文档库 最新最全的文档下载
当前位置:文档库 › 土壤中氮和磷的形态提取方案

土壤中氮和磷的形态提取方案

土壤中氮和磷的形态提取方案
土壤中氮和磷的形态提取方案

土壤中氮和磷的形态提取方案

一、磷

磷以无机磷和有机磷两大类形式存在,其中无机磷的存在形式可以进一步分为易交换态磷或弱吸附态磷、铝结合磷、铁结合磷、闭蓄态磷、钙结合磷、原生碎屑磷。也有学者将无机磷分为可溶性磷、铁结合态磷、铝结合态磷、钙结合态磷、闭蓄态磷。由于有机磷分离和鉴定困难,因此许多学者将有机磷看作一个形态。

1、砂质土壤中水溶性磷提取方法的比较

目前,水溶性磷的提取方法和条件还没有统一,常用的提取剂除去离子水外,还有0.01 mol·l-1CaCl的中性盐。用去离子水直接提取时,因电介质浓度太低,提取物经离心后仍可保留较多的细胶体,这些细胶体不能通过普通滤纸过滤而消除,必须采取0.45μm微孔膜过滤才能有效地去除胶体物质,因此,许多研究采用稀溶液来替代去离子水来提取水溶性磷。但当土壤溶液中引入高浓度的钙离子时,溶液中的正磷酸根可与Ca离子作用形成溶解度较低的化合物,这可能会影响土壤水溶性磷的提取效果,而采用稀KCl可能避免这一问题。

用0.02 mol·l-1KCl提取水溶性磷操作方便,提取量与用去离子水提取0.451μm微孔膜过滤的磷接近,是砂质土壤水溶性磷较为理想的提取方法。而用去离子水提取仅过普通滤纸因滤液中残留胶体可使水溶性磷提取量偏高,用0.01 mol·1-1CaCl2提取,因ca2+浓度较高,可抑制土壤磷素的释放,使水溶性磷提取量偏低。

2、磷形态顺序提取分析方法

许多磷形态化学顺序提取法得到了运用。它的原理是利用不同化学浸提剂的特性,将沉积物中各种形态的无机磷加以逐级分离。它的原理是利用不同化学浸提剂的特性,将沉积物中各种形态的无机磷加以逐级分离。是在Tessier等研究结果基础上发展起来的顺序提取方法——BCR顺序提取方法。欧共体标准物质局(BCR,现名欧共体标准测量与检测局)为解决由于不同的学者使用的流程各异、缺乏一致的实验步骤和相关标准物质、世界各地实验室的数据缺乏可比性等问题,欧盟委员会通过建立标准,测量和测试框架发起了一个综合性项目,主要目的是:①设计一个合理的顺序提取流程;②测试内部试验研究中所选用的流程;③鉴

定沉积物标准物质中的磷元素。该项目员1996年开始已经验证了4种方法。这4种提取方法使用的反应剂以及相应的磷形态概述见表1。

3、土壤有机磷分级提取测定

Bowman—Cole法

磷部分参考文献

[1]章明奎.砂质土壤中水溶性磷提取方法的比较[J].环境化学.2008,27(2).

[2]许春雪,袁建,王亚平,王苏明,代阿芳.沉积物中磷的赋存形态及磷形态顺序提取分析方法[J].岩矿测试.2011,30(6).

[3] Bowmam R A,Cole C V.An exploratory method for fractionation of organic phosphorus

from grassland soil[J].Soil Science,1976,125(2):95—101.

二、氮

1、总氮的提取测定

此法主要是在盐类和催化剂的参与下,用浓硫酸消煮,使有机氮分解为铵态氮,其中硫酸钾在消煮过程中可提高硫酸沸点;硫酸铜起催化作用,以加速有机氮的转化;硒粉是高效催化剂,可缩短消化时间。

2、铵态氮的提取测定

一般采用KCL溶液提取法,其原理是将吸附在土壤胶体上NH4+的及水溶性NH4+浸提出来,再用MgO蒸馏。此法操作简便,条件容易控制,最适于含NH4+-N较高的土壤。3、硝态氮的测定

土壤中NO3--N测定方法有多种,其中以酚二磺酸比色法的灵敏度较高,也较准确此法根据酚二磺酸与HNO3作用生成硝基酚二磺酸,该反应物在酸性介质中为无色,在碱性条件下为稳定的黄色盐溶液,但土壤中如含CL-在15ppm以上时,需加AgNO3处理,待测液中NO3--N的测定范围为0.1-2ppm。

4、水解氮的测定

在酸、碱条件下,把较简单的有机态氮水解成铵,长期以来采用丘林的酸水解法,但此法对有机质缺乏的土壤及石灰性土壤,测定结果不理想,而且手续繁琐;碱解扩散操作简便,还原、扩散和吸收同时进行,适于大批样品的分析。

土壤中的溶解性无机氮主要通过降雨、灌溉时的地表、地下径流进入被污染的水体。天然降雨杂质含量少,特性更接近于去离子水,灌溉用水则有一定的含盐量。选择天然土样,将经典的2M KCl和饱和CaSO。溶液浸体方法与模拟土壤溶液环境的去离子水和0.01M CaCl。溶液浸提方法进行了对比,以期为非点源污染中土壤溶解性无机氮流失研究。

将各浸提方法测得的氨氮含量与2M Kcl溶液浸提测得的氨氮含量相比较,得到图1。由图1可以明确看出,不同提取方式提取的氨氮结果差异很大;提取剂的种类和水土比都是重要影响因素。

水土比的影响非常明显。0.01M CaCl。溶液和去离子水都采用了20:l和100:1两种水土比,图1中清楚地显示出,水土比增大,氨氮的测定结果大幅增加。这与吸附一解吸理论一致。

浸提剂影响也很明显。由图1可见,各土样用4种浸提剂提取,水土比为5:1或20:1时,2M KCl溶液提取测得的氨氮值最大。不仅如此,用2M KCl溶液(水土比5:1)提取时,测定结果也最稳定,相对标准偏差均低于5%。用去离子水和0.01MCaCl。溶液(水土比为100:1)提取氨氮时,稳定性最差,相对标准偏差在10%~30%之间。去离子水和0.01M CaCl。溶液(水土比为20:1)时,测定结果的相对标准偏差基本在10%以下,稳定性得到提高。

参考文献

[1]库尔班江·吾斯曼,吾麦尔江·艾买提.盐碱地土壤全氮含量的测定[J].喀什师范学院学报.2004,25(6).

[2]王红萍,梁涛,张秀梅,夏军.非点源污染研究中土壤溶解性无机氮的提取方法选择[J].地理研究.2005,24(2).

重金属污染土壤修复示范工程实施方案

重金属污染土壤治理与修复 项目建议书

目录 第一章项目实施指导思想及原则------------------------------------------------------------- 1 1.1指导思想 ---------------------------------------------------------------------------------- 1 1.2实施原则 ---------------------------------------------------------------------------------- 1第二章项目基本情况 -------------------------------------------------------------------------- 2 2.1项目基本情况及污染现状、成因---------------------------------------------------- 2 2.2 实施目标-------------------------------------------------------------------------- ------- 2 第三章项目建设内容 -------------------------------------------------------------------------- 4 3.1工程内容 ---------------------------------------------------------------------------------- 4 3.2工程具体实施方案 ---------------------------------------------------------------------- 4 3.3工程设计方案 ---------------------------------------------------------------------------- 4 3.4植物的管护方案 ----------------------------------------------- 错误!未定义书签。 3.5治理方案优选及推广 ------------------------------------------------------------------- 5第四章资金筹措与预算----------------------------------------------- 错误!未定义书签。 4.1基础价格 -------------------------------------------------------- 错误!未定义书签。 4.2资金预算 ---------------------------------------------------------------------------------- 6第五章效益分析 -------------------------------------------------------------------------------- 7 5.1环境效益 ---------------------------------------------------------------------------------- 7 5.2社会效益 ---------------------------------------------------------------------------------- 7第六章项目实施进度---------------------------------------------------------------------------- 8 6.1基础架构 ---------------------------------------------------------------------------------- 8 6.2资金预算 ---------------------------------------------------------------------------------- 8

不同土壤DNA提取和纯化试剂盒及方法的比较学号

学校代码学号分类号密级 本科毕业论文 学院、系环境与资源学院 专业名称环境科学 年级2010级 学生姓名 指导教师 2014年5月

不同土壤DNA提取和纯化试剂盒及方法的比较 摘要 环境样品DNA的提取和纯化不仅是土壤微生物进行研究的前提条件,而且是环境宏基因组学中最关键的技术问题之一,DNA的产量和纯度对后续的一系列的分子生物学技术操作如:多聚酶链反应(PCR)扩增、核酸内切酶酶切消化、核酸分子杂交等等,都会产生很大的影响,所以后续试验有效进行,必须要先获得一定纯度、数量、有较好代表性和适当片段长度的DNA。本文针对三种典型的土壤类型(壤土、粘土和沙土),对目前应用比较广泛的三种不同的DNA 提取方法和四种不同的DNA 纯化方法的效果进行了比较。经过NanoDrop分光光度计和琼脂糖凝胶电泳对从三种典型土壤中提取和纯化的DNA的浓度和纯度进行检测,结果表明:Power Soil? DNA提取试剂盒和苯酚 - 氯仿抽提,异丙醇沉淀纯化方法的结合能提供满足环境组学研究的宏基因组测序要求的DNA。关键词:土壤微生物,DNA,提取,纯化

Comparison of DNA extraction and purification methods from different soils Abstract The extraction and purification of DNA from environmental samples is not only a prerequisite for microbial research, and is one of the environmental metagenomics most critical technical issues, the yield and purity of DNA on the subsequent series of molecular biology techniques operate such as: polymerase chain reaction (PCR) amplification,restriction enzyme digestion, the nucleic acid hybridization, etc. will have a huge impact, if follow-up tests effectively, you must first obtain a certain purity, quantity, better DNA fragments representative and appropriate length. In this paper, we have compared several different methods of DNA extraction and purification for three different soil, loam, sandy clay . After a NanoDrop spectrophotometer and by agarose gel electrophoresis and purified from the extract of the soil of three DNA concentration and purity, and the results showed that: Power Soil ? DNA extraction kit and phenol-chloroform extraction and isopropanol precipitation purification methods' combined provides the right DNA for the study of environmental groups metagenomic sequencing. Keywords:Microbial soil, DNA , Extraction, Purification

重金属污染土壤修复实施方案

重金属污染土壤修复实施方案 1工程内容 根据示范区内重金属污染区的地形地貌因子(地面坡度、覆土厚度、土层物质组成、灌溉条件)、土壤物理性质(容重、分散系数、初始入渗速度、孔隙度)、土壤化学性质(酸碱度、水溶性钙含量、氮磷钾含量)、生物因子(酶活性、微生物总量、呼吸强度)等指标,判定影响区域土壤修复与植被恢复的主要限制性因子。结合当地的气候条件及国内外相关重金属污染土壤治理修复研究技术等相关资料确定本次示范工程工程内容及总体思路: 将东岭锌业股份有限公司北侧兴隆场村涂家崖组10亩区域土壤污染严重的农田作为土壤重金属污染修复示范基地。对选取的示范基地首先进行土壤污染现状调查监测,在调查监测成果的基础上进行土地平整,一方面选取不同重金属富集植物种类及方法开展土壤重金属污染修复治理示范工作,另一方面选取不同淋洗剂采用土壤淋洗法治理修复受重金属污染土壤。对于植物修复技术,在示范区不同片区分别种植对重金属铅、镉、锌、砷等具有较强富集能的蜈蚣草、黑麦草、向日葵等绿色植物进行治理修复研究,其中,对种植向日葵片区开展在向日葵根部土壤混和添加不同人工合成的鳌合剂对比土壤重金属治理修复效果研究工作;对于物理化学修复技术中的淋洗法修复技术,在示范区内选取0.5亩土壤分别采用HCl、柠檬酸和Na2-EDTA三种常用淋洗剂和不同的淋洗次数等条件进行土壤

淋洗法重金属污染修复治理试验,利用一年时间初步取得示范治理成效,为区域土壤重金属污染治理修复工作全面开展打好坚实基础。2工程具体实施方案调查 2.1土壤现状调查监测 ①现状作采样工作图和标注采样点位图。 收集包括监测区域土类、成土母质等土壤信息资料。 收集工程建设或生产过程对土壤造成影响的环境研究资料。 收集造成土壤污染事故的主要污染物的毒性、稳定性以及如何消除等资料。 收集土壤历史资料和相应的法律(法规)。 收集监测区域工农业生产及排污、污灌、化肥农药施用情况资料。 收集监测区域气候资料(温度、降水量和蒸发量)、水文资料。 收集监测区域遥感与土壤利用及其演变过程方面的资料等。 现场踏勘,将调查得到的信息进行整理和利用,丰富采样工作图的内容。 针对示范区现状进行实地调查测量,确实示范区地形、地貌、面积、形状、地面坡度、覆土厚度、土层物质组成、灌溉条件、土壤物理性质、土壤化学性质、生物因子等指标。绘制示范区草图。 ②现状监测 根据初步调查结果,将示范区划分为近乎等面积的四个区块,在每个区块中心布设土壤环境质量现状监测采样点1个,共布设4个

磁珠法土壤基因DNA提取试剂盒

磁珠法土壤基因组DNA提取试剂盒 MagBeads Soil DNA Extraction Kit [目录号】SMDE-5005、SMDE-5010 【运输条件】2~25 C; 【保存条件】磁珠分散液2~8 C;蛋白酶K -20 C;其它组分室温保存; 【试剂盒组成】 【注意事项】 1. 磁珠悬浮液严禁反复冻融和离心,以免磁珠受到损害,使用前务必充分混匀; 2. 使用前请检查裂解液1和裂解液2是否出现沉淀,如有沉淀请将试剂瓶置于65 C水浴中温热至 液体澄清; 3. 蛋白酶K长期不使用,请置于-20 C保存,融化后4C保存,并尽快使用; 【产品简介】 本试剂盒适用于从新鲜或冷冻的干燥土壤中提取基因组DNA。试剂盒采用独特的缓冲液

体系,在裂解液环境中基因组DNA与磁珠高效结合,经过清洗和洗脱等步骤之后,可去除土壤中的杂质与腐植酸,获得高质量基因组DNA产物,OD260/OD280比值一般在1.7~1.9之间, 可直接用于酶切、PCR、电泳、Southern Blot、分子标记等下游分子生物学实验。 【试剂盒说明】 【自备仪器、耗材和试剂】 手动普通版:涡旋混合仪、水浴锅或金属浴、EP管(2.0mL )、EP管配套用磁力架、异丙醇、无水乙醇、RNase A 溶液(100mg/mL,分散液:10mM Tris-HCl、1mM EDTA、pH值8.0)。 手动高通量版:涡旋混合仪、水浴锅或金属浴、48孔尖底板、48孔板配套专用磁力架、超强 磁板架48孔板专用硅胶盖、异丙醇、无水乙醇、RNase A溶液(100mg/mL,分散液:10mM Tris-HCl、1mM EDTA、pH 值8.0 )。 【手动普通版】 本操作方法在2.0mL EP管中进行操作。 1. 释放土壤微生物 称取100~500mg 土壤样本至2.0mL EP管中,依次加入1.0mL裂解液1和20卩蛋白酶K, 涡旋振荡1~3min,将土壤样本分散均匀,58 C温浴10min,期间每隔5min颠倒3次混匀内容物。 注:1)如需去除RNA,请额外加入5 RNase A溶液;2)干燥的土壤样本请研磨至均一细小颗粒,有助于微生物的高效释放。 2. 获得土壤基因组DNA粗液 室温、12000rpm将EP管离心5min,然后转移全部上清液至新的 2.0mL EP管中。加入 400卩裂解液2,颠倒混匀,再次室温、12000rpm将EP管离心5min。 3. 核酸结合 转移全部上清液至另一只2.0mLEP管,依次加入400卩屏丙醇和50卩磁珠悬浮液(提前摇晃均匀),涡旋振荡5min。 4. 磁性分离 将EP管置于磁力架上静置约20s至磁珠吸附完全,如EP管内盖有残留磁珠,可保持EP管

土壤中氮和磷的存在形态和特点

土壤养分含量以及存在形态和特点 土壤形态 一、根据在土壤中存在的化学形态分为 (1)水溶态养分:土壤溶液中溶解的离子和少量的低分子有机化合物。 (2)代换态养分:是水溶态养分的来源之一。 (3)矿物态养分:大多数是难溶性养分,有少量是弱酸溶性的(对植物有效)。 (4)有机态养分:矿质化过程的难易强度不同。 二、氮的形态与转化 1、氮的形态:(全氮含量0.02%——0.3%) (1)无机态氮:铵离子和硝酸根离子,在土壤中的数量变化很大,1—50mg/kg (2)有机态氮:A、腐殖质和核蛋白,大约占全氮的90%,植物不能利用; B、简单的蛋白质,容易发生矿质化过程; C、氨基酸和酰胺类,是无机态氮的主要来源。 (3)气态氮: 2、氮的转化: 有机态氮的矿质化过程:氨化作用、硝化作用和反硝化作用; 铵的固定:包括2:1型的粘土矿物(依利石、蒙脱石等)对铵离子的吸附;和 微生物吸收、同化为有机态氮两种形式。 土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。小分 子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。 土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。 三、磷的形态与转化 1、形态(土壤全磷0.01%——0.2%) (1)有机态磷:核蛋白、卵磷脂和植酸盐等,占全磷总量的15%——80%; (2)无机磷:(占全磷20%—85%) 根据溶解度分为三类 A、水溶性磷: 一般是碱金属的各种磷酸盐和碱土金属一代磷酸盐,数量仅为0.01—— 1mg/kg。在土壤中不稳定,易被植物吸收或变成难溶态。

土壤有效态铅和镉的测定-DTPA浸提法

1. 适用范围 本规程适用于所有类型的土壤、沉积物有效态铅(Pb)、镉(Cd)的测定。 2. 测试原理 用DTP A(二乙三胺五乙酸)提取剂浸提出土壤中铅和镉。用火焰原子吸收分光光度计上机分析。 3. 仪器设备 天平(精确至)。 水浴恒温振荡器。 离心管:100mL聚乙烯离心管、50mLPP消解管。 瓶口移液器:符合《JJG 646-2006 移液器检定规程》计量性能要求;原子吸收分光光度计或等同仪器。 一般实验室常用仪器和设备,玻璃容器需符合国家A级标准。 4. 试剂 除非另有说明,分析时均用符合国家标准的分析纯试剂,实验用水为当天新制备的去离子水或等同纯度的水。 一级水,文中所说水均指一级水。 硝酸:p(HNO= g/mL,优级纯。 盐酸:p(HCl)= g/mL,优级纯。 硝酸溶液(体积分数为3%):用硝酸()配制。 盐酸溶液(6mol/L):用盐酸()配制。镉标准储备液,为国家有证标准物质。铬标准储备液,为国家有证标准物质。 铅标准中间液:精确吸取1000mg/L的标准储备液于50m容量瓶中,加入硝酸,用一级水定容至50mL混匀,置于4C冰箱保存。此溶液铅浓度为100mg/L。保存期限2年。 镉标准中间液:精确吸取100mg/L的标准储备液于50ml容量瓶中,加入硝酸,用一级水定容至50mL混匀,置于4C冰箱保存。此溶液镉浓度为10mg/L。保存期限1年。 DTPA浸提剂(L TEL(三乙醇胺)LCaCb):称取溶于()TEA和少量水中,再将氯化钙(CaCb)溶于水中,加水约900mL用6mol/L盐酸()调节pH至土(每升提取剂需加6mol/L盐酸溶液约)pH值需严格控制,最后用水定容至1L,贮存于塑料瓶中。 5. 分析测试 前处理

重金属污染土壤修复示范工程实施方案样本

**重金属污染土壤修复示范工程 实行方案 **环保科技工程有限公司 二○一一年五月

目录 第一章项目实行指引思想及原则------------------------------------- 错误!未定义书签。 1.1指引思想 -------------------------------------------------------- 错误!未定义书签。 1.2实行原则 -------------------------------------------------------- 错误!未定义书签。第二章项目实行目的 -------------------------------------------------- 错误!未定义书签。 2.1修复目的 -------------------------------------------------------- 错误!未定义书签。 2.2示范目的 -------------------------------------------------------- 错误!未定义书签。 2.3生态目的 -------------------------------------------------------- 错误!未定义书签。第三章工程内容和实行方案 ----------------------------------------- 错误!未定义书签。 3.1工程内容 -------------------------------------------------------- 错误!未定义书签。 3.2工程详细实行方案调查 -------------------------------------- 错误!未定义书签。 3.2.1土壤现状调查监测------------------------------------------ 错误!未定义书签。 3.2.2土壤分析测定------------------------------------------------ 错误!未定义书签。 3.3土壤环境质量评价 -------------------------------------------- 错误!未定义书签。 3.3.1 土壤环境质量分类和原则分级-------------------------- 错误!未定义书签。 3.3.2 各类土壤环境质量执行原则级别----------------------- 错误!未定义书签。 3.4污染指数、超标率(倍数)评价 -------------------------- 错误!未定义书签。 3.5区块划分 -------------------------------------------------------- 错误!未定义书签。 3.5.1特重污染区--------------------------------------------------- 错误!未定义书签。

土壤DNA提取

1 试验材料 吉林省松江河镇人参栽培土壤。每份土壤样品经多点取样后充分混匀,用前过10 目筛,去除土壤中的须根、枯枝等杂物[2]。 1 . 2 仪器设备及药品 电子分析天平、恒温水浴锅、紫外凝胶成像系统、电泳槽、 电泳仪、高速冷冻离心机、微量加样器、PCR 仪等。 TENP 缓冲液(50 mmol/L Tris,20 mmol/L EDTA,100mmol/L Na Cl,1% PVP,pH 10.0)、CTAB 提取缓冲液(100mmol/L Tris,100 mmol/L EDTA,100 mmol/L Na3PO4,1.5mol/L Na Cl,1%CTAB,pH 8.0)、 SDS 提取缓冲液(100 mmol/LTris,50 mmol/L EDTA,50 mmol/L Na Cl,pH8.0,灭菌后加β-巯基乙醇至10 mmol/L)、 异丙醇、氯仿、异戊醇、无水乙醇、琼脂糖、EB、Taq DNA 聚合酶、d NTP、6×凝胶上样缓冲液、DNAMarker 等。 主要试剂有十二烷基硫酸钠(SDS)、乙二胺四乙酸(EDTA)、十六烷基三甲基溴化铵(CTAB)、异硫氰酸胍,均为分析纯级。 1 .3 试验方法 1.3.1 土壤微生物的洗涤取土壤样品2g,置于50m L 灭菌的离心管中;加入10m L TENP 缓冲液[3]悬浮土样,磁力搅拌器搅拌15 min;10000r/min 离心5min,弃上清,重复洗涤多次至上清基本无色;最后将沉淀收集至1.5ml 离心管中。 1.3.2 DNA 的提取 1.3. 2.1 CTAB 法按照李钧敏[4]的方法略作改动。将沉淀重悬于500μl CTAB 提取缓冲液→65℃水浴2h→8000r/min,室温离心15 min,取上清→加入等体积氯仿:异戊醇(24∶1),12,000r/min 离心10 min,取上清→加入0.6 倍体积的异丙醇,4℃淀过夜→12000 r/min 4℃离心20min 收集DNA 沉淀→70%乙醇漂洗两次→干燥后将沉淀溶于100 μl p H 8.0 TE 缓冲液,备用。 1.3. 2.2 SDS 法按照焦晓丹[5]的方法略作改动。取沉淀,重悬于500μl SDS 提取缓冲液,轻轻混匀→向管中加入50μL 20%SDS 溶液,混匀,不可过于强烈震荡以防基因组DNA 断裂→65℃保温2h,每隔20min 轻轻摇匀1 次→加入与上清液等体积的氯仿和异戊醇(24∶1),混匀后12000r/min 离心10min,取上清→加入2 倍体积的无水乙醇,静止于室温下2h →以12000r/min 离心20min,收集DNA 沉淀→70%乙醇漂洗两次→干燥后将沉淀溶于100μl p H 8.0 TE 缓冲液,备用。

土壤修复上市公司一览

土壤修复上市公司一览 1.永清环保——目前上市企业中土壤修复业务发展最先的企业 永清环保(300187)是目前A 股中仅有的拥有土壤修复成功工程经验的环保企业,如果未来国家快速启动土壤修复工程,公司有望在湖南继续攻城拔寨,扩大区域领先优势。永清环保地处于我国有色金属之乡湖南。湖南拥有大量的矿产采选业和成熟的有色金属冶炼产业。 目前湖南,尤其是湘江流域大量河流和土壤都收到重金属的严重污染。针对于此,2011 年3 月国务院也批复了《湘江流域重金属污染治理实施方案》。《方案》将在湘江流域启动927 个重金属污染治理项目,总投资达 595 亿元。其中,“十二五”期间将完成856 个治理项目,投资505 亿元,力争到“十二五”末,湘江流域内危害群众健康的重金属污染突出问题得到解决,涉重金属产业结构进一步优化,工业污染源得到全面治理和控制,涉重金属企业数量和重金属排放量比2008 年减少50%。 公司积极于湘江流域开拓土壤修复业务,并于2011 年成功完成了浏阳湘和化工厂镉污染治理项目,取得了良好的市场反响。 2012 年1 月,公司再接再厉,成功获取了永兴县工业固体废物污染环境修复技术示范项目订单。 根据公司2012 年半年报数据,公司土壤修复业务收入占比已从2011 年的5.81%上升到了28.95%,未来有望进一步成长为公司的明星业务增长点。 2. 桑德环境 桑德环境(000826)下属环境修复事业部是一家专业从事尾矿砂治理及矿区生态修复、老旧垃圾填埋场治理、农田土壤污染修复、场地污染修复、地下水污染修复等业务的部门。 该部门拥有专业的市场开拓及技术研发队伍,拥有自主知识产权的专利技术及成套设备,具备强大的技术实力、施工能力和技术应用经验。桑德修复以桑德环境为依托,和国内众多科研院所及国际知名环境修复公司合作,共同实施了国内外土壤重金属污染修复、化学品污染场地修复、矿山生态治理、河道底泥治理等项目。 3. 东江环保 2012 年6 月14 日,东江环保(002672)公告董事会通过了《成立东江同和环境修复工程技术(深圳)有限公司》的议案。东江环保将与同和环保再生事业有限公司共同出资在广东省深圳市组建合资公司东江同和环境修复工程技术(深圳)有限公司,经营范围主要是从事地下水及土壤污染治理、修复工程(以公司登记机关核准的经营范围为准)。公司出资人民币500 万元,持有东江同和50%股权,同和环保以相当于人民币500 万元的美元出资,持有东江同和50%股权。 4. 维尔利 2011 年10 月维尔利(300190)与常州市环境保护研究所签订了土壤修复合作框架协议,以共同开拓土壤修复产业市场。维尔利组建了土壤修复研发团队,并投入3,000 万研发经费,并已建土壤修复规划为公司两大战略发展方向之一。

土壤总DNA的几种提取方法

土壤总DNA的几种提取方法 SDS 高盐法(方案1) 具体步骤: 称取1 g 土壤,放入研钵中,倒入适量的液氮,立即研磨;再倒入适量的液氮,研磨,重复3 次,使土壤颗粒研成粉末; 将13.5 ml 提取缓冲液(0.1 mol/L磷酸盐[pH = 8.0 ] ,0.1 mol/L EDTA [pH 8.0 ] ,0.1 mol/L Tris-HCl [pH 8.0 ] ,1.5 mol/L NaCl ,1.0 % CTAB) 和50μl 蛋白酶K(10 g/L ) 与5 g 土壤置于50 ml 的离心管中,放入37 ℃恒温摇床上,225 r·min - 1振荡30 min ; 加入1.5 ml20 % SDS ,轻轻混匀,65 ℃水浴加热2 h ,每隔15~30 min 轻轻摇匀1 次;5 000 r·min - 1离心10 min ,将上清液转入新的50 ml 离心管中;取4.5 ml 提取缓冲液加入原离心管,摇匀泥浆,加入0.5 ml 20 % SDS ,65 ℃水浴15 min ,用上述同样的离心速度离心10 min ,将上清液与原上清液合并;再重复此步骤1 次; 用与上清液等量的三氯甲烷于离心管中混匀,5000 r·min - 1离心20 min ;收集上清液,并加入0.6 倍体积的异丙醇,室温静置1 h ;25 ℃下12 000 r·min - 1离心20 min ,倒出上清液,干燥后加入500μl 去离子水,溶解粘附于离心管壁的DNA 及其杂质,并收集于1.5 ml 的微型离心管中. 变性剂加SDS 高盐法(方案2) 具体步骤: 取1 g 土样和等量的灭菌石英砂在研钵中混合,加入1 ml 变性剂(4 mol/L异硫青酸胍,10mmol/L Tris-HCl [pH 7.0 ] ,1 mmol/L EDTA[pH 8.0 ] ,0.5 % 2-巯基乙醇) ;液氮冰冻,研磨至溶解,重复3 次; 转入50 ml 离心管中,加入9 ml 提取缓冲液(0.1 mol/L磷酸钠[pH 7.0 ] , Tris-HCl [ pH 7.0 ] , 0.1 mol /L EDTA [ pH8.0 ] ,1.5 mol/L NaCl ,1 %CTAB ,2 %SDS) ;65 ℃水浴1 h ,每10 min 轻轻混匀1 次;5 000 r·min - 1 离心10 min ,取上清; 在原管中加入5 ml 提取缓冲液,混合后,65 ℃水浴10min ,离心,取上清,合入上述上清液;重复一次;加入等体积的氯仿混合,5 000 r·min - 1离心20 min ,取上清;加入0.6 倍体积的异丙醇,室温沉淀1 h ;20~25 ℃,12 000 r·min - 1离心20 min ,TE 溶解沉淀. SDS-酚氯仿抽提法(方案3) 称取1g土壤样品,加入1ml 0.1mol/l PH8.0 磷酸缓冲液,玻璃珠振荡1min。溶菌酶5mg,使终浓度为 2.5mg/ml,室温振荡15min,放置冰箱30min,加125ul 20%SDS振荡处理15min,离心,分装EP管,加酚(1:1体积),抽提1次,氯仿-异戊醇(1:1体积),抽提2次,加0.6体积异丙醇,室温放置1h,离心,70%乙醇清洗,200Ul TE 溶解。 冻融溶菌酶SDS裂解法(方案4) 取1g土壤样品,加如0.5ml灭菌的抽提缓冲液(100 mmol/L Tris-HCl , 100 mmol/L EDTA, 200 mmol/L NaCl, 1.0% PVP, 2.0%CTAB , PH8.0), 加玻

湿地土壤微生物DNA提取及其脱腐技术

微生物学通报 AUG 20, 2010, 37(8): 1130?1137 Microbiology China ? 2010 by Institute of Microbiology, CAS tongbao@https://www.wendangku.net/doc/ff2347694.html, 基金项目:国家973计划前期研究专项项目(No. 2009CB125909) *通讯作者:Tel: 86-471-4991676; : ndzj@https://www.wendangku.net/doc/ff2347694.html, 收稿日期:2010-01-25; 接受日期:2010-05-24 摘 要: DNA 分子生物学技术的广泛应用, 为全面了解微生物群落提供了有力的工具。本文建立了一种新的从湿地土壤中提取微生物总DNA 的方法, 即氯化钙-SDS-酶法。在直接提取DNA 过程中采用氯化钙去除腐殖酸, DNA 提取缓冲液中不使用EDTA 螯合剂, 提取过程用时4 h 左右。与其他两种方法相比, 该方法高效去除湿地土壤腐殖酸, 纯度较高, 满足PCR 扩增, 为微生物生态学研究提供了一种高效的湿地土壤微生物总DNA 提取和纯化技术。 关键词: 湿地土壤, DNA 提取, 腐殖酸, PCR 扩增, 氯化钙-SDS-酶法 DNA Extraction and Removing Humic Substance from Wetland Soil LI Jing-Yu 1 ZHAO Ji 2* BIAN Yu 2 WU Lin-Hui 2 YU Jing-Li 2 (1. College of Life Sciences , Inner Mongolia University , Huhhot , Inner Monglia 010021, China ) (2. College of Environment & Resources , Inner Mongolia University , Huhhot , Inner Monglia 010021, China ) Abstract: DNA-based molecular biology techniques have widely been used as a powerful tool to un-derstand the microbial community. In this paper, a new method to extract microbial genomic DNA from wetland soil was established, namely Calcium Chloride-SDS-Enzymatic. Calcium chloride rather than EDTA chelating agent was used to remove humic acids in the process of direct DNA extraction. The extracting time is less than 4 hours. In comparing with other two methods, this method is more efficient in removing humic acids from wetland soil, and the purity of extracted DNA is higher which can be ap-plied to PCR amplification. It provides an efficient technology to extract and purify microbial genome DNA from soil for microbial ecological studies. Keywords: Wetland soil, DNA extraction, Humic acid, PCR amplification, Calcium chloride- SDS-enzymatic 从土壤和沉积物样品中提取微生物总DNA 是研究微生物多样性的前提和基础, 方法大致可以分为直接提取和间接提取两大类[1]。直接提取法获得DNA 的量较大, 但腐殖酸的存在会影响到下游的分 析[2]。为了获得纯度较高的微生物总DNA, 需要对其进行纯化处理。纯化处理的方法有硫酸铝捕获腐殖酸法[3]、PVPP 纯化法[4]、CTAB 法[5]、氯化铯密度梯度离心法[6]、交联葡聚糖和琼脂糖凝胶过滤树

重金属污染土壤修复示范工程实施方案

** 重金属污染土壤修复示范工程 实施方案 **环保科技工程有限公司 二O—一年五月 目录 第一章项目实施指导思想及原则--------------------- 1 1.1指导思想------------------------------- 1 1.2实施原则------------------------------- 1 第二章项目实施的目标---------------------------- 3

2.1修复目标------------------------------- 3 2.2示范目标------------------------------- 3 2.3生态目标------------------------------- 4 第三章工程内容和实施方案------------------------- 5 3.1工程内容------------------------------- 5 3.2工程具体实施方案调查------------------------ 6 3.2.1------------------------------------------------------------- 土壤现状调查监测 6 3.2.2---------------------------------------------------------- 土壤分析测定16 3.3土壤环境质量评价------------------------- 19 3.3.1土壤环境质量分类和标准分级- 20 3.3.2-------------------------------------------------------------------- 各类土壤环境质量执行标准的级别- ------------------------------------ 20 3.4污染指数、超标率(倍数)评价------------------- 21 3.5区块划分------------------------------- 22 3.5.1-------------------------------------------------------- 特重污染区22 3.5.2-------------------------------------------------------- 重污染区22 3.5.3-------------------------------------------------------- 一般污染区23 3.5.4-------------------------------------------------------- 轻度污染区23 3.6工程设计方案--------------------------- 23 3.6.1-------------------------------------------------------- 淋洗法方案23 3.6.2---------------------------------------------------------- 螯合剂研制方案24 3.6.3------------------------------------------------------------- 植物修复的栽植方案 24 3.7水利等基础设施建设方案---------------------- 32 3.8植物的管护方案--------------------------- 33 3.9治理方案优选及推广------------------------- 35 3.10后评估- ----------------------------- 35 第四章项目施工与管理---------------------------- 37 4.1 项目实施组织机构------------------------- 37 4.2 项目管理------------------------------- 37

实验室土壤DNA提取方法

改良CTAB-SDS法 1、称取1 g土壤样品,加1ml DNA提取液(0.1 mol/L Tris-Hcl;0.1 mol/L EDTA; 0.1 mol/L 磷酸钠;1.5 mol/L Nacl;1%CTAB;pH 8.0,将各种试剂按配置的体积数称量混合即可。),在漩涡震荡仪上混匀。 2、加入100ul溶菌酶温和37℃裂解30min,液氮冷冻10 min,65℃水浴10 min,反复冻融3次。 3、加入20% SDS缓冲液溶液100μl,65℃水浴2h,每20 min轻轻颠倒几次。8000 r/min离心10 min,取上清。 4、剩余残渣中再加500μl DNA提取液和100μl SDS 缓冲液,65℃水浴30 min,8000 r/min室温离心10 min,取上清,合并两次的上清液。 5、等体积的氛-氯仿-异戊醇(25:24:1)抽提2至3次(氯仿:异戊醇(24:1)抽提一次),静置10min,12000rpm,10min取上清。 6、加入0.1倍体积的NaAc和0.6倍体积的无水乙醇混匀,4℃沉淀过夜。 7、13000 r/min离心5 min,70%乙醇清洗2次,30μl ddH 2 O溶解。 8、提取粗DNA在0.6%(1%)的Agrose,70 V(100V)电压下电泳1.5 h(40min)。注意事项:这个千万不要4℃过夜啊,4℃过夜你会发现很多的絮状悬浮物,我之前犯过类似错误,这个是SDS和高浓度的盐在低温条件下析出来了。室温放置1-2h就好。 提取土壤微生物总DNA的纯度和浓度检测 对提取的土壤微生物总DNA进行琼脂糖凝胶电泳检测,同时采用紫外分光光度计分别测定提取土壤微生物总DNA稀释液在230 nm,260 nm,280 nm处的光 密度值。以OD 260/OD 280 (DNA/蛋白质),OD 260 /OD 230 (DNA/腐植酸)比值检测DNA纯 度。 DNA浓度=OD 260 值×50μg/ml×80×DNA 溶液体积/干土质量[68]

土壤中有效态Cu的测定(精)

土壤中有效态Cu的测定 一、【工作任务与要求】 任务:土壤中有效态Cu的测定。 要求:掌握原子吸收分光光度法测土壤中重金属。 二、【工作程序与操作方法】 (一)原理 1、原子吸收法(AAS)原理 根据基态原子对特征波长光的吸收,测定试样中待测元素含量的分析方法。试液喷射成细雾与燃气混合后进入燃烧的火焰中,被测元素在火焰中转化为原子蒸气.气态的基态原子吸收从光源发射出的与被测元素吸收波长相同的特征谱线.使该谱线的强度减弱,再经分光系统分光后,由检测器接受.产生的电信号,经放大器放大,由显示系统显示吸光度。 2、浸提原理 石灰性土壤中金属离子铜与DTPA达成络合平衡,又在pH=7.3的0.01mol/LCaCl2溶液中,使浸出物与CaCL2达到平衡,并可以将含碳酸盐土壤中CaCO3的溶解度减至最小程度。提取剂中的TEA缓冲液的作用是防止过量铁及锰的溶解。 (二)仪器 1.容量瓶、烧杯、振荡器、 2.移液管、锥形瓶 3. 原子吸收分光光度计 4.Cu空心阴极灯 5. 氢气钢瓶 6.10μL手动进样器 (三)试剂 1、提取剂:中性和石灰性土壤用DTPA提取,酸性土壤用HCL提取。 DTPA浸提剂:1.96g DTPA (二乙烯三胺五醋酸)置于1L容量瓶中。加 14.92gTEA(三乙醇胺)用纯水溶解并稀释到950ml。再加1.47 克CaCl2.2H2O用6molHCL调节至pH=7.3,最后用纯水稀释 到刻度。 2.、铜的标液:溶解1.0000g纯铜于少量的浓HNO3,并加5ml浓HCL,蒸发至干,用浸提剂稀释至1L,此为1000ppm含铜标准母液。临用前稀释成100ppm 使用液。稀释至0.1-10ppm为宜。 (四)步骤 1、标准曲线绘制 准确吸取铜标准溶液0、4、10、15、20 、40 ml.于50mL容量瓶中,并用浸提剂定容至50ml.,则此标准系列相当于0、8、20、30、40、80ppm的含铜量。

重金属污染土壤修复示范工程实施方案

**重金属污染土壤修复示范工程 实施方案 **环保科技工程有限公司 二○一一年五月

目录 第一章项目实施指导思想及原则------------------------------------------------------------- 1 1.1指导思想 --------------------------------------------------------------------------------1 1.2实施原则 --------------------------------------------------------------------------------1 第二章项目实施的目标 ----------------------------------------------------------------------- 3 2.1修复目标 --------------------------------------------------------------------------------3 2.2示范目标 --------------------------------------------------------------------------------3 2.3生态目标 --------------------------------------------------------------------------------4 第三章工程内容和实施方案 ----------------------------------------------------------------- 5 3.1工程内容 --------------------------------------------------------------------------------5 3.2工程具体实施方案调查 --------------------------------------------------------------6 3.2.1土壤现状调查监测------------------------------------------------------------------6 3.2.2土壤分析测定---------------------------------------------------------------------- 16 3.3土壤环境质量评价 ------------------------------------------------------------------ 20 3.3.1 土壤环境质量分类和标准分级------------------------------------------------ 20 3.3.2 各类土壤环境质量执行标准的级别------------------------------------------ 21 3.4污染指数、超标率(倍数)评价 ------------------------------------------------ 22 3.5区块划分 ------------------------------------------------------------------------------ 22 3.5.1特重污染区------------------------------------------------------------------------- 23 3.5.2重污染区---------------------------------------------------------------------------- 23 3.5.3一般污染区------------------------------------------------------------------------- 23 3.5.4轻度污染区------------------------------------------------------------------------- 23 3.6工程设计方案 ------------------------------------------------------------------------ 23 3.6.1淋洗法方案------------------------------------------------------------------------- 23 3.6.2螯合剂研制方案------------------------------------------------------------------- 24 3.6.3植物修复的栽植方案------------------------------------------------------------- 24 3.7水利等基础设施建设方案 --------------------------------------------------------- 32 3.8植物的管护方案 --------------------------------------------------------------------- 33 3.9治理方案优选及推广 --------------------------------------------------------------- 35 3.10后评估-------------------------------------------------------------------------------- 36 第四章项目施工及管理 ----------------------------------------------------------------------- 37 4.1项目实施组织机构 ------------------------------------------------------------------ 37 4.2项目管理 ------------------------------------------------------------------------------ 37

相关文档
相关文档 最新文档