文档库 最新最全的文档下载
当前位置:文档库 › 平面向量的应用(在平面几何、解析几何和物理中的应用)

平面向量的应用(在平面几何、解析几何和物理中的应用)

平面向量的应用(在平面几何、解析几何和物理中的应用)
平面向量的应用(在平面几何、解析几何和物理中的应用)

考点4 平面向量的应用(在平面几何、解析几何和物理中的

应用)

1. (省市2015届高三上学期9月调考数学试卷)在平面直角坐标系xOy 中,已知圆C :22650x y x +-+=,点A ,B 在圆C 上,且AB =23|+|OA OB 的最大值是________.

【考点】平面向量的应用.

【答案】8

【分析】设11(,)A x y ,22(,)B x y ,AB 中点()M x y '',.

∵122x x x +'=,122y y y +'= ∴1212+=(,)2OA OB x x y y OM ++=,

∵圆C :22650x y x +-+=,∴22(3)4x y -+=,圆心C (3,0),半径CA =2.

∵点A ,B 在圆C 上,AB =23 ∴2221()2

CA CM AB -=,即CM =1.

点M 在以C 为圆心,半径r =1的圆上.

∴OM ≤OC +r =3+1=4.

∴||4OM ≤,|+|8OA OB ≤. 2. 在平面直角坐标系中,O 为坐标原点,已知向量a =(2,1),A (1,0),B (cosθ,t ).

(1)若a ∥AB ,且||AB 5OA ,求向量OB 的坐标. (2)若a ∥AB ,求22cos cos y t θθ=-+的最小值.

【解析】(1)因为AB =()cos 1,t θ-,

又a ∥AB ,所以2cos 10t θ-+=.

所以cos 12t θ-=.①

又因为||AB 5OA ,所以()2

2cos 15t θ-+=.②

由①②得,255t =,所以21t =.所以1t =±. 当1t =时,cos 3θ= (舍去),

当1t =-时,cos 1θ=-,

所以()1,1B --,所以()1,1OB =--.

(2)由(1)可知cos 12t θ-=, 所以2cos cos y θθ=-+2

(cos 1)4

θ- 2531cos cos 424θθ=-+22561531(cos cos )(cos ),454455

θθθ=-+=-- 所以当min 31cos ,.55

y θ==-时 3.已知4,3,(23)(2)61.==-?+=a b a b a b

(1)求a 与b 的夹角θ.

(2)求|a +b |.

(3)若AB =a ,BC =b ,求△ABC 的面积.

【解析】(1)因为(23)(2)61-?+=a b a b ,

所以2244361-?-=a a b b .

又4,3,==a b 所以6442761-?-=a b ,

所以·6=-a b ,所以61cos ||||432

θ?-===-??a b a b . 又0≤θ≤π,所以θ=

23π. (2)()22222+=+=+?+a b a b a a b b

()22426313=+?-+=,所以||13+=a b .

(3)因为AB 与BC 的夹角θ=23π,所以∠ABC =2.33

πππ-=又|AB |=|a |=4, |BC |=|b |=3,所以113sin 433 3.22ABC S AB BC ABC =

?∠=??=△ 4. (15宿迁市沭阳县银河学校高三上学期开学试卷)已知圆C 过点P (1,1),且与圆M :

22)x +( +2(2)y +=2r (r >0)关于直线x +y +2=0对称.若Q 为圆C 上的一个动点,则PQ ·

MQ 的最小值为 .

【考点】向量在几何中的应用.

【答案】-4

【分析】设圆心C (a ,b ),则222022212a b b a --?++=???+?=?+?

,解得00a b =??=?,则圆C 的方程为2x +2y =2r ,将点P 的坐标代入得2r =2,故圆C 的方程为2x +2

y =2,

设Q (x ,y ),则2x +2y =2,

且PQ ·MQ =(x -1,y -1)(x +2,y +2)=2x +2y +x +y -4=x +y -2, 令x

cos α,y

sin α,则x +y =2sin (α+π4

)≥-2 所以PQ ·MQ =x +y -2≥-4,则PQ ·MQ 的最小值为-4.

5.(2015·模拟)已知向量()2,2OA =,()4,1OB =,在x 轴上一点P 使AP BP ?有最小值,则点P 的坐标为 ( )

A.(-3,0)

B.(2,0)

C.(3,0)

D.(4,0)

【答案】C

【分析】设点(),0P x ,则()2,2AP x =--,()4,1BP x =--,故()()()2

224261031AP BP x x x x x ?=--+=-+=-+,因此当x =3时取最小值,此时()3,0P .

6.(2015·模拟)已知直线x +y =a 与圆22

4x y +=相交于A ,B 两点且满足OA OB OA OB +=-,O 为原点.则正实数a 的值为 ( )

A.1

B.2

C.3

D.4 【答案】B

【分析】由OA OB OA OB +=-可得 OA OB ⊥

,又2OA OB ==,

故AB =

所以点O 到AB 的距离d ,

=得|a |=2,

又a >0,故a =2.

7.(2015·模拟)已知向量a =(cos α,-2),b =(sin α,1),且a ∥b ,则

2sin αcos α等于 ( )

A.3

B. -3

C.45

D. -45

【答案】D

【分析】由a ∥b 得cos α=-2sin α,

所以tan α=-12

. 所以2sin αcos α=2222sin cos 2tan 4sin cos tan 15

αααααα==-++. 8. (2015·江淮模拟)在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 所对的边,S 为△ABC 的面积.若向量p =(S ,a +b +c ),q =(a +b -c ,1),满足p ∥q ,则tan

2C = ( ) A.14 B.12 C.2 D.4

【答案】D

【分析】由p ∥q 得S =()222222a b c ab a b c +-=++-,即12

ab sin C =2ab +2ab cos C ,亦即14sin C =1+cos C ,tan 2C =sin 1cos C C

+=4. 9. (2015·模拟)若向量a =(cos α,sin α),b =(cos β,sin β),则a 与b 一定满足 ( )

A.a 与b 的夹角等于α-β

B.a ⊥b

C.a ∥b

D.(a +b )⊥(a -b ) 【答案】 D

【分析】因为a ·b =(cos α,sin α)·(cos β,sin β)=cos(α-β),这表明这两个向量的夹角的余弦值为cos(α-β).

同时,也不能得出a 与b 的平行和垂直关系.

因为计算得到(a +b )·(a -b )=0,

所以(a +b )⊥(a -b ).

10. (2015·模拟)已知P ,M ,N 是单位圆上互不相同的三个点,且满足|PM |=|PN |,则

PM ·PN 的最小值是 ( )

A. -14

B. -12

C. -34

D. -1

【答案】B

【分析】根据题意,不妨设点P 的坐标为(1,0),点M 的坐标为(cos θ,sin θ),点N 的坐标为(cos θ, -sin θ),其中0<θ<π,

则PM =(cos θ-1,sin θ), PN =(cos θ-1, -sin θ),

所以PM ·PN =(cos θ-1,sin θ)·(cos θ-1, -sin θ)

=22

(cos 1)sin θθ--

=22cos 2cos 1sin θθθ-+- =22cos 2cos θθ- =2211cos 22θ??-- ??

? 所以当cos θ=12时, PM ·PN 有最小值12

-. 11.(2015·模拟)在平行四边形ABCD 中,E ,F 分别是边CD 和BC 的中点,若AC =λAE +μAF (λ,μ∈R ),则()32

log λμ的值为 ( )

A. -2

B. -1

C.1

D.2

【答案】A 【分析】如图,

第11题图

zl169

令AB =a , AD =b ,则AC =a +b ,①

12

AE AD DE =+=a +b , AF AB BF =+=a +12

b ,

所以AC=λAE+μAF=

11

22

λμ

????

+++

? ?

????

a b a b=

11

22

λμλμ

????

+++

? ?

????

a b,②

由①,②得

1

1

2

1

1

2

λμ

λμ

?

+=

??

?

?+=

??

解得λ=μ=

2

3

,

故()

2

333

222

22

log log2log2

33

λμ??

===-

?

??

.

12. (2015·模拟)已知正三角形OAB中,点O为原点,点B的坐标是(-3,4),点A在第一象限,向量m=(-1,0),记向量m与向量OA的夹角为α,则sinα的值为.

【答案】

433

10

+

【分析】设向量OB与x轴正向的夹角为β,则α+β=π+

π

3

=

3

,且有sinβ=

4

5

,

cosβ=-

3

5

,sinα=sin(π-α)=sin

π

3

β??

-

?

??

=

1

2

sinβ-

3

cosβ=

4

5

×

1

2

-

3

5

??

- ?

??

×

3

=

433

+

.

13.(2015·模拟)在锐角△ABC中,AC=BC=2,CO=x CA+y CB(其中x+y=1),函数f(λ)=| CA -λCB|的最小值为3,则|CO|的最小值为.

【答案】3

【分析】如图所示:

第13题图

zl170

设λCB=CD,

所以|CA-λCB|=|CA-CD|=|DA|,

由于CD=λCB,所以点D在直线BC上,所以f(λ)=|DA|,结合图形知:当AD⊥BC时,f(λ)取最

小值,即()min f λ=|CA |sin ∠ACB =2sin ∠ACB 所以sin ∠ACB =2,由于∠ACB 为锐角,所以∠ACB =π3

,因为CA =CB ,所以△ABC 为等边三角形,因为CO =x CA +y CB ,且x +y =1,所以点O ,A ,B 三点共线,

所以当CO ⊥AB 时,| CO |取最小值,

所以min ||CO =|CA |sin ∠BAC =2sin π3

14. (2015·模拟)已知向量a =12?- ??

,OA =a -b , OB =a +b ,若△OAB 是等边三角形,则△OAB 的面积为 .

【答案】3

【分析】因为a =1,22??- ? ???

=a -b , OB =a +b ,

所以OA +OB =(a -b )+(a +b )=2a =(-1,

所以|OA +OB 所以等边三角形OAB 的高为1,

因此其面积为2

43=. 15. (2015·模拟)已知a =(sin x ,1),b =(cos x , -

12),若f (x )=a ·(a -b ),求: (1)f (x )的最小正周期及对称轴方程.

(2)f (x )的单调递增区间.

(3)当x ∈π0,2

??????时,函数f (x )的值域. 【解】(1)因为a =(sin x ,1),b =1(cos ,)2x -,

所以a -b =3sin cos ,2x x ?

?- ???

,

所以f(x)=a·(a-b)=sin x(sin x-cos x)+3

2

=2

sin x-sin x cos x+

3

2

=1cos2

2

x

-

-

1

2

sin2x+

3

2

=2-1

2

(sin2x+cos2x)

=2-sin

π

2

4

x

??

+

???

,

所以函数f(x)的最小正周期为T=2π2π

2

ω

==π,

π

2

4

x+=

π

2

+kπ(k∈Z),

解得x=π

8

+

π

2

k

(k∈Z),

所以函数f(x)对称轴方程为x=π

8

+

π

2

k

(k∈Z).

(2)因为f(x)=2-

2sin

π

2

4

x

??

+

?

??

,

所以函数f(x)的单调增区间为函数y=sin

π

2

4

x

??

+

?

??

的单调减区间,

令π

2

+2kπ≤2x+

π

4

2

+2kπ(k∈Z),

即得π

8

+kπ≤x≤

8

+kπ(k∈Z),

所以函数f(x)的单调增区间为

π5π

ππ

88

k k

??

++

??

??

,(k∈Z).

(3)令2x+π

4

=t∈

π5π

,

44

??

??

??

,

所以原式化为f(t)=2-

2sin t

π5π

44

t

??

?

??

≤≤,

因为t∈

π5π

,

44

??????

,

所以-

2

≤sin t≤1,

即得2-≤f(t) ≤5 2 ,

平面向量在解析几何中的应用

平面向量在解析几何中的应用 -----高三专题复习课教学案例 福建省福州格致中学宋建辉 一、引言: 平面向量是高中数学的新增内容,也是新高考的一个亮点。正因为如此,在2004年3月25日在校教学公开周中开设了《平面向量在解析几何中的应用》高三专题复习公开课,以求在教与学的过程中提高学生学习向量的兴趣,让学生树立并应用向量的意识。 二、背景: 向量知识在许多国家的中学数学教材中,早就成了一个基本的教学内容。在我国全面实施新课程后,向量虽然已进入中学,但仍处于起步的阶段。向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。但实际情况是很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题,学生应用向量的意识不强。鉴于这种情况,结合我校开展的构建“探究-合作”型教学模式研究的课题,开设本节《平面向量在解析几何中的应用》高三专题复习公开课,通过问题的探究、合作解决,旨在进一步探索“探究-合作”型教学模式,使学生树立并增强应用向量的意识。 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。正因为如此,本节课这样设计: 1、教育家赞可夫说“要以知识本身吸引学生学习,使学生感到认识新事物的乐趣,体验克服困难的喜悦”;教育心理学认为:思维是从提出问题开始的;美国心理学家贾德通过实验证明“学习迁移的发生应有一个先决条件,就是学生需掌握原理,形成类比,才能让迁移到具体的类似学习中”。因此首先通过两个旧问题的引入解决,让学生体会向量的工具性特点,体会向量解题的优越性。 2、通过例 3、例4两个问题的探究解决,由此让学生发现,用向量法的最大优点是思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 三、问题:

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

§ 7 空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2 x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

空间解析几何和向量代数总结

第八章空间解析几何和 向量代数总结 向量的概念 向量的线性运算 空间直角坐标系(右手系)向量的坐标 坐标形式的向量的线性运算(8—1,19) 方向角与方向余弦(8—1,15) 向量的数量积、向量积、混合积 (8—2,1、3、6、10; 总习题八,1(3)、(4))

应用:判断向量正交、 平行(共线)、 计算平行四边形面 积、 一向量在另一向量的投影。 曲面 曲面的概念 (),,0F x y z =, ()(){}:,,,,0x y z F x y z ∑=建立曲面方程 (P23,例1、P24,例2,8—3,2、3)

旋转曲面(8—3,7、10) 坐标面上的曲线饶一坐标轴旋转一周的旋转曲面方程 (),00f x y z ?=?=?绕x 轴旋转一周得到的旋转曲面 为(,0f x =; (),00f x y z ?=?=?绕y 轴旋转一周得到的旋转曲面 为()0 f y =;

(),00f y z x ?=?=?绕y 轴旋转一周得到的旋转曲面 为(,0f y =; (),00f y z x ?=?=?绕z 轴旋转一周得到的旋转曲面 为()0f z =; (),00f x z y ?=?=?绕x 轴旋转一周得到的旋转曲面为

(,0f x =; (),00f x z y ?=?=?绕z 轴旋转一周得到的旋转曲面 为() 0f z =。 空间曲线及其方程 空间曲线的一般方程 ()(),,0,,0F x y z G x y z =???=?? 参数方程(P33,例3)

()()()x t y t z t αβγ=??=??=? 空间曲线在坐标面的投影(P36,例4、例5、8—4,4) 平面及其方程 建立平面方程:点法式、一般式、截距式、三点式(8—5,1、2、3、6) 平面与平面的夹角(锐角)(8—5,5) 点的平面的距离(8—5,9)

平面向量及解析几何

六、平面向量 考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2、掌握向量的加法和减法。3、掌握实数与向量的积,理解两个向量共线的充要条件。4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。 1、已知向量与不共线,且0||||≠=,则下列结论中正确的是 A .向量-+与垂直 B .向量-与垂直 C .向量b a +与a 垂直 D .向量b a b a -+与共线 2.已知在△ABC 中,?=?=?,则O 为△ABC 的 A .内心 B .外心 C .重心 D .垂心 3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC = ,则AD 用b a ,表 示为 。 4、已知21,e e 是两个不共线的向量,而→→→ →→ → +=-+=2121232)2 51(e e b e k e k a 与是两个共线 向量,则实数k = . 5、设→ i 、→ j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且 →→+=j i 24,→ →+=j i 43,则△OAB 的面积等于 : A .15 B .10 C .7.5 D .5 6、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 , 将向量按逆时针方向旋转90°得到向量,则向量的坐标是 . 7、已知)3,2(),1,(==k ,则下列k 值中能使△ABC 是直角三角形的值是 A . 2 3 B .21- C .-5 D .31- 8、在锐角三角形ABC 中,已知ABC ?==,1||,4||的面积为3,则=∠BAC ,?的值为 . 9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量与的位置关系是 A. 平行 B. 垂直 C. 相交但不垂直 D. 无法判断 10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

高考数学平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆14 92 2=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?= -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(5 53,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22 PA PB +的最大值和最小值。 分析:因为O 为AB 的中点,所以2,PA PB PO += 故可利用向量把问题转化为求向量OP 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-=

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则 B (A )、x=0.5 y=6 (B)、x=-0.5 y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1//L 2 (C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题 1. 点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x -2)-2(y +3)+3z =0, 即 x -2y +3z -8=0.

专题:平面向量常见题型与解题指导

平面向量常见题型与解题指导 一、考点回顾 1、本章框图 2、高考要求 1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。 2、掌握向量的加法和减法的运算法则及运算律。 3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。 4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。 5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。 6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。 7、掌握正、余弦定理,并能初步运用它们解斜三角形。 8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。 3、热点分析 对本章内容的考查主要分以下三类: 1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题. 2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主. 3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质. 在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。本章的另一部分是解斜三角形,它是考查的重点。总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。考查的重点是基础知识和基本技能。 4、复习建议 由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。 在解决关于向量问题时,一是要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,进一步加深对“向量”这一二维性的量的本质的认识,并体会用向量处理问题的优越性。二是向量的坐标运算体现了数与形互相转化和密切结合的思想,所以要通过向量法和坐标法的运用,进一步体会数形结合思想在解决数学问题上的作用。 在解决解斜三角形问题时,一方面要体会向量方法在解三角形方面的应用,另一方面要体会解斜三角形是重要的测量手段,通过学习提高解决实际问题的能力。

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

平面向量与解析几何交汇的综合问题

平面向量与解析几何交汇的综合问题 设计立意及思路 向量具有代数与几何形式的双重身份,故它是联系多项知识的媒介,成为中学数学知识的一个交汇点,数学高考重视能力立意,在知识网络的交汇点上设计试题,因此,解析几何与平面向量的融合交汇是新课程高考命题改革的发展方向和创新的必然趋势。而学生普遍感到不适应,因此,我们在解析几何复习时应适时融合平面向量的基础,渗透平面向量的基本方法。本专题就以下两方面对平面向量与圆锥曲线交汇综合的问题进行复习;1、以向量为载体,求轨迹方程为命题切入点,综合考查学生平面向量的加法与减法及其几何意义,平面向量的数量积及其几何意义,圆锥曲线的定义。2、以向量作为工具考查圆锥曲线的标准方程和几何性质,直线与圆锥曲线位置关系,曲线和方程的关系等解析几何的基本思想方法和综合解 题能力。 我们先来分析一下解析几何高考的命题趋势: (1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上, 分值约为30分左右,占总分值的20%左右。 (2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。近四年新教材高考对解析几何内容的考查主要集中在如下几个类型: ①求曲线方程(类型确定、类型未定); ②直线与圆锥曲线的交点问题(含切线问题); ③与曲线有关的最(极)值问题; ④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直); ⑤探求曲线方程中几何量及参数间的数量特征; (3)能力立意,渗透数学思想:如2000年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。一些虽是常见的基本题型,但如果借助 于数形结合的思想,就能快速准确的得到答案。 (4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。加大探索性题型的分量。 在近年高考中,对直线与圆内容的考查主要分两部分: (1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下 几类:

向量代数与空间解析几何教案

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =,b =,试用a 和b 表示向量、、和MD ,这里M 是平行四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别 为xoy 面、yoz 面、 zox 面。坐标面以及卦限的划分如图7-2所示。图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点21M M 的距离图3.空间点),,(z y x M 的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。 注意:特殊点的表示

空间解析几何与向量代数教案

《高等数学A》课程教案 第七章空间解析几何 一、教学目的与要求 1、了解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。 3、了解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。 4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。 5、了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求其方程 6、掌握平面方程和直线方程及其求法。 7、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 8、会求点到直线以及点到平面的距离。 二、教学内容及学时分配: 第一节向量及其线性运算2学时 第二节数量积向量积和混合积2学时 第三节曲面及其方程2学时 第四节空间曲线及其方程2学时 第五节平面及其方程2学时 第六节空间直线及其方程2学时 三、教学内容的重点及难点: 重点: 向量概念与运算,旋转曲面方程,柱面方程,平面方程直线方程

难点:向量的数量积与向量积,旋转曲面方程,平面束方程,有关直线与平面的综合题 四、教学内容的深化和拓宽: 1、空间直角坐标系的作用,向量的概念及其表示。 2、向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。 3、单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法。 4、平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 5、曲面方程的概念,常用二次曲面的方程及其图形, 五、教学方法与手段 启发探索式教学方法,结合多媒体课件教学。

平面向量与解析几何文科

优质资料 欢迎下载 (A) . |a|2|b|2 -(Oi)2 (B) |a|2|b|2 (Oi)2 平面向量与解析几何 1、 设向量a,b 满足|;|=2「5』=(2,1),且a 与b 的方向相反,则a 的坐标为 ___________ . 2、 若平面向量a , b 满足a +b =1, a +b 平行于x 轴,b = (2,-1),则a= . 3、 设a 、b 、c 是单位向量,且a ? b = 0,贝U a_c ?b_c 的最小值为() 于(A)2 (B) .3 (c) ,2 (D)1 a=b=2 , a ,2b*a-b=—2,贝U a 与 b 的夹角为 a 、b 、c 满足 |a |=| b|=|c|,a b = c ,则:a, b ^= = 1,「| 1 ,且以向量a 、3为邻边平行四边形的面积为 则a 和3的夹角0取值范围是___。 9、已知向量a = (1,2), A 7 7 A e-,) 9 3 12、 在 ABC 中,M 是BC 的中点,AM=1点P 在AMh 且满足 PA 二2PM 4 4 4 等于(A 一 (B ) — (C ) —— (D) 9 3 3 (A ) -2 (B ) (C ) -1 (D) 1-2 4、已知向量a = (2,1) a - b = 10 , | a + b | = 5、、2,则 | b | = (B ) ,10 (A ) ,5 5、设向量 a 、bc 满足 | a |=| b |=1, a b =- (C ) 5 (D ) 25 ,

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

相关文档
相关文档 最新文档