可以通过 湿球温度计 温度计测得,对干燥而言空气的湿度对于干燥操作影响很大。 7.离心泵特性曲线是在一定的条件下用清水测定的,主要有 压头-流量,效率-流量和功率-流量 组成。 8.转子流量计有用于测量空气和水的流量之分,使用时需要校正流量曲线,其正确的安装方法是 垂直向上 。 第 1 页 (共 4 页)

9.伯努力实验中,某一个截面的动压头等于该截面的冲压头与静压头之差。 10.在化工综合实验中,为了简化实验,便于数据处理,得到准数关联式。我们采用了量纲分析法,因次分析法 二简答题(20分) 1.U型压差计中指示液的选择原则是什么?(3分) 答:(1)指示液与管路流体互不相溶; (2)为了提高实验的精度,根据待测压差可能的最大值选择密度合理的指示液,待测压差较大的就应选择密度较大的指示液。 2.离心泵实验操作时,为何用控制出口阀的开度调节流量?(3分) 答:一个输送系统是由泵和管路共同构成,其工作状况也是由泵的特性与管路特性共同决定。控制出口阀的开度调节流量好处在于:(1)方便;(2)改变管路特性。 第2 页(共4 页)

化工原理实验讲义全

化工原理实验 讲义 专业:环境工程 应用化学教研室 2015.3

实验一 流体机械能转化实验 一、实验目的 1、了解流体在管流动情况下,静压能、动能、位能之间相互转化关系,加深对伯努利方程的理解。 2、了解流体在管流动时,流体阻力的表现形式。 二、实验原理 流动的流体具有位能、动能、静压能、它们可以相互转换。对于实际流体, 因为存在摩擦,流动过程中总有一部分机械能因摩擦和碰撞,而被损失掉。所以对于实际流体任意两截面,根据能量守恒有: 2211221222f p v p v z z H g g g g ρρ++=+++ 上式称为伯努利方程。 三、实验装置(d A =14mm ,d B =28mm ,d C =d D =14mm ,Z A -Z D =110mm ) 实验装置与流程示意图如图1-1所示,实验测试导管的结构见图1-2所示: 图1-1 能量转换流程示意图

图1-2实验导管结构图 四、操作步骤 1.在低位槽中加入约3/4体积的蒸馏水,关闭离心泵出口上水阀及实验测试 导管出口流量调节阀和排气阀、排水阀,打开回水阀后启动离心泵。 2.将实验管路的流量调节阀全开,逐步开大离心泵出口上水阀至高位槽溢流 管有液体溢流。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复上述步骤5次。 5.关闭离心泵出口流量调节阀后,关闭离心泵,实验结束。 五、数据记录和处理 表一、转能实验数据表 流量(l/h) 压强mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 压强 mmH2O 测试点标 号 1 2 3 4 5 6 7 8

化工类专业实践综合试题及参考答案(04)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至5页,第Ⅱ卷6至10页。满分200分,考试时间120分钟。考试结束后,将本试卷和答题卡一并交回。 第Ⅰ卷(选择题,共100分) 注意事项: 1.答第Ⅰ卷前,考生务必将自己的、准考号、考试科目用铅笔涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 一、单项选择题(本大题共50个小题,每小题2分,共100分。在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.以下不属于压强单位的是() A.N/m2 B.atm C.mmHg D.N·m 2.以下关系式表达正确的是() A.大气压强=绝对压强+表压B.绝对压强=大气压强-真空度 C.真空度=绝对压强-大气压强D.大气压强=绝对压强-真空度 3.水在管道中稳定流动时,若管径增大一倍,则流速变为原来的()倍A.2 B.1/2 C.4 D.1/4 4.液体的粘度一般随温度的升高而() A.增大B.减小C.不变D.先增大后减小 5.流体在直管流动时,若其已进入完全湍流区,则摩擦系数λ与Re的关系为()A.Re增大,λ增大B.Re增大,λ减小 C.Re增大,λ基本不变D.Re增大,λ先增大后减小 6.离心泵启动前泵体未灌满液体,会发生的现象为() A.气缚B.气蚀C.喘振D.液泛 7.离心泵的扬程是指() A.泵的输送高度B.液体出泵和进泵时的压强差换算成的液柱高度 word版本.

C.泵的安装高度D.单位重量液体通过泵所获得的机械能 8.离心泵的效率η和流量Q的关系为() A.Q增加,η增大B.Q增加,η减小 C.Q增加,η先减小后增大D.Q增加,η先增大后减小 9.当转速变化不太大时,离心泵的流量Q和转速n的关系为() A.Q1/Q2≈n1/n2B.Q1/Q2≈n2/n1 C.Q1/Q2≈( n1/n2 )2D.Q1/Q2≈( n2/n1 )2 10.离心泵的工作点() A.与管路特性有关,与泵的特性无关B.与管路特性无关,与泵的特性有关 C.与管路特性和泵的特性均无关D.与管路特性和泵的特性均有关 11.在固体部,传热的基本方式为() A.热传导 B.热对流 C.热辐射 D.传导和对流 12.在多层平壁的定常热传导中,传热的总推动力() A.与各层的推动力相等B.与各层的推动力之和相等 C.与各层中最小的推动力相等D.与各层中最大的推动力相等 13.对流传热方程式Q=αA△t中,△t是指() A.两流体温度差(T-t)B.冷流体进、出口温度差(t2-t1) C.热流体进、出口温度差(T2-T1)D.流体和壁面温度差(T-T w)或(t w-t)14.忽略壁阻和污垢热阻,若对流传热系数α1《α2,则总传热系数K≈() A.α1B.α2C.(α1+α2)/2 D.(α2-α1)/2 15.在列管式换热器中,安装折流挡板的目的是() A.提高管程对流传热系数B.减小管程对流传热系数 C.提高壳程对流传热系数D.减小壳程对流传热系数 16.某双组分理想溶液,其中A为易挥发组分。液相组成x A=0.5时相应的泡点为t1,气相组成y A=0.3时相应的露点为t2,则() A.t1=t2B.t1<t2C.t1>t2D.无法判断 17.在精馏塔自下而上,气相中易挥发组分的含量逐板() word版本.

化工原理实验思考题答案

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门? 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么? 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗?为什么? 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: Z l P l ? :?g =Z2 P2;g,当P l = P2 时,Z I = Z2 (4 )怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘? 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点? 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换 成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测 大流量下的压强差。 (7 )读转子流量计时应注意什么?为什么? 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误^^。 (8)两个转子能同时开启吗?为什么? 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9 )开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么? 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。 (11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。 Z j +P/? +uj/2g =Z2 +u;/2g , T d1=d2 二U1=U2 又T Z1=Z2 (水平管)P1 = P2 (12)离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么? 答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵 流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损 坏。 (13)本实验用水为工作介质做出的入一Re曲线,对其它流体能否使用?为什么?

化工原理流体综合实验报告

流体综合实验 实验目的 1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图; 2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图; 3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作; 离心泵特性测定实验 一、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: (1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有 (1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m; ρ——流体密度,kg/m3 ; g——重力加速度m/s2; p 1、p 2 ——分别为泵进、出口的真空度和表压,Pa;

H 1、H 2 ——分别为泵进、出口的真空度和表压对应的压头,m; u 1、u 2 ——分别为泵进、出口的流速,m/s; z 1、z 2 ——分别为真空表、压力表的安装高度,m。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N的测量与计算 N=N电×k (W)(1-3) 其中,N 电 为电功率表显示值,k代表电机传动效率,可取k=0.95 3.效率η的计算 泵的效率η是泵的有效功率Ne与轴功率N的比值。有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne可用下式计算: N e=HQρg (1-4)故泵效率为 (1-5)四、实验步骤及注意事项 (一)实验步骤: 1.实验准备: (1)实验用水准备:清洗水箱,并加装实验用水。 (2)离心泵排气:通过灌泵漏斗给离心泵灌水,排出泵内气体。 2、开始实验: (1)仪表自检情况,打开泵进口阀,关闭泵出口阀,试开离心泵,检查电机运转时声音是否正常,,离心泵运转的方向是否正确。 (2)开启离心泵,当泵的转速达到额定转速后,打开出口阀。 (3)实验时,通过组态软件或仪表逐渐改变出口流量调节阀的开度,使泵出口流量从1000L/h 逐渐增大到4000L/h,每次增加500L/h。在每一个流量下,待系统稳定流动5分钟后,读 取相应数据。离心泵特性实验主要需获取的实验数据为:流量Q、泵进口压力p 1 、泵出

综合化学实验讲义

宁夏理工学院综合化学实验(试用版) 罗桂林陈兵兵陈丽等主编 文理学院化工系 2014年10月

目录 实验一过氧化钙的合成及含量分析.............................. 错误!未定义书签。实验二三草酸合铁(Ⅲ)酸钾的制备及组成测定.................. 错误!未定义书签。实验三食盐中碘含量的测定(分光光度法)..................... 错误!未定义书签。实验四乙酸正丁酯的制备...................................... 错误!未定义书签。实验五水果中总酸度及维生素C含量的测定...................... 错误!未定义书签。实验六查尔酮的全合成........................................ 错误!未定义书签。

实验一过氧化钙的合成及含量分析 一、实验目的 1. 掌握制备过氧化钙的原理及方法。 2. 掌握过氧化钙含量的分析方法。 3. 巩固无机制备及化学分析的基本操作。 二、实验原理 在元素周期表中,第一主族和第二主族以及银与锌等均可形成化学稳定性各异的简单过氧化物;它们是氧化剂,对生态环境是有好的,生产过程中一般不排放污染物,可以实现污染的零排放。 CaO 2·8H 2 O是白色或微黄色粉末,无臭无味,在潮湿空气中可以长期缓慢释 放出氧气,50℃转化为CaO 2·2H 2 O,110℃-150℃可以脱水,转化为CaO 2, 室温下 较为稳定,加热到270℃时分解为CaO和O 2。 2CaO 2 =2CaO + O 2 △ r H m = mol CaO 2难溶于水,不溶于乙醇和丙酮,它与稀酸反应生成H 2 O 2 ,若放入微量的 碘化钾作催化剂,可作为应急氧气源;CaO 2 广泛用作杀菌剂、防腐剂、解酸剂和 油类漂白剂,CaO 2 也是种子及谷物的消毒剂,如将其用于稻谷种子拌种,不易发生秧苗烂根。 制备的原料可以是CaCl 2·6H 2 O、H 2 O 2 、NH 3 ·H 2 O,也可以是Ca(OH) 2 和NH 4 Cl, 在较低的温度下,通过原料物质之间的反应,在水溶液生成CaO 2·8H 2 O,在110℃ 条件下真空干燥,得到白色或微黄色粉末CaO 2 。有关反应式如下: CaCl 2 + 2 NH 3 ·H 2 O = 2NH 4 Cl + Ca(OH) 2 Ca(OH) 2 + H 2 O 2 + 6 H 2 O = CaO 2 ·8H 2 O 连解得: CaCl 2 + H 2 O 2 + 2 NH 3 ·H 2 O + 6 H 2 O ══ CaO 2 ·8H 2 O + 2NH 4 Cl 过氧化钙含量的测定,可以利用在酸性条件下,过氧化钙与稀酸反应生成过氧化氢,用标准高锰酸钾滴定来确定其含量。为加快反应,可加入微量的硫酸锰。 5CaO 2 + 2MnO 4 - + 16H+ = 5Ca2+ + 2Mn2+ + 5O 2 ↑+ 8H 2 O CaO 2的质量分数为:W(CaO 2 )= *C *V *M /m

化工原理实验指导书

化工原理实验指导书 目录

实验一流体流淌阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸取实验 (12) 演示实验柏努利方程实验 (14) 雷诺实验 (16) 实验一流体流淌阻力的测定 一、实验目的

1、了解流体在管道内摩擦阻力的测定方法; 2、确定摩擦系数λ与雷诺数Re 的关系。 二、差不多原理 由于流体具有粘性,在管内流淌时必须克服内摩擦力。当流体呈湍流流淌时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和流体的涡流产生了流体流淌的阻力。在被侧直管段的两取压口之间列出柏努力方程式,可得: ΔP f =ΔP L —两侧压点间直管长度(m) d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m/s ) ΔP f —直管阻力引起的压降(N/m 2 ) μ—流体粘度(Pa.s ) ρ—流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分不求出λ和Re ,在双对数坐标纸上绘出λ~Re 曲线 。 三、实验装置简要讲明 水泵将储水糟中的水抽出,送入实验系统,第一经玻璃转子流量计测量流量,然后送入被测直管段测量流体流淌的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流淌阻力△P 可依照其数值大小分不采纳变压器或空气—水倒置U 型管来测量。 四、实验步骤: 1、向储水槽内注蒸馏水,直到水满为止。 2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字外表的初始值并记录后方可启动泵做实验。 3、检查导压系统内有无气泡存在.当流量为0时打开B1、B2两阀门,若空气-水倒置U 型管内两液柱的高度差不为0,则讲明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、测取数据的顺序可从大流量至小流量,反之也可,一样测15~20组数,建议当流量读数小于300L/h 时,用空气—水倒置U 型管测压差ΔP 。 5、待数据测量完毕,关闭流量调剂阀,切断电源。 五、使用实验设备应注意的事项: 2 2u d L P h f f ?=?= λ ρ 2 2u P L d f ??= ρλμ ρ du = Re

实验四化工流体过程综合实验

实验四 化工流体过程综合实验 一、 实验目的 1?掌握光滑直管、粗糙直管阻力系数的测量方法,并绘制光滑管及粗糙管的 '-R e 曲线,将 其与摩擦系数图进行比较; 2?掌握阀门的局部阻力系数的测量方法; 3?了解各种流量计(节流式、转子、涡轮)的结构、性能及特点,掌握其使用方法;掌握节 流式流量计标定方法,会测定并绘制文丘里、孔板、喷嘴流量计流量标定曲线(流量 -压差 关系)及流量系数和雷诺数之间的关系( C 。- R e 关系); 4?了解离心泵的结构、操作方法,掌握离心泵特性曲线测定方法,并能绘制相应曲线。 二、 实验内容 1?测定光滑直管和粗糙直管摩擦阻力系数,绘制光滑管及粗糙管的 ? - Re 曲线; 2?测定阀门的局部阻力系数; 3?测定并绘制文丘里、孔板、喷嘴流量计(三选一)流量标定曲线(流量 -压差关系)及流 量系数和雷诺数之间的关系( C 。- R e 关系); 4?测量离心泵的特性曲线,并绘制相应曲线,确定其最佳工作范围。 三、 实验原理、方法和手段 1. 流体阻力实验 a. 直管摩擦系数,与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即 ?二f (Re, ;/d ),对一定的相 对粗糙度而言,,=f (Re )。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) h f Pi - P 2 P

i_u 2 d 2 整理⑴⑵两式得 h f P f

2d ■:Pf u 2 d -管径,m ; :Pf -直管阻力引起的压强降,Pa ; I -管长,m ; u -流速,m / s ; 3 『-流体的密度,kg / m ; 亠-流体的粘度,N ?s / m 2。 在实验装置中,直管段管长 I 和管径d 都已固定。若水温一定,则水的密度 p 和粘度卩也是 定值。所以本实验实质上是测定直管段流体阻力引起的压强降 , ;p f 与流速u (流量V )之间 的关系。 根据实验数据和式⑶可计算出不同流速下的直管摩擦系数 入用式⑷计算对应的 Re ,从 而整理出直管摩擦系数和雷诺数的关系,绘出 入与Re 的关系曲线。 b. 局部阻力系数'的测定: 式中: ■ -局部阻力系数,无因次; p 'f -局部阻力引起的压强降,Pa ; h 'f -局部阻力引起的能量损失, J /kg 。 式中: hf =

2014化工原理实验复习提纲(下册):

第一部分 实验基础知识 1、 如何读取实验数据 2、 如何写实验报告 3、 数据处理 一、实验数据的误差分析 1. 真值 2、平均值及其种类 3、误差的分类 4、精密度和精确度 5、实验数据的记数法和有效数字 错误认识:小数点后面的数字越多就越正确,或者运算结果保留位数越多越准确。 二、实验数据处理 实验数据中各变量的关系可表示为列表式,图示式和函数式。 第二部分 实验内容 a log log log log ln ln ln ln ln 1212=--+=?=+=?=截矩直线的斜率=真值,双对数坐标半对数坐标x x y y x b a y ax y bx a y ae y b bx Θ

每个实验的原理、操作方法、仪表的使用、实验记录、数据处理、思考题 一、精馏实验: 物系、实验原理、流程图、数据处理(用公式表示)、思考题 1)测定指定条件下的全塔效率或等板高度 2)操作中可调节可控制的量 3)物料浓度的测定方法 4)操作步骤,先全回流,再确定一定回流比操作,为什么 5)实验中出现异常现象(液泛,无回流),如何判断?如何处理? 6)进料状态对精馏塔的操作有何影响?确定q线需要测定哪几个 量?查取进料液的汽化潜热时定性温度应取何值? 7)什么是全回流?全回流操作的标志有哪些?在生产中有什么实际 意义? 8)其他条件都不变,只改变回流比,对塔性能会产生什么影响? 9)进料板位置是否可以任意选择,它对塔的性能有何影响? 10)为什么酒精蒸馏采用常压操作而不采用加压蒸馏或真空蒸馏? 11)将本塔适当加高,是否可以得到无水酒精?为什么? 12)影响精馏塔操作稳定的因素有哪些?如何确定精馏塔操作已达 稳定?本实验装置能否精馏出98%(质量)以上的酒精?为什么? 13)各转子流量计测定的介质及测量条件与标定时的状态不同,应如 何校正?

化工原理实验答案汇编

实验四 1.实验中冷流体和蒸汽的流向,对传热效果有何影响? 无影响。因为Q=αA△t m,不论冷流体和蒸汽是迸流还是逆流流动,由 于蒸汽的温度不变,故△t m不变,而α和A不受冷流体和蒸汽的流向的影响, 所以传热效果不变。 2.蒸汽冷凝过程中,若存在不冷凝气体,对传热有何影响、应采取什么 措施? 不冷凝气体的存在相当于增加了一项热阻,降低了传热速率。冷凝器 必须设置排气口,以排除不冷凝气体。 3.实验过程中,冷凝水不及时排走,会产生什么影响?如何及时排走冷 凝水? 冷凝水不及时排走,附着在管外壁上,增加了一项热阻,降低了传热速 率。在外管最低处设置排水口,及时排走冷凝水。 4.实验中,所测定的壁温是靠近蒸汽侧还是冷流体侧温度?为什么?传热系数k 接近于哪种流体的 壁温是靠近蒸汽侧温度。因为蒸汽的给热系数远大于冷流体的给热系 数,而壁温接近于给热系数大的一侧流体的温度,所以壁温是靠近蒸汽侧温度。而总传热系数K接近于空气侧的对流传热系数 5.如果采用不同压强的蒸汽进行实验,对α关联式有何影响? 基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t 均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 实验五固体流态化实验 1.从观察到的现象,判断属于何种流化? 2.实际流化时,p为什么会波动? 3.由小到大改变流量与由大到小改变流量测定的流化曲线是否重合,为什么?4流体分布板的作用是什么? 实验六精馏 1.精馏塔操作中,塔釜压力为什么是一个重要操作参数,塔釜压力与哪些因素有关? 答(1)因为塔釜压力与塔板压力降有关。塔板压力降由气体通过板上孔口或通道时为克服局部阻力和通过板上液层时为克服该液层的静压力而引起,因而塔板压力降与气体流量(即塔内蒸汽量)有很大关系。气体流量过大时,会造成过量液沫夹带以致产生液泛,这时塔板压力降会急剧加大,塔釜压力随之升高,因此本实验中塔釜压力可作为调节塔釜加热状况的重要参考依据。(2)塔釜温度、流体的粘度、进料组成、回流量。 2.板式塔气液两相的流动特点是什么? 答:液相为连续相,气相为分散相。 3.操作中增加回流比的方法是什么,能否采用减少塔顶出料量D的方法? 答:(1)减少成品酒精的采出量或增大进料量,以增大回流比;(2)加大蒸气量,增加塔顶冷凝水量,以提高凝液量,增大回流比。

化工专业实验

化工专业实验 Experiment of Chemical Engineering and Technolog y 课程编号: 学分:1.5 实验总学时: 45 先修课程:化工设备机械基础、物理化学、化工原理、化工热力学、化学反应工程、分离工程、化学工艺学 适用专业:化学工程与工艺 一、目的与任务 本课程是化学工程与工艺专业必修的实践性课程。它是从工程与工艺两个角度出发,即以化工工艺生产为背景,又以解决工艺或过程开发中所遇到的共性工程问题为目的,选择典型的工艺与工程要素,所组成系列的工艺与工程实验。它是进行(化工类)工程师基本训练的重要环节之一,在专业教学计划中占有重要的地位。化学工程与工艺实验是在学生已经接受了基础理论与专业知识教育,有经受过初步工程实验训练的基础上进行的。在本实验教学中,将使学生了解与熟悉有关化工工艺过程、化学反应工程、传质与分离工程等学科发展方向上的实验技术和方法;掌握与学会过程开发的基本研究方法和常用的实验基本技能;培养学生的创造性思维方法、理论联系实际的学风与严谨的科学实验态度,提高实践动手能力。为毕业环节乃至今后工作打下坚实的基础,起到承前起后的作用。 二、实验教学的基本要求 (1)复习相关原理,认真写好预习报告,独立设计实验方法。 (2)了解仪器设备的原理构造和使用方法。 (3)按实验要求作好实验。 (4)数据处理。 (5)实验分析。

注:1、类型---指设计性、综合性、验证性;2、实验内容可调整。 四、实验成绩的考核与评定办法: 实验成绩的考核,以实验预习报告、实验报告和实验过程为考核依据,成绩分优、良、中、及格和不及格五等。 五、有关说明: 根据《化工热力学》、《化学工艺学》、《化学反应工程》、《分离工程》课程教学大纲,参考教材: 《化学工程与工艺实验》,房鼎业、乐清华、李福清主编化学工业出版社。 撰写人:沈玉堂 审定人:姜廷顺 批准人:倪良 时间:2013年5月10日

化工原理实验讲义(版本)

化工原理实验 实验讲义 西南科技大学材料科学与工程学院材料基础中心实验室 二○一三年十二月

目录 实验一、流体力学综合阻力实验A (2) 实验二、固体流态化的流动特性实验 (6) 实验三、除尘性能实验 (11) 实验四、圆球法测固体材料导热系数 (13)

实验一、流体力学综合阻力实验A 实验前介绍 双台综合阻力实验台(图1)为流体力学综合性多用途教学实验装置。为双台型,可供两组学生同时进行实验。利用本装置可进行下列实验: 1.沿程阻力实验 2.局部(阀门)阻力实验 3.孔板流量计流量系数测定实验 4.文丘里流量计流量系数测定实验 实验装置 实验台的结构简图如图1所示。它主要由沿程阻力实验管路1、局部(阀门)阻力实验管路2、孔板流量计实验管路3和文丘里流量计实验管路4等四路实验管所组成,并有水泵及其驱动电机5,塑料储水箱6,有机玻璃回水水箱及计量水箱7(实测流量时用)、压差显示板8(图中未示出)和一些闸门组成的实验水循环系统和压差显示系统等,双台实验装置安装在一个底架9和管道支架10上。 文丘里实验管路为所有其它实验管路共用的出流通道。 图1 实验台结构简图 工业应用 以水泥工业的预热预分解系统为例:对于预热器系统来说,系统的阻力损失直接关系到能耗问题,因此在设计时就要充分考虑到局部阻力和沿程阻力等,所以了解这两种阻力的性质、可能出现的情况、以及如何减少这类损失等知识是很有必要的。对于其他生产工艺来说都是同样的重要。 在生产中经常要对系统的稳定运行进行热工标定,即:测定管道内的流体速度,以检测系统是否正常稳定运行,并依此数据进行调节。这就会用到流量计和毕托管等测定流体速度,

化工流程及综合实验中条件控制答题模板

化工流程及综合实验中条件控制答题策略 一、pH控制: 经典考题例析 1.实验室用CuSO4—NaCl混合液与Na2SO3溶液反应制取CuCl相关装置及数据如图。 乙图是体系pH随时间变化关系图,写出制备CuCl的离子方程式______________________。丙图是产率 随pH变化关系图,实验过程中往往用Na2SO3—Na2CO3混合溶液代替Na2SO3溶液,其中Na2CO3的作用 是___并维持pH在___左右以保证较高产率。 【答案】. 2Cu2++SO32-+2Cl-+H2O=2CuCl↓+2H++SO42-与H+作用,调整pH,防止减小降低产率 3.5 2.甘氨酸亚铁[(NH2CH2COO)2Fe]是一种补铁强化剂。实验室利用FeCO3与甘 氨酸(NH2CH2COOH)制备甘氨酸亚铁,加入柠檬酸促进FeCO3溶解并调节溶液 pH,溶液pH与甘氨酸亚铁产率的关系如图所示。 pH过低或过高均导致产率下降,其原因是_____________________; 【答案】pH过低,H+与NH2CH2COOH反应生成NH3+CH2COOH;pH过高, Fe2+与OH-反应生成Fe(OH)2沉淀 3.Na2S2O3制备:SO2通入Na2CO3、Na2S的混合溶液,加热、搅拌,至溶液pH约为7时,停止通入SO2 气体,得产品混合溶液。反应混合溶液pH过高或过低将导致产率降低,原因是_______。 【答案】pH过高,Na2CO3、Na2S反应不充分;pH过低,导致Na2S2O3转化为S和SO2 4.[2019新课标Ⅲ]高纯硫酸锰作为合成镍钴锰三元正极材料的原料,工业上可由天然二氧化锰粉与硫化 锰矿(还含Fe、Al、Mg、Zn、Ni、Si等元素)制备,工艺如下图所示。回答下列问题: 相关金属离子[c0(M n+)=0.1 mol·L?1]形成氢氧化物沉淀的pH范围如下: 金属离子Mn2+Fe2+Fe3+Al3+Mg2+Zn2+Ni2+ 开始沉淀的pH 8.1 6.3 1.5 3.4 8.9 6.2 6.9 沉淀完全的pH 10.1 8.3 2.8 4.7 10.9 8.2 8.9 。

化工原理实验讲义(最终版)

目录 绪 论 实验一雷诺实验 实验二伯努利方程实验实验三流体流动阻力的测定实验四流量计校核实验实验六恒压过滤常数的测定实验七 传热实验 实验八精馏实验 实验十干燥实验

绪 论 一、化工原理实验的特点 《化工原理》是化工、食品、生物工程、环境工程等专业的重要技术基础课,它属于工程技术学科,故化工原理实验也是解决工程问题必不可少的重要部分。面对实际的工程问题,其涉及的物料千变万化,操作条件也随各工艺过程而改变,使用的各种设备结构、大小相差悬殊,很难从理论上找出反映各过程本质的共同规律,一般采用两种研究方法解决实际工程问题,即实验研究法和数学模型法。对于实验研究法,在析因实验基础上应用因次分析法规划实验,再通过实验得到应用于各种情况下的半理论半经验关联式或图表。例如找出流体流动中摩擦系数与雷诺准数和相对粗糙度关系的实验。对于数学模型法,在简化物理模型的基础上,建立起数学模型,再通过实验找出联系数学模型与实际过程的模型参数,使数学模型能得到实际的应用。例如精馏中通过实验测出塔板效率将理论塔板数和实际塔板数联系起来。可以说,化工原理实验基本包含了这两种研究方法的实验,这是化工原理实验的重要特征。 虽然化工原理实验测定内容及方法是复杂的,但是所采用的实验装备却是生产中最常用的设备和仪表,这是化工原理实验的第二特点。例如流体阻力实验中,虽然要测定摩擦系数与雷诺数及相对粗糙度的复杂关系,但使用的却是极其简单的泵、管道、压力计、流量计等设备仪表。 化工原理实验的这些特点,同学们应该在实验中认真体会,通过化工原理实验对这些处理工程问题的方法加深认识并初步得以应用。 二、化工原理实验的要求 1.巩固和深化理论知识。化工原理课堂上讲授的主要是化工过程即单元操作的原理,包括物理模型和数学模型。这些内容是很抽象的,还应通过化工原理实验及实习这些实践性环节,深入理解和掌握课堂讲授的内容。我们针对这部分的要求在每个实验的后面布置了许多思考题,可引导和启发同学们认真做实验,并通过实验环节,理解过程原理及各种影响因素。故要求同学们在做实验和完成实验报告中认真完成这些思考题。 2. 初步掌握化工工程问题的研究方法,熟悉化工数据基本测试技术。工程中无论实验研究法和数学模型法均离不开实验测定各种化工数据。通过实验过程可进一步认识解决工程问题的这些方法,同时也熟悉这些设备、仪表的结构、主要性能及基本操作。 三、化工原理实验预习报告 每次做实验前必须将实验预习报告交给实验指导教师检查合格后方能进行实验。

化工流动过程综合实验

化工流动过程综合实验 讲义 天津大学化工基础实验中心 2014.02

一、实验目的: 1.学习直管摩擦阻力f P ?、直管摩擦系数λ的测定方法。 2.掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及变化规律。 3.掌握局部摩擦阻力f P ?,局部阻力系数ζ的测定方法。 4.学习压强差的几种测量方法和提高其测量精确度的一些技巧。 5.熟悉离心泵的操作方法。 6.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。 二、实验内容: 1.测定实验管路内流体流动的阻力和直管摩擦系数λ。 2.测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 3.测定管路部件局部摩擦阻力f P ?和局部阻力系数ζ。 4.熟悉离心泵的结构与操作方法。 5.测定某型号离心泵在一定转速下的特性曲线。 6.测定流量调节阀某一开度下管路特性曲线。 三、实验原理: 1.直管摩擦系数λ与雷诺数Re 的测定: 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρ f f P P P h ?= -= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2u d l h f P f λρ == ? (2) 整理(1)(2)两式得 22u P l d f ???= ρλ (3)

μ ρ ??= u d Re (4) 式中: -d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (或流量q v )之间的关系。 根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ,用式(4)计算对应的Re ,整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2.局部阻力系数ζ的测定: 22 'u P h f f ζρ =?= ' 2'2u P f ????? ? ??=ρζ 式中: -ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图-1 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在上、下游各开两对测压口a-a'和b-b '如图-1,使 ab =bc ; a 'b '=b 'c ',则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c ' 在a~a '之间列柏努利方程式 P a -P a ' =2△P f ,a b +2△P f ,a 'b '+△P 'f (5)

相关文档