文档库 最新最全的文档下载
当前位置:文档库 › T12钢热处理工艺要点

T12钢热处理工艺要点

T12钢热处理工艺要点
T12钢热处理工艺要点

金属材料与热处理技术课程设计

题目:T12钢热处理工艺课程设计

院(系):冶金材料系

专业年级:材料1201

负责人:陈博

唐磊,杨亚西,

合作者:谭平,潘佳伟,多杰仁青

指导老师:罗珍

2013年12月

热处理工艺课程设计任务书

系部冶金材料系专业金属材料与热处理技术

学生姓名陈博,杨亚西,唐磊,谭平,多杰仁青,潘佳伟

课程设计题目T12

设计任务:

1,课程设计的目的:为了使我们更好地了解碳素工具钢的性能及其热处理工艺流程。培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。学习热处理工艺设计的一般方法,热处理设备选用和装夹具设计等进行热处理设计的基础技能训练。

2.课程设计的任务分组(碳素工具钢T12)

①:锉刀的热处理工艺(唐磊)

②:热处理后的组织金相分析(陈博)

③:淬火(潘佳伟)

④:回火(多杰仁青)

⑤:局部淬火(谭平)

⑥:缺陷分析(杨亚西)

3.课程设计的内容:

T12钢热处理工艺设计流程

4参考文献:

【1】詹艳然,吴乐尧,王仲仁.金属体积成形过程中温度场的分析.塑性工程学报,2001,8(4)

【2】叶卫平,张覃轶.热处理实用数据速查手册.机械工业出版社.2005,59---60 【3】许天己钢铁热处理实用技术.化学工业出版社2005,134"~136

设计进度安排:

第一周周一~周二钢的普通热处理工艺设计理论学习

周三~周五分组进行典型金属材料的热处理工艺设计第二周周一~周三撰写设计说明书

周四~周五答辩

指导教师(签字):

月日

热处理工艺卡

热处理工艺卡材料牌

T12 零件重

锉刀400g

工艺路

线

热轧钢板冲压下料——退火——校直——铣或刨侧

面——粗磨——半精磨——剁齿——淬火加回火。

技术条件检验方法

硬度HRC60-62,HB≤207 洛氏硬度计,布氏硬度计

金相组

珠光体,马氏体和

渗碳体

金相观察

力学性

硬度:退火,≤

207HB,压痕直径≥

4.20mm;淬火:≥

62HRC

布氏法,洛氏法

序号工序名称设备

装炉方式

及数量

加热温

度℃

保温

时min

冷却

冷却时间

min

1 预热加热炉- 550-65

加热

时间

的5-6

- - -

2 球化退火退火炉- 760-77

0 2-4h 空

550

-60

4h

3 淬火保护气

氛炉- 770-78

- 水150

-20

10

4 低温回火回火炉- 160-18

0 0.75-

1h

150 60

编制人陈博编制日期2013.12.11 审核日期

目录

基本资料 (4)

工艺规范 (5)

T12锉刀热处理 (6)

1锉刀材料的选择 (6)

2锉刀的热处理工艺 (6)

2.1 球化退火的具体工艺 (6)

2.2 T12钢制锉刀,其工艺路线如下: (6)

2.3淬火 (7)

2.4回火 (8)

2.5 局部淬火 (9)

3 热处理后组织金相分析 (9)

4质量检验 (14)

5缺陷分析 (15)

参考文献 (16)

表1、碳素工具钢化学成分

序号 牌号

化学成分 C Mn

Si S P 不大于

1 T7 0.65-0.74 ≤0.40

≤0.35

0.030 0.035 2 T8 0.75-0.84 3 T8Mn 0.80-0.90 0.40-0.60 4

T9 0.85-0.94 ≤0.40 5

T10 0.95-1.04 6

T11 1.05-1.14 7

T12 1.15-1.24 8

T13 1.25-1.35

工艺规范

1、临界点温度 (近似值)

Ac1 =730°C 、, Accm =820°C 、 Ar1 =700°C

2、正火规范

正火温度 850~870°c, 空冷, 硬度 269 ~341HBW

3、普通退火规范

退火温度 760 ~770°C, 保温2 ~4h, 再以 <30°C/h 冷速, 随炉缓冷到 500 ~600°C,出炉空冷。

4、等温球化退火规范

1) 760 ~770°C ×2 ~4h, 680~700°C ×4 ~6h, 等温后炉冷到 500 ~600°C, 出炉空冷, 硬度≤207HBW

2) 750 ~770°C ×1~2h, 680 ~700°C ×2 --3h, 硬度 179 ~207HBW, 珠光体组织2~4级, 网状碳化物等级≤2级。

5、调质处理规范

淬火温度800~820°C,油冷; 回火温度640~680°C,保温时间2~3h, 球化级别:3 ~5 级, 硬度 183 ~207HBW。

6、普通淬火、回火规范

淬火温度760~780°C,水冷、?油双液冷却或碱浴冷却. 硬度≤62HRC, 回火温度(180 ±10)°C 。

7、薄片切断刀微变形处理

1) 调质处理: 760 ~770°C ×4. 25min 淬入三硝水介质, 600 ~610°C × 1h 空冷回火。

2) 最终热处理: 850 ~860°C × 80s 淬三硝水 2 ~3s 后, 入硝盐 180 ~190°

C ×4min空冷, 270 ~280°c × 1h 空冷, 硬度 56 ~57HRC.

T12钢的物理性能

T12锉刀热处理

1锉刀材料的选择据上面的分析得知锉刀的材料选用必须具备高硬度、高耐磨性和足够的韧性,故应选择T11或T12钢。

2锉刀的热处理工艺路线:热轧钢板(带)下料——锻(轧)柄部——球化退火——机加工——淬火——低温回火

2.1 球化退火的具体工艺①普通(缓冷)球化退火,缓冷适用于多数钢种,

尤其是装炉量大时,操作比较方便,但生产周期长;②等温球化退火,适用于多数钢种,特别是

难于球化的钢以及球化质量要求高的钢(如滚动轴承钢);其生产周期比普通球化退火短,不过需要有能够控制共析转变前冷却速率的炉子;③周期球化退火,适用于原始组织为片层状珠光体组织的钢,其生产周期也比普通球化退火短,不过在设备装炉量大的条件下,很难按控制要求改变温度,故在生产中未广泛采用;

④低温球化退火,

适用于经过冷形变加工的钢以及淬火硬化过的钢(后者通常称为高温软化回火);

⑤形变球化退火,形变加工对球化有加速作用,将形变加工与球化结合起来,

可缩短球化时间。它适用于冷、热形变成形的钢件和钢材(如带材)是在Acm 或Ac3与Ac1之间进行短时间、大形变量的热形变加工者;或是在常温先予以形变加工者;也可以是利用锻造余热进行球化者)。

球化退火:将毛坯加热到760-770℃,保温2-4h然后以30-50℃/h的速度冷却到550-600℃出炉后空冷,处理后组织为球化体,硬度为180-200HB。

淬火温度为770-780℃,可用盐溶液、高频感应加热或在保护气氛炉中加热,以防止表面脱碳和氧化。加热后水冷,由于锉刀柄部要求较低,在淬火时先将齿部放在水中冷却,待柄部颜色变成暗红色时才全部倾入水中。当锉刀冷却到150-200℃时,提出水面。木锤校直。

低温回火:温度为160-180℃,事时间0.75-1h,空冷。成品板锉表面刃部硬度64-67HRC,柄部<35HRC

2.2 T12钢制锉刀,其工艺路线如下:锻造——热处理——机加工——

热处理——精加工。

锉刀由T12锻成,然后退火磨削校正,经剁锉机剁出锉齿后在淬火,硬度一般62-67HRC。预热:为了减少锉刀加热时内部产生应力,使之弯曲小和防止裂纹,对锉刀在加热之前要进行预热以达到以上目的。预热温度为550~650℃,时间为加热时间的5—6倍。

锻后热处理也叫退火得到的是球化珠光体组织,硬度一般为机械加工能够加工的动的范围,机加工后的热处理叫淬火+回火,一般采用较低的温度回火,得到的是回火马氏体+碳化物,硬度较高T12钢780℃水淬、低温回火后为回火马氏体和碳化物.

锻造后,晶粒破碎,硬度强度增大。第一次热处理应该为退火。目的:降低材料的硬度,使组织均匀,利于机械加工,此时的组织为铁素体加渗碳体的机械混合物。HRC不会超过30。

第二次热处理后,对于锉刀,其硬度应该大于50HRC,同时保证材料的耐磨性。此时组织为马氏体和少量的奥氏体。淬火温度760-780,回火温度16-180,回火后硬度大于HRC60T12是碳素工具钢,含碳量1.2%

退火:(图8)放煤气炉上面烧到红色,然后关掉炉子,把刀子放在炉子上冷却,或者空气冷却也可以

退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。

2.3淬火:(图6、图7)放煤气炉上面烧到亮红色(稍微有点泛白),然后

迅速拿出,刀尖向下垂直插入油中,保持一段时间,取出,然后迅速回火

淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。

淬火裂纹的特征在淬火过程中,当淬火产生的巨大应力大于材料本身的强度并超过塑性变形极限时,便会导致裂纹产生。淬火裂纹往往是在马氏体转变开始进行后不久产生的,裂纹的分布则没有一定的规律,但一般容易在工件的尖角、截面突变处形成。

在显微镜下观察到的淬火开裂,可能是沿晶开裂,也可能是穿晶开裂;有的呈

放射状,也有的呈单独线条状或呈网状。因在马氏体转变区的冷却过快而引起的淬火裂纹,往往是穿晶分布,而且裂纹较直,周围没有分枝的小裂纹。因淬火加热温度过高而引起的淬火裂纹,都是沿晶分布,裂纹尾端尖细,并呈现过热特征:结构钢中可观察到粗针状马氏体;工具钢中可观察到共晶或角状碳化物。表面脱碳的高碳钢工件,淬火后容易形成网状裂纹。这是因为,表面脱碳层在淬火冷却时的体积胀比未脱碳的心部小,表面材料受心部膨胀的作用而被拉裂呈网状。非淬火裂纹的特征淬火后发现的裂纹,如果裂纹两侧有氧化脱碳现象,则可以肯定裂纹在淬火之前就已经存在。淬火冷却过程中,只有当马氏体转变量达到一定数量时,裂纹才有可能形成。与此相对应的温度,大约在250℃以下。在这样的低温下,即使产生了裂纹,裂纹两侧也不会发生脱碳和出现明显氧化。所以,有氧化脱碳现象的裂纹是非淬火裂纹。

如果裂纹在淬火前已经存在,又不与表面相通,这样的内部裂纹虽不会产生氧化脱碳,但裂纹的线条显得柔软,尾端圆秃,也容易与淬火裂纹的线条刚健有力,尾端尖细的特征区别开来。

分析当工件在锻造过程中形成裂纹时,淬火加热即引起裂纹两侧氧化脱碳。随着脱碳过程的进行,裂纹两侧的碳含量降低,铁索体晶粒开始生核。当沿裂纹两侧生核的铁素体晶粒长大到彼此接触后,便向离裂纹两侧较远的基体方向生长。由于裂纹两侧在脱碳过程中碳浓度的下降,也是由裂纹的开口部位向内部发展,因而为铁素体晶粒的不断长大提供了条件,故最终长大为晶界与裂纹相垂直的柱状晶体。

2.4 回火:(图9)炉子开小火焰,锉刀不要靠火焰太近,最好是用砂纸将

刚淬火后的刀子磨出一些金属本色,在回火的时候掌握不要让刀子变蓝色就可以回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。

回火脆性:是指淬火钢回火后出现韧性下降的现象。淬火钢在回火时,随着回火温度的升高,硬度降低,韧性升高,但是在许多钢的回火温度与冲击韧性的关系曲线中出现了两个低谷,一个在 200~400℃之间,另一个在450~650℃之间。随回火温度的升高,冲击韧性反而下降的现象,回火脆性可分为第一类回火脆性和第二类回火脆性。

第一类回火脆性第一类回火脆性又称不可逆回火脆性,低温回火脆性,主要发生在回火温度为 250~400℃时。

特征(1)具有不可逆性;(2)与回火后的冷却速度无关;(3)断口为沿晶脆性断口。

1、产生的原因三种观点:(1)残余A转变理论2)碳化物析出理论(3)杂质偏聚理论

2、防止方法无法消除,不在这个温度范围内回火,没有能够有效抑制产生这种回火脆性的合金元素(1)降低钢中杂质元素的含量;(2)用Al脱氧或加入Nb、V、Ti等合金元素细化A晶粒;(3)加入Mo、W等可以减轻;(4)加入Cr、Si调整温度范围(推向高温);(5)采用等温淬火代替淬火回火工艺。

第二类回火脆性第二类回火脆性又称可逆回火脆性,高温回火脆性。发生的温度在 400~650℃,特征(1)具有可逆性;(2)与回火后的冷却速度有关;回火保温后,缓冷出现,快冷不出现,出现脆化后可重新加热后快冷消

除。(3)与组织状态无关,但以M的脆化倾向大;(4)在脆化区内回火,回火后脆化与冷却速度无关;(5)断口为沿晶脆性断口。 3、影响第二类回火脆性的因素(1)化学成分(2)A晶粒大小(3)热处理后的硬度 4、产生的机理出现回火脆性时,Ni、Cr、Sb、Sn、P等都向原A晶界偏聚,都集中在2~3个原子厚度的晶界上,回火脆性随杂质元素的增多而增大。Ni、Cr不仅自身偏聚,而且促进杂质元素的偏聚。(2)淬火未回火或回火未经脆化处理的,均未发现合金元素及杂质元素的偏聚现象。(3)合金元素Mo能抑制杂质元素向A晶界的偏聚,而且自身也不偏聚。

以上说明:Sb、Sn、P等杂质元素向原A晶界偏聚是产生第二类回火脆性的主要原因,而Ni、Cr不仅促进杂质元素的偏聚,且本身也偏聚,从而降低了晶界的断裂强度,产生回火脆性

5、防止方法(1)提高钢材的纯度,尽量减少杂质;(2)加入适量的Mo、W等有益的合金元素;(3)对尺寸小、形状简单的零件,采用回火后快冷的方法;(4)采用亚温淬火(A1~A3):细化晶粒,减少偏聚。加热后为A+F(F 为细条状),杂质会在F中富集,且F溶解杂质元素的能力较大,可抑制杂质元素向A晶界偏聚。(5)采用高温形变热处理,使晶粒超细化,晶界面积增大,降低杂质元素偏聚的浓度。

2.5 局部淬火:淬火的时候把前面的油换成很浅的水(5mm左右),下水的时

候刀刃向下,注意一点,淬水以后一定马上回火,否则易开裂(a)在水中淬火图 2 为试样在900℃和800℃以10s1应变速率经30%变形后立即水淬的显微组织,给出了试样心部和边部形貌。可以看出试样心部和边部组织有一定差异。如图2 的(a)和(b),试样在900℃变形,边部基本上为马氏体/贝氏体,只有少量的先共析铁素体组织在原奥氏体晶界处析出;心部的铁素体量有所增加。当变形温度为800℃时,如图2 (c)、(d),组织结构同900℃时没有较大差别,边部的铁素体量比心部铁素体量增多。低碳碳素钢变形在水中淬火后析出的先共析铁素体基本上为魏氏组织型铁素体,且沿原奥氏体晶界析出。

图2 试样在900℃和800℃以10s1应变速率经30%变形后立即水淬的显微组织当温度为800℃时,无论是边部和心部其先共析的铁素体量都比900℃时多,而且晶粒尺寸都明显增大。亚共析钢在连续冷却过程中,如果冷却速度低于铁素体析出的临界冷却速度,将会发生从奥氏体中析出先共析铁素体的相变。在水中淬火,即使是在试样的边部仍然有先共析的铁素体出现,说明冷却速度较低,碳素钢在水中的淬透性较差。 (b) 在干冰酒精溶液中淬火图3为试样在900℃

和800℃以10s1应变速率经30%变形后立即淬火的显微组织,淬火介质为-60℃的干冰酒精溶液。试样心部和边部的组织有明显差别,为铁素体和珠光体混合组织。但当变形温度为900℃时,如图3(a),铁素体为等轴状且晶粒尺寸较大,珠光体含量多而且珠光体团尺寸大;变形温度降低,如图3(b),铁素体由等轴化逐渐变成拉长且晶粒尺寸减小,珠光体尺寸和含量都明显减少。从图3中可见,与在水中淬火相比,虽然干冰酒精溶液温度很低(-60℃)但试样在其中的冷却速度却极低,高温的奥氏体组织全部转变成铁素体-珠光体组织,对研究低碳碳素钢在变形诱导铁素体相变过程中组织演变十分不利。

图3 试样在900℃和800℃以10s1应变速率经30%变形后立即淬火的显微组织(c) 在冰盐水中淬火图4为试样在900℃以10s1应变速率30%变形后立即放入含有50%NaCl的冰盐水中淬火的显微组织,给出了试样边部、距边部1/2处和心部的形貌,试样经变形后厚度为10.5mm。可以看出试样心部和边部组织差距较大。试样边部全部为马氏体/贝氏体组织,没有先共析铁素体析出;距边距1/2 处组织基本上为马氏体/贝氏体组织,有少量先共析铁素体形成;心部组织中铁素体含量略有增加。先共析铁素体基本上为魏氏组织型铁素体和少量块状铁素体,且沿原奥氏体晶界析出。

比较图2和图3可发现,低碳铁素体钢在盐水中淬透性增加,钢在盐水中的冷却速度比在水中几乎可提高两倍。边部的冷却速度快,淬火后可得到全部的淬火组织,即使在心部冷却速度降低,先共析铁素体的含量和晶粒尺寸都减小。

不仅淬火介质对钢的淬透性有很大的影响,试样的尺寸效应对冷却速度影响也很大。其他变形条件相同,变形量增大70%,试样经变形后厚度为4.5mm,

图5给出了试样边部和心部的形貌。试样的心部大部分为淬火态的马氏体/贝氏体板条状组织,在试样的心部大部分为淬火的马氏体/贝氏体板条状组织,只有极少量铁素体形成,而且铁素体的形貌发生变化。粗大的魏氏组织明显减少,铁素体晶粒尺寸很小。

比较图4和5的组织状态可以发现,当变形量小的时候,其式样的尺寸较大,则淬火是冷却速度降低,在边部能够得到淬火后的组织,把高温的组织保留下来,但心部的冷却速度不够,所以仍然有较多的且尺寸较大的先共析铁素体析出。若变形量提高,试样尺寸减小,则淬火时冷却速度加快,在边部能够得到淬火后的组织,把高温的奥氏体组织保留下来,心部冷却速度也增大,先共析铁素体量明显减少。

图4 试样在900℃以10s1应变速率30%变形后放入冰盐水中的淬火显微组织

图5 900℃以10s1应变速率70%变形在冰盐水中淬火的显微组织

(a)边部(b)心部

3 热处理后组织金相分析淬火后组织说明:加热到830℃,在160℃

硝盐中停留2分钟后空冷,得到淬火马氏体碳化物以及残余奥氏体。

针状马氏体呈竹叶状或凸透镜状,在空间形似铁饼。针状马氏体之间通常互成60°或120°角,一般限制在奥氏体晶粒内,最初形成的马氏体针贯穿奥氏体晶粒,后形成的马氏体较短,先形成的马氏体较易浸蚀。所以完全转变的马氏体为大小不同,分布不规则,颜色深浅不一的针状组织。

退火后组织说明:珠光体

珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好σb=770MPa,180HBS,δ

=20%~35%,AKU=24~32J)。

经2-4%硝酸酒精溶液浸蚀后,在不同放大倍数的显微镜下可以观察到不同特征的珠光体组织.当放大倍数较高时可以清晰地看到珠光体中平行排列分布的宽条铁素体和窄条渗碳体;当放大倍数较低时,珠光体中的渗碳体只能看到一条黑线;而当放大倍数继续降低或珠光体变细时,珠光体的层片状结构就不能分辨了,此时珠光体呈黑色的一团。

回火组织说明:索氏体

回火索氏体的定义及组织特征。回火索氏体(tempered sorbite)是马氏体于回火时形成的,在在光学金相显微镜下放大500~600倍以上才能分辨出来,其为铁素体基体内分布着碳化物(包括渗碳体)球粒的复合组织。它也是马氏体的一种回火组织,是铁素体与粒状碳化物的混合物。此时的铁素体已基本无碳的过饱和度,碳化物也为稳定型碳化物。常温下是一种平衡组织。

4质量检验

检验内容及方法

硬度先以标准块校对硬度计,确认后方可进行测试硬度。检验硬度前,应将零件表面清理干净,去除氧化皮,脱碳层及毛刺等且表面不应有明显的机加工痕迹,被测零件的温度以室温为准,或略高于室温但以人手能稳稳抓住为限。淬火部位检查硬度不少于1处,每处不少于3点,不均匀度应在要求的范围内。

一般的正火、退火件、调质件采用布氏硬度计检验。对于尺寸较大者可用锤击式硬度检验,淬火件用洛氏硬度计检验。对于尺寸较大者,允许用肖氏硬度计代替。渗碳或硬化层较薄的零件,用维化硬度计检验。当使用锉刀检验零件硬度时,必须注意锉痕的位置,应不影响零件的最后硬度。有色金属检验以布氏、HRB为宜。选择加载负荷时,应以零件的具体要求,被测部位的大小、厚薄等作为选择依据,要求换算精度要高、要准确。

2)变形板挫在检验平台上用塞尺检验其不平度。

3)外观经热处理后,均应用肉眼或低度放大镜观察其表面有无裂纹、烧伤、碰伤、麻点、锈蚀等。对重要零件或易产生裂纹的零件,应用探伤或浸煤油喷沙等手段检查。

a) 金相

b) 材料

c) 对材料发生怀疑时,可送理化室用看谱镜(光谱仪)或采用磨火花的方

式等检验材料是否与图纸规定相符。原材料的检验按有关规定进行。

缺陷分析产生原因采取措施

过热和过烧1. 淬火温度过高或保

温时间过长温度控制不

准 2. 原材料碳化物

偏析严重,局部含碳量

过高 3. 淬火加热过

程中表面产生增碳或脱

1. 严格执行热处理工

艺要求 2. 加强对原

材料的质量检验 3.

过热零件进行返工后再

重新淬火,过烧的全部

报废

变形和开裂1. 加热速度快温度不

均匀 2. 加热温度高或

保温时间长 3. 原材

料的碳化物呈带状或网

状,造成合金元素偏析

严重夹杂物超标 4.

淬火后未及时回火或回

火不充分 5. 淬火后

清洗过早

1. 正确选择加热温度

和保温时间,预热充分

2. 加强对原材料的质

量检测 3. 采用分级

淬火或等温淬火工艺

硬度不足1. 淬火温度低或加热

时间短 2. 回火加热温

度高或保温时间长

3. 冷却不当分级温度

过高引起二次硬化物析

出或冷至室温则进行清

洗 4. 氧化脱碳

进行返修处理,退火后

淬火加回火

表面脱碳1. 脱氧不良,捞渣不彻

底 2. 表面的氧化皮

带入炉中

1. 进行正常的盐浴脱

氧,确保零件的表面清

洁 2. 对工件夹具进行

喷砂或喷丸

表面腐蚀1. 刀具加热过程中在

空气与盐浴交界处出现

腐蚀麻点 2. 盐浴中

夹杂物超标 3. 工件的

放置不当

1. 淬火回火后应及时

处理表面的残渣 2.

在盐浴中浸一下可保证

工件的表面清洁 3. 盐

浴按时脱氧,化验合格

后才能进行批量生产

参考文献

【1】詹艳然,吴乐尧,王仲仁.金属体积成形过程中温度场的分析.塑性工程学报,2001,8(4)

【2】轴对称体扭压成形过程的热力耦合有限元分析.金属成形工艺,1998,3 【3】叶卫平,张覃轶.热处理实用数据速查手册.机械工业出版社.2005,59---60 【4】许天己钢铁热处理实用技术.化学工业出版社2005,134"~136

【5】6张凯锋,魏艳红,魏尊杰.材料热加工过程的数值模拟,哈尔滨工业大学出版社,2001

【6】李传民,王向丽.金属成型有限元分析实例指导教程.机械工业出版社,2007

钢的热处理工艺

钢的热处理 第一章钢的热处理 热处理工艺包括:将钢材或钢制件加热到预定温度,在此温度下保温一定时间。然后一定的冷却速度冷却下来,达到热处理所预定的对钢材及钢制件的组织与性能的要求。 1□□钢的加热 1.1□制定钢的加热制度 加热温度、加热速度、保温时间。 1.1.1加热温度的选择 加热温度取决于热处理的目的。热处理分为:淬火、退火、正火、和回火等。 淬火的目的是为了得到细小的马氏体组织,使钢具有高的硬度; 退火及正火的目的是获得均匀的珠光体组织,因此其加热温度不同。在具体制定加热温度时应按以下原则:热处理工艺种类及目的要求;被加热钢材及钢制件的化学成分和原始状态;钢材及钢制件的尺寸和形状以及加热条件来制定。对于碳钢及低合金钢的加热温度:亚共析钢淬火温度:A C3以上30~50℃; 过共析钢淬火温度:A C3以上30~50℃; 亚共析钢完全退火:A C3以上20~30℃; 过共析钢不完全退火:A C3以上20~30℃; 正火A C3或A CM以上30~50℃; 1.1.2加热速度的选择 必须根据钢的化学成分及导热性能;钢的原始状态及应力状态;钢的尺寸及形状来确定加热速度。如钢的原始状态存在着铸造应力或轧煅热变形残余应力时,在加热是应特别注意。对这类钢要特别控制低温阶段的加热速度。钢的变形与热裂倾向是以钢的化学成分及原始状态不同而不同,主要有以下几点: a) 低碳钢比高碳钢热烈倾向小; b) 碳钢比合金钢变形开裂倾向小; c) 钢坯和成品件比钢锭变形和开裂倾向小; d) 小截面比大截面的钢变形和开裂倾向小。 1.1.3钢在加热时的缺陷 a) 过热:过热就是由于加热温度过高,加热时间过长使奥氏体晶粒过分长大。粗大的奥氏体晶粒在冷却时产生粗大的组织,并往往出现魏氏组织,结果是钢的冲击韧性、塑性明显下降。已过火的钢可以在次正火或退火加以纠正。 b) 强烈过热:加热温度过高或加热保温时间过长,使氧或硫沿晶界渗入钢中或者钢中的

金属学与热处理课后习题答案10

第十章钢的热处理工艺 10-1 何谓钢的退火?退火种类及用途如何? 答: 钢的退火:退火是将钢加热至临界点AC1以上或以下温度,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 退火种类:根据加热温度可以分为在临界温度AC1以上或以下的退火,前者包括完全退火、不完全退火、球化退火、均匀化退火,后者包括再结晶退火、去应力退火,根据冷却方式可以分为等温退火和连续冷却退火。 退火用途: 1、完全退火:完全退火是将钢加热至AC3以上20-30℃,保温足够长时间,使 组织完全奥氏体化后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。 其主要应用于亚共析钢,其目的是细化晶粒、消除内应力和加工硬化、提高塑韧性、均匀钢的化学成分和组织、改善钢的切削加工性能,消除中碳结构钢中的魏氏组织、带状组织等缺陷。 2、不完全退火:不完全退火是将钢加热至AC1- AC3(亚共析钢)或AC1-ACcm (过共析钢)之间,保温一定时间以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺。对于亚共析钢,如果钢的原始组织分布合适,则可采用不完全退火代替完全退火达到消除内应力、降低硬度的目的。对于过共析钢,不完全退火主要是为了获得球状珠光体组织,以消除内应力、降低硬度,改善切削加工性能。 3、球化退火:球化退火是使钢中碳化物球化,获得粒状珠光体的热处理工艺。 主要用于共析钢、过共析钢和合金工具钢。其目的是降低硬度、改善切削加工性能,均匀组织、为淬火做组织准备。 4、均匀化退火:又称扩散退火,它是将钢锭、铸件或锻轧坯加热至略低于固相 线的温度下长时间保温,然后缓慢冷却至室温的热处理工艺。其目的是消除铸锭或铸件在凝固过程中产生的枝晶偏析及区域偏析,使成分和组织均匀化。 5、再结晶退火:将冷变形后的金属加热到再结晶温度以上保持适当时间,然后 缓慢冷却至室温的热处理工艺。其目的是使变形晶粒重新转变为均匀等轴晶粒,同时消除加工硬化和残留内应力,使钢的组织和性能恢复到冷变形前的状态。 6、去应力退火:在冷变形金属加热到再结晶温度以下某一温度,保温一段时间 然后缓慢冷却至室温的热处理工艺。其主要目的是消除铸件、锻轧件、焊接件及机械加工工件中的残留内应力(主要是第一类内应力),以提高尺寸稳定性,减小工件变形和开裂的倾向。 10-2 何谓钢的正火?目的如何?有何应用? 答: 钢的正火:正火是将钢加热到AC3或Accm以上适当温度,保温适当时间进行完全奥氏体化以后,以较快速度(空冷、风冷或喷雾)冷却,得到珠光体类组织的热处理工艺。正火过程的实质是完全奥氏体化加伪共析转变。 目的:细化晶粒、均匀成分和组织、消除内应力、调整硬度、消除魏氏组织、带状组织、网状碳化物等缺陷,为最终热处理提供合适的组织状态。

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

10.1 钢的热处理工艺

教学课题钢的热处理工艺 教学课时 2 教学目的了解热处理在机械工业中的重要作用掌握钢的普通热处理工艺方法、种类教学难点钢的普通热处理工艺方法、种类 教学重点钢的普通热处理工艺方法、种类 教学方法讲解法、讨论 教具准备教材教学过程

通过进行热处理来完成。 授课内容 热处理加工的特点与其它工种加工的特点最大的区别是:工件的几何尺寸不发生 变化,而内部组织和机械性能发生改变。 1)退火 目的:细化晶粒、降低硬度,提高塑性、消除内应力,改善材料切削加工性能, 并为以后淬火作好组织准备。 适用工件范围: 一般为铸件、锻件、焊接件等毛坯。 具体工艺有:完全退火、等温退火、球化退火、去应力退火。 退火工艺操作:为使工件退火后能获得一个平衡的组织,对温度下降速度有严格 要求,必须缓慢降温。用45号钢制作的工件进行退火工艺作一介绍:首先选用加热 设备,制订退火工艺,把工件装炉升温,适当保温后降温。工件在炉内的降温要求非 常慢,随着炉子的温度下降而降温,如将工件降到室温,需要几天或十几天的时间。 2)正火: 目的:细化晶粒、降低硬度、提高塑性、消除内应力、改善切削加工性能,并为 图4 正火工艺 适用工件范围:一般为铸件、锻件及粗车得到的工件。 正火工艺操作:亚共析钢加热温度为Ac3以上30~50℃,过共析钢加温度在Accm 以上30~50℃。工件经过充分的保温使其获得单一的奥氏体组织后,把工件从高温炉 内取出,放在车间静止的空气当中冷却。这种冷却方法叫空冷。以同学们制作的锤子 为例。把它放在炉内,将炉温升到850℃进行充分保温后,马上将工件从炉内取出, 拿到车间内的空气中冷却,它的冷却速度要比退火的冷却速度快得多,所以获得的组 织比较细密,硬度有所提高,切削加工性能也能得到提高。

金属学与热处理第十章(1)

第十章 钢的热处理工艺:通过加热、保温和冷却的方法改变钢的组织结果以获得工件所要求性能的一种热加工工艺 根据加热、冷却方式和获得的组织和性能的不同,钢的热处理工艺可分为: 普通热处理(退火、正火、淬火、回火);表面热处理(表面淬火、化学热处理); 形变热处理等 按照在零件整个生产工艺过程的位置和作用的不同,分为:预备和最终热处理 退火:将钢加热至临界点A c1以上或以下温度,保温以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺 退火目的:均匀钢的化学成分及组织,细化晶粒,调整硬度,消除内应力和加工硬化,改善钢的成形及切削加工性能 退火工艺种类:根据加热温度分,临界温度(A c1或A c3)以上退火(完全、不完 全、均匀、球化),临界温度以下退火(再结晶、应力);根据冷 却方式分,等温和连续冷却 分类 特点 对象 完全退火 加热至Ac3以上20-30℃,使组织完全奥氏体化 共析钢 不完全退火 加热至Ac1~Ac3或Ac1~Ac cm,获得平衡组织 亚共析钢、过共析钢 球化退火 使钢中碳化物球化,获得粒状珠光体 共析钢、过共析钢、合金工具钢 均匀化退火 加热至固相线温度下,消除化学不均匀现象 钢锭、铸件、锻坯 去应力退火 加热到Ac1以下,消除残留内应力 铸件、锻件、焊接件、机械加工工件 冷变形后金属 再结晶退火 加热至再结晶温度以上,使变形晶粒重新转变为 均匀等轴晶粒,消除加工硬化和残留内应力

正火:将钢加热至Ac3(或Ac cm)以上适当温度,保温以后在空气中冷却得到珠光体类组织 正火的实质:完全奥氏体化+伪共析转变 正火的目的:作为预备热处理,为机械加工提供适宜硬度,细化晶粒、消除应力、消除魏氏组织和带状组织为最终热处理提供合适组织状态;作为最终热处理为某些受力较小、性能要求不高的碳素钢结构零件提供合适力学性能; 正火消除钢的网状碳化物,为球化退火作好组织准备 正火应用 对象 改善低碳钢的切削加工性能 w c<0.25%的碳素钢和低合金钢 消除碳钢的热加工缺陷 中碳结构钢铸件、锻、轧件和焊接件 消除过共析钢的网状碳化物,便于球化退火 过共析钢 提高普通结构件的力学性能 受力小、性能要求不高的碳钢和合金钢构件 退火正火的选用 w c<0.25% 正火代替退火 较快冷却速度防止低碳钢沿晶界析出游离三次渗 碳体,从而提高冲压件冷变形性能,正火可以提高 其硬度,改善其切削加工性能 0.25%<w c<0. 5% 正火代替退火 硬度偏高,尚能进行切削加工,正火成本低效率高 0.5%<w c<0.75% 完全退火 硬度过高,难以进行切削加工,采用退火降低硬度 w c>0.75% 球化退火 球化退火作为预备热处理,如有网状二次渗碳体, 还应用正火先消除 由于正火比退火生产周期短,操作简便,工艺成本低。因此,在钢的使用性能和 工艺性能能满足的条件下,应尽可能用正火代替退火。

微观热处理T10钢

微观组织控制课程实验 学院:机械与汽车工程学院 班级:材控 学号: :

一.实验目的: 本次研究的主要容是退火态T10钢的热处王里工艺及其组织性能的研究。通过观察经过不同预先热处理的退火态T10钢试样的显微组织,以及测量其洛氏硬度、冲击韧性等,分析了不同预先热处理的T10钢试样的组织性能和力学性能。结果表明,正火+等温球化退火为退火态T10 钢的最佳预先热处理工艺; 不同预先热处理所得到的组织效果会遗传到最终的组织中; 预先热处理为正火+普通球化退火和等温球化退火的退火态T10钢试样,经过水淬和低温回火后,发生了脆性转变。 T10钢的热处理工艺及组织性能,通过对经过不同预备热处理的T10钢的微观组织分析及力学性能分析,探寻在热处理过程中,不同预先热处理对钢的组织及性能的影响规律,在此研究基础上,对现在实际生产中的一般热处理工艺进行优化,以达到最好的效果。 二:实验方法 T10钢的概述:目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。 T10钢的成分: ,X:碳的千分数) 碳 C :0.95~1.04(T X 硅 Si:≤0.35 锰 Mn:≤0.40 硫 S :≤0.020 磷 P :≤0.030 铬 Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时) 镍 Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时) 铜 Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时) 热处理通常分为3步进行:加热、保温和冷却。钢的热处理过程是把钢加热到临界温度以上,进行转变,转变完成后通过水冷、空冷或者油冷的方式冷却,来获得自己所需要的显微组织和力学性能。加热时形成的奥氏体的化学成分、均匀化程度、品粒大小以及加热后未溶入奥氏体中碳化物等过剩相的数量和分布状况,直接影响钢在冷却后的组织性能。 以下是铁碳合金相图。

号钢热处理工艺

号钢热处理工艺 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

1 45号钢要求硬度HRC40-50,是不是要淬火+低温回火 换算成布氏硬度大约是380~470HB,根据一般热处理规范,热处理制度与硬度关系大致如下: 淬火温度:840℃水淬 回火温度:150℃回火,硬度约为57HRC;200℃回火,硬度约为55HRC;250℃回火,硬度约为53HRC;300℃回火,硬度约为48HRC;350℃回火,硬度约为45HRC;400℃回火,硬度约为43HRC;500 ℃回火,硬度约为33HRC;600℃回火,硬度约为20HRC 一般情况下热处理工艺都指标准范围内中间成分,且热处理温度都存在一个调整范围,如成分在范围内存在偏差,可以相应调整淬火温度和回火温度 2 1.临界温度指钢材的奥氏体转变温度。不同含量的钢材有着不同的临界点,但临界点有着一个范围内的浮动,所以下临界点温度指的就是奥氏体转变的最低温度。 2. 常用碳钢的临界点 钢号临界点 (℃) 20钢 735-855 (℃) 45钢 724-780 (℃) T8钢 730 -770(℃) T12钢 730-820 (℃) 3 20Cr,40Cr,35CrMo,40CrMo,42CrMo:正火温度850-900℃,45号钢正火温度850℃左右。 4 20CrMnTi Ac1 Ac3 Ar1 Ar3 740 825 680 730 5

Cr12MoV热处理知识 Cr12MoV钢是高碳高铬莱氏体钢,常用于冷作模具,含碳量比Cr12钢低。该钢具有高的淬透性,截面300mm以下可以完全淬透,淬火时体积变化也比Cr12钢要小。 其热处理制度为:钢棒与锻件960℃空冷 + 700~720℃回火,空冷。 最终热处理工艺: 1、淬火: 第一次预热:300~500℃, 第二次预热840~860℃; 淬火温度:1020~1050℃; 冷却介质:油,介质温度:20~60℃, 冷却至油温;随后,空冷,HRC=60~63。 2、回火: 经过以下淬火工艺,可以达到降低硬度的作用,具体回火工艺如下: 加热温度400~425℃,得到HRC=57~59。 说明:在480--520度之间回火正好是这种钢材的脆性回火区,在这个区间回火容易使模具出现崩刃。最为理想的回火区间在380--400℃,这个区间回火,韧性最好,并且有良好的耐磨性。如果淬火后,采用深冷处理(理想的温度是零下120)与中温回火相结合,会得到良好使用效果和高寿命。Cr12MoV的回火脆性温度范围在325~375℃。 CR12MoV380-400回火后硬度在56-58HRC做冷冲模冲韧性好的材料具有不易开裂的优点,特别是在原材料质量不是很好的情况下,用此方法经济实惠。 Cr12MoV 分级淬火工艺:

金属材料与热处理第十章第十一章第十二章总结小抄

第十章 1钢为什么可以进行热处理:原则上只有在加热或冷却时发生溶解度显著变化或者发生类似纯铁的同素异构转变,即有固态相变发生的合金才能进行热处理 2固态相变的特点:相变阻力大,新相晶核与母材之间存在晶体学位向关系,母相晶体缺陷对相变起促进作用,易于出现过度相。 3固态相变的类型:扩散型相变,如珠光体转变和奥氏体转变;非扩散型相变,或切变形型相变,如马氏体转变;过渡型转变,如钢中贝氏体转变。 共析钢奥氏体的形成过程:奥氏体形核长大剩余渗碳体的溶解及奥氏体成分的均匀化;转变方式;a+Fe3C A c >γ 1 → 4影响奥氏体形成速度的因素:加热温度和保温时间,原始组织的影响,化学成分的影响(碳和合金元素) 5影响奥氏体晶粒大小的因素:加热温度和保温时间的影响,加热速度的影响,钢的化学成分的影响,钢的原始组织的影响 6过冷奥氏体的的等温转变分析:水平线A1是奥氏体与珠光体的平衡温度,另两个水平线分别表示奥氏体向马氏体开始转变温度Ms点和奥氏体向马氏体转变终了温度Mf点,Ms和Mf温度多采用膨胀法或磁性法等物理方法测定; A1线以上钢处于奥氏体状态,A1线以下、Ms线以上和转变开始曲线之间区域为过冷奥氏体区,转变开始曲线和转变终了曲线之间为过冷奥氏体正在转变区转变终了曲线以右为转变终了区 根据转变温度和转变产物不同,共析钢C曲线由上至下可分为三个区,A1~550之间为珠光体转变区,550~Ms之间为贝氏体转变区,Ms~Mf 之间为马氏体转变区。珠光体转变是不大过过冷的高温阶段发生的,是属于扩散型相变,马氏体转变是在很大过冷度的低温阶段发生的,属于非扩散型相变,贝氏体转变是中温度区间的转变,属于半扩散型相变。 7过冷奥氏体越稳定,孕育期越长,则转变速度越慢,c曲线越往右移 奥氏体成分的影响1含碳量的影响,亚共析钢随奥氏体含碳量增加,c曲线右移,过共析钢含碳量越高,c曲线反而左移。奥氏体中的含碳量越高,贝氏体转变孕育期越长,贝氏体转变速度越慢,故碳素钢c曲线下半部的贝氏体转变线和终了线随含碳量增加一直右移。 奥氏体含碳量越高,则马氏体转变温度ms点和马氏体终了温度mf点越低。2合金元素的影响,除Co和Al(Wal>2.5%)以外的合金元素,当其溶解到奥氏体中后,都曾大力过冷奥氏体的溶解度,c曲线右移,v,Ti,NbZr等强化碳化物,不能溶于奥氏体而已碳化物形式存在,c曲线左移 奥氏体状态的影响,奥氏体晶粒越细,单位体积内面积越大,从而使奥氏体分解形核时形核率增多,降低奥氏体稳定性,c曲线左移 铸铁原始组织不均匀存在成分偏析,可促进奥氏体的分解,c曲线左移 3应力和塑性变形的影响

常用钢材热处理工艺参数

热处理工艺规程B/Z61.012-95 (工艺参数)

2012年10月15日

目录 1.主题内容与适用范围 (1) 2.常用钢淬火、回火温度 (1) 2.1要求综合性能的钢种 (1) 2.2要求淬硬的钢种 (4) 2.3要求渗碳的钢种 (6) 2.4几点说明 (6) 3.常用钢正火、回火及退火温度 (7) 3.1要求综合性能的钢种 (7) 3.2其它钢种 (8) 3.3几点说明 (8) 4.常用钢去应力温度 (10) 5.各种热处理工序加热、冷却范围 (12) 5.1淬火……………………………………………………………………………………………1 2 5.2 正火及退火 (14) 5.3回火、时效及去应力 (15) 5.4工艺规范的几点说明 (16)

6.化学热处理工艺规范 (17) 6.1氮化 (17) 6.2渗碳 (20) 7.锻模热处理工艺规范 (22) 7.1锻模及胎模 (22) 7.2切边模 (24) 7.3锻模热处理注意事项 (25) 8.有色金属热处理工艺规范 (26) 8.1铝合金的热处理 (26) 8.2铜及铜合金 (26) 9.几种钢锻后防白点工艺规范 (27) 9.1第Ⅰ组钢 (27) 9.2第Ⅱ组钢 (28) 热处理工艺规程(工艺参数)

1.主题内容与适用范围 本标准为“热处理工艺规程”(工艺参数),它主要以企业标准《金属材料技术条件》B/HJ-93年版所涉及的金属材料和技术要求为依据(不包括高温合金),并收集了我公司生产常用的工具、模具及工艺装备用的金属材料。 本标准适用于汽轮机、燃气轮机产品零件的热处理生产。 2.常用钢淬火、回火温度 2.1 要求综合性能的钢种: 表1

第九章钢的热处理原理第十章钢的热处理工艺课后题答案

第九章钢的热处理原理 第十章钢的热处理工艺 1,.金属固态相变有哪些主要特征?哪些因素构成相变阻力? 答:金属固态相变主要特点:1、不同类型相界面,具有不同界面能和应变能2、新旧相之间存在一定位向关系与惯习面 3、相变阻力大4、易于形成过渡相5、母相晶体缺陷对相变起促进作用6、原子的扩散速度对固态相变起有显著影响…..阻力:界面能和弹性应变能2、何为奥氏体晶粒度?说明奥氏体晶粒大小对钢的性能的影响。 答:奥氏体晶粒度是指奥氏体晶粒的大小。 金属的晶粒越细小,晶界区所占的比例就越大,晶界数目越多(则晶粒缺陷越多,一般位错运动到晶界处即停),在金属塑变时对位错运动的阻力越大,金属发生塑变的抗力越大,金属的强度和硬度也就越高。晶粒越细,同一体积内晶粒数越多,塑性变形时变形分散在许多晶粒内进行,变形也会均匀些,虽然多晶体变形具有不均匀性,晶体不同地方的变形程度不同,位错塞积程度不同,位错塞积越严重越容易导致材料的及早破坏,晶粒越细小的话,会使金属的变形更均匀,在材料破坏前可以进行更多的塑性变形,断裂前可以承受较大的变形,塑性韧性也越好。所以细晶粒金属不仅强度高,硬度高,而且在塑性变形过程中塑性也较好。 3..珠光体形成时钢中碳的扩散情况及片,粒状珠光体的形成过程?

4、试比较贝氏体转变、珠光体转变和马氏体转变的异同。 答:从以下几个方面论述:形成温度、相变过程及领先相、转变时的共格性、转变时的点阵切变、转变时的扩散性、转变时碳原子扩散的大约距离、合金元素的分布、等温转变的完全性、转变产物的组织、转变产物的硬度几方面论述。 试比较贝氏体转变与珠光体转变的异同点。对比项目珠光体贝氏体形成温度高温区(A1以下)中温区(Bs以下)转变过程形核长大形核长大领先相渗碳体铁素体转变共格性、浮凸效应无有共格、表面浮凸转变点阵切变无有转变时扩散Fe、C均扩散Fe不扩散、C均扩散转变合金分布通过扩散重新分布不扩散等温转变完全性可以不一定转变组织α+Fe3C α+Fe3C (上贝氏体)α+ε—Fe3C(下贝氏体)转变产物硬度低中 5..珠光体、贝氏体、马氏体的特征、性能特点是什么? 片状P体,片层间距越小,强度越高,塑性、韧性也越好;粒状P体,Fe3C颗粒越细小,分布越均匀,合金的强度越高。第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差。 5、简述钢中板条马氏体和片状马氏体的形貌特征和亚结构 板条马氏体和的形貌特征和亚结构 并说明它们在性能上的差异。 1、简述钢中板条马氏体片状马氏体的形貌特征和亚结构并说明它们在性能上的差异。 (10 分) 一般认为板条马氏体为位错马氏体 马氏体内部有很多位错。片状马氏体为挛晶马氏体 马氏体内部亚结构为挛晶。板条马氏体的组织特征 每个单元呈窄而细长的板条 板条体自奥氏体晶界向晶内相互平行排列成群 其中的板条束为惯习面相同的平行板条组成。板条宽度0.1 0.2 微米 长度小于10 微米 板条间有一层奥氏体膜 一个奥氏体晶粒内包含几个板条群。一个奥氏体晶粒有几个束 一个束内存在位向差时 也会形成几个块。板条群之间为大角度晶界 板条之间为小角度晶界。板条的立体形态可以是扁条状。片状马氏体的特征 马氏体片互不平行而是呈一定的夹角排列 在显微镜下观察时呈针状或竹叶状。初生者较厚较长 横贯整个奥氏体晶粒 第一片分割奥氏体晶粒 以后的马氏体片愈来愈小。 但一般不穿透晶界 次生者尺 寸较小。初生片与奥氏体晶界之间、片与片之间互相撞击 形成显微裂纹。当WC≈1.4 2.0%时除具有上述特征

常用钢材热处理工艺守则

1 适用范围 本守则作为我公司常用钢材的各种热处理规范及注意事项。为一般件热处理的主要技术依据,对结构复杂和工艺上有特殊要求的零件和成批生产的零(部)件,则按专用工艺规程执行。 2 名词术语 2.1 正火 将钢材或钢件加热到临界点Ac3或Acm以上的适当温度,保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2.2 退火 将钢材或钢件加热到适当温度,保持一定时间,随后缓慢冷却以获得接近平衡状态组织的热处理工艺。 2.3 淬火 将钢奥氏体化后以适当的冷却速度冷却,使工作在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。 2.4 回火 将经过淬火的工件加热到临界点Ac1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理。 2.5 有效加热区 炉膛内炉温均匀性符合热处理工艺要求的装料区域。有效加热区的确定,按JB2251—78《电阻炉基本技术条件》中规定的有关试验方法进行。 2.6 冷却速度 在冷却过程中某一时间或者一定时间间隔内工件表面或心部温度下降的变

化率。 2.7 热处理变形 工件热处理时所引起的形状尺寸偏差,垂直于长度向上的变形叫弯曲。 3 热处理加热设备 3.1 正火和退火所使用的加热设备必须满足下列要求。 3.1.1 在加热设备正常装炉的情况下,有效加热区内的温度偏差应按下表所列的精度进行调节和控制。 3.1.2 燃料加热炉,其火焰尽量不直接接触工件,以免使工件局部过热。当火焰直接与工件接触时,加热炉结构应使处理工件质量不显著损坏。 3.1.3 热浴加热炉,其热浴对工件不能有腐蚀及其它有害作用。 3.1.4 工件加热后在随炉冷却的过程中,应尽量保证各部位的冷却速度均匀一致。 3.2 淬火、回火加热设备 3.2.1 淬火、回火加热设备必须满足下列要求,有效加热区的温度按下表所列的精度进行调节和控制。

T10钢车刀热处理工艺

攀枝花学院本科课程设计(论文) [T10钢车刀热处理工艺设计] 学生姓名:冯康 学生学号: 201311102014 院(系):材料学院 年级专业:2013级材料成型及控制工程1班 指导教师:孙青竹副教授 二〇一六年六月

攀枝花学院本科学生课程设计任务书

攀枝花学院本科课程设计(论文)摘要 摘要 本课程主要设计T10钢用来制造车刀的主要热处理设计流程,包括车刀工作条件及失效形式分析。刀具材料必须具备高硬度、高耐磨性、足够的强度,韧性和抗氧化性,还需具有高的耐热性(红硬性),即在高温下仍能保持足够硬度的性能。 具体工艺流程以及热处理工艺流程包括预备热处理是球化退火:加热至750℃→最终热处理是淬火:加热至790℃→水冷;回火:低温回火150℃→空冷。 关键词:耐磨高硬度红硬性热处理

攀枝花学院本科课程设计(论文)目录 目录 摘要 (Ⅰ) 1、设计任务 (1) 1.1设计任务 (1) 1.2设计的技术要求 (1) 2、设计方案 (2) 2.1 变速箱设计的分析 (2) 2.1.1工作条件及性能要求 (2) 2.1.2失效形式及使用性能 (2) 2.2钢种材料 (2) 3、设计说明 (4) 3.1加工工艺流程 (4) 3.2具体热处理工艺 (4) 3.2.1预备热处理工艺 (4) 3.2.2最终热处理 (5) 4、质量检测 (7) 5、缺陷与分析 (8) 6、结束语 (9) 7、热处理工艺卡 (10) 参考文献 (11)

1 设计任务 1.1设计任务 T10钢车刀热处理工艺设计。 1.2设计的技术要求 高硬度,高耐磨性是刀具最重要的使用性能之一,若没有足够的高的硬度是不能进行切削加工的。否则,在应力作用下,工具的形状和尺寸都要发生变化而失效。高耐磨性则是保证和提高工具寿命的必要性,除了以上要求红硬性及一定的强度和韧性。 在化学成分上,为了使工具钢尤其是刃具钢具有较高的硬度,通常都使其含有较高的的碳(W(C)=0.65%~1.55%),以保证淬火后获得高碳马氏体,从而得到高的硬度和切断抗力,这对减少防止工具损坏是有利的。大量的含碳质量分数又可提高耐磨性,碳素工具钢的理想淬火组织应该是细小的高碳马氏体和均匀细小的碳化物,工具钢在热处理前都应进行球化退火,以使碳化物呈细小的颗粒状且分布均匀。

钢的五种热处理工艺精编版

钢的五种热处理工艺公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

钢的五种热处理工艺 热处理工艺——表面淬火、退火、正火、回火、调质工艺: 1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。 2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。 3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油) 快速冷却叫淬火。 ◆表面淬火 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 感应表面淬火后的性能:

1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通 淬火高 2~3 单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层 马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对 同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。 一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能 或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。

T10钢热处理工艺

辽宁工程技术大学 综合及创新实验开题报告 学生姓名吴双全 学号 1308010318 所属院系材料科学与工程学院 专业/班级材料13-3 所用材料 T10钢 要求硬度 50~55HRC 阅卷人 阅卷日期 成绩评定:

T10钢热处理工艺设计 一、实验目的 1、通过设计一组热处理工艺方案提高T10钢试样的硬度,使其硬度达到50~55HRC。 2、设计热处理工艺使试样金相组织中最终出现屈氏体。 二、实验材料及设备 1、T10钢圆柱试样(15×15mm)若干 2、硝酸 3、酒精 4、砂纸 5、抛光膏 6、玻璃板 7、箱式电阻炉及控温仪表 8、抛光机 9、金相显微镜 10、洛氏硬度计 三、实验内容 1、T10钢概述 目前常用的碳素工具钢有T8、T10、T12,其中T10用量最多。T10钢优点是可加工性好,来源容易;但淬透性低、耐磨性一般、淬火变形大。因钢中含合金元素微量,耐回火性差,硬化层浅,因而承载能力有限。虽有较高的硬度和耐磨性,但小截面工件韧性不足,大截面工件有残存网状碳化物倾向。T10钢在淬火加热(通常达800℃)时不致于过热,淬火后钢中有过剩未溶碳化物,所以比T8钢具有更高的耐磨性,但淬火变形收缩明显。由于淬透性差,硬化层往往只有1.5~5mm;一般采用220~250℃回火时综合性能较佳。热处理时变形比较大,故只适宜制造小尺寸、形状简单、受轻载荷的模具。 2、T10钢化学成分 碳 C :0.95~1.04(Tχ,χ:碳的千分数)

硅 Si:≤0.35 锰 Mn:≤0.40 硫 S :≤0.020 磷 P :≤0.030 铬 Cr:允许残余含量≤0.25≤0.10(制造铅浴淬火钢丝时) 镍 Ni:允许残余含量≤0.20≤0.12(制造铅浴淬火钢丝时) 铜 Cu:允许残余含量≤0.30≤0.20(制造铅浴淬火钢丝时) 注:允许残余含量Cr+Ni+Cu≤0.40(制造铅浴淬火钢丝时) 3、T10钢适用范围 这种钢应用较广,适于制造切削条件较差、耐磨性要求较高且不受突然和剧烈冲击振动而需要一定的韧性及具有锋利刃口的各种工具,如车刀、刨刀、钻头、丝锥、扩孔刀具、螺丝板牙、铣刀手锯锯条、还可以制作冷镦模、冲模、拉丝模、铝合金用冷挤压凹模、纸品下料模、塑料成型模具、小尺寸冷切边模及冲孔模,低精度而形状简单的量具(如卡板等),也可用作不受较大冲击的耐磨零件等。 四、实验原理 C平衡相图及过研究T10钢经退火、淬火、回火后的组织,需要运用Fe-Fe 3 冷奥氏体等温转变曲线图—C曲线从加热和冷却2个方面进行分析,钢在冷却时的组织转变规律是由C曲线确定的。因此,研究钢热处理后的组织通常以C曲线为理论依据。 按照不同的冷却条件,过冷奥氏体将在不同的温度范围发生不同类型的转变。通过金相显微镜观察,可以发现过冷奥氏体各种转变产物的组织形态各不相同。T10钢是过共析钢,过共析钢的C曲线跟亚共析钢的相似,先析出的是渗碳体。随着冷却速度的增大,钢的显微组织变化是:渗碳体+珠光体→渗碳体+索氏体→渗碳体+托氏体→托氏体+马氏体+残余奥氏体→马氏体+残余奥氏体。为了使渗碳体呈球状并且均匀分布,改善切削加工性能,为最终热处理做好组织准备,碳素工具钢必须先进行球化退火。碳素工具钢经不完全淬火和中温回火,硬度在50~55HRC范围,可作为低切削的刃具和形状简单的冷冲模。

常用钢材热处理工艺参数

热处理工艺规程 B/-95 (工艺参数)

2012年10月15日

目录 1.主题内容与适用范围 (1) 2.常用钢淬火、回火温度 (1) 要求综合性能的钢种 (1) 要求淬硬的钢种 (4) 要求渗碳的钢种 (6) 几点说明 (6) 3.常用钢正火、回火及退火温度 (7) 要求综合性能的钢种 (7) 其它钢种 (8) 几点说明 (8) 4.常用钢去应力温度 (10) 5.各种热处理工序加热、冷却范围 (12) 淬火.........................................................................................................1 2 正火及退火 (14) 回火、时效及去应力 (15) 工艺规范的几点说明 (16) 6.化学热处理工艺规范 (17) 氮化 (17) 渗碳 (20) 7.锻模热处理工艺规范 (22) 锻模及胎模 (22) 切边模 (24) 锻模热处理注意事项 (25) 8.有色金属热处理工艺规范 (26) 铝合金的热处理 (26) 铜及铜合金 (26) 9.几种钢锻后防白点工艺规范 (27) 第Ⅰ组钢 (27) 第Ⅱ组钢 (28)

热处理工艺规程(工艺参数) 1.主题内容与适用范围 本标准为“热处理工艺规程”(工艺参数),它主要以企业标准《金属材料技术条件》B/HJ-93年版所涉及的金属材料和技术要求为依据(不包括高温合金),并收集了我公司生产常用的工具、模具及工艺装备用的金属材料。 本标准适用于汽轮机、燃气轮机产品零件的热处理生产。 2.常用钢淬火、回火温度 要求综合性能的钢种: 表1

相关文档
相关文档 最新文档