文档库 最新最全的文档下载
当前位置:文档库 › 二重积分练习题答案

二重积分练习题答案

二重积分部分练习题

精心整理题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择(16小题,共53.0分) (2分)[1] (3分)[2]二重积分 D xydxdy ??(其中D:0≤y≤x2,0≤x≤1)的值为(A 答() (3分 (A 答() (3分|x|+|y|≤1 ( D f ?? (A 答() (3分 (A)1 ? (B)1 01 (,) dy f x y dx - ? (C)11 0111 (,)(,) y dy f x y dx f x y dx - -- + ??? (D)2 01 (,) dy f x y dx - ?? 答() (3分)[6]设函数f(x,y)在区域D:y2≤-x,y≥x2上连续,则二重积分(,) D f x y dxdy ??可化累

次积分为 (A)2 1(,)x dx f x y dy -? (B)2 1(,)x dx f x y dy -?? (C)2 1 0(,)y dy f x y dx -?? (D)2 1 0(,)y dy f x y dx ? 答() (3分)[7]设f (x ,y ) 为连续函数,则二次积分2 1 102 (,)y dy f x y dx ??可交换积分次序为 (A) (B)(C)(D)答(3(A)(B)(C)(D)答() (4分)[9]若区域D 为(x -1)2+y 2≤1,则二重积分(,)D f x y dxdy ??化成累次积分为 (A)2cos 00 (,)d F r dr πθ θθ??(B)2cos 0 (,)d F r dr πθ π θθ-?? (C)2cos 20 2 (,)d F r dr π θ πθθ- ??(D)2cos 20 2(,)d F r dr π θ θθ?? 其中F (r ,θ)=f (r cos θ,r sin θ)r .

不定积分例题及参考答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)2 2x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:3411 342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

第十章 重积分练习题(答案)

1.填空: (1)设D 是由x 轴,y 轴及直线1=+y x 所围成的三角形闭区域,则比较二重积分的值的大小,有2()D x y d σ+??≥3 ()D x y d σ+??. (2)设??++=D d y x I σ)94(22,其中(){} 4,22≤+=y x y x D ,则估计二重积分的值,有 36π≤≤I 100π. (3)交换积分次序:=??-2210),(y y dx y x f dy ????-+222021 010),(),(x x dy y x f dx dy y x f dx . (4)设D 是由直线y x 2=及抛物线2y x =所围成的闭区域,化二重积分σd y x f D ),(??为两个不同次序的二次积分是????x x y y dy y x f dx dx y x f dy 24022 0),(),(2,. (5)在极坐标系中,面积元素为d d ρρθ。 2.选择: (1)设平面区域(){}(){} 0,0,1,,1,22122≥≥≤+=≤+=y x y x y x D y x y x D ,则下列等式一定成立的是( C ). (A)????=1),(4),(D D dxdy y x f dxdy y x f . (B)????=1 4D D xydxdy xydxdy . (C)14D D =. (D)????=1 4D D xdxdy xdxdy . (2)设平面区域(){}(){}a y x a x y x D a y x a x a y x D ≤≤≤≤=≤≤≤≤-=,0,,,,1,则=+??D dxdy y x xy )sin cos (( A ). (A)??1sin cos 2 D ydxdy x . (B)??12D xydxdy . (C)??+1 )sin cos (4D dxdy y x xy . (D)0. (3)设?? ????+=+=+=σσσd y x I d y x I d y x I D 2223222221)cos(,)cos(cos ,,其中 (){} 1,22≤+=y x y x D ,则( A ). (A)123I I I >>. (B)321I I I >>.

二重积分部分练习题

题目部分,(卷面共有100题,405.0分,各大题标有题量和总分) 一、选择 (16小题,共53.0分) (2分)[1] (3分)[2]二重积分D xydxdy ?? (其中D :0≤y ≤x 2 ,0≤x ≤1)的值为 (A ) 16 (B )112 (C )12 (D )14 答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2 D xy dxdy =??= (A )0; (B ) 323 (C )64 3 (D )256 答 ( ) (3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分 22(,)D f x y dxdy =?? __________1 22(,)D f x y dxdy ?? (A )2 (B )4 (C )8 (D ) 12 答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分 1 1 (,)x dx f x y dy -+? (A)11 2 111 (,)(,)y dy f x y dx dy f x y dx ---+?? ? (B)1 1 01 (,)y dy f x y dx --?? (C)11 1 1 1 (,)(,)y dy f x y dx f x y dx ---+?? ? (D) 2 1 (,)dy f x y dx -? ? 答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)D f x y dxdy ??可 化累次积分为 (A)20 1 (,)x dx f x y dy -? (B)2 1 (,)x dx f x y dy -?? (C) 2 1 (,)y dy f x y dx -?? (D)21 (,)y dy f x y dx ? 答 ( )

重积分部分练习题

(2分)[1] (3分)[2]二重积分D xydxdy ?? (其中D :0≤y ≤x 2 ,0≤x ≤1)的值为 (A )16 (B ) 112 (C )12 (D )14 答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2D xy dxdy =??= (A )0; (B ) 323 (C )64 3 (D )256 答 ( ) (3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分 22(,)D f x y dxdy =?? __________1 22(,)D f x y dxdy ?? (A )2 (B )4 (C )8 (D )1 2 答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分 (A)11 2 011 1 (,)(,)y dy f x y dx dy f x y dx ---+?? ? (B)1 1 01(,)y dy f x y dx --?? (C)1 101 1 1 (,)(,)y dy f x y dx f x y dx ---+?? ? (D)201 (,)dy f x y dx -?? 答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)D f x y dxdy ??可化累次积分为 (A)20 1(,)x dx f x y dy -? (B)2 1(,)x dx f x y dy -?? (C)2 1 (,)y dy f x y dx -?? (D)210 (,)y dy f x y dx ? 答 ( )

二重积分练习题

二重积分自测题 (一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+= D d y x I )ln(1,??σ+=D d y x I )(ln 22 ,则( ) A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd ( ) A . 6π B .4π C .3π D .2 π 3.设积分区域D 由2 x y =和2+=x y 围成,则=σ??D d y x f ),(( ) A .? ?-+2 122),(x x dy y x f dx B .??-212 ),(dy y x f dx C . ? ?-+1 2 22),(x x dy y x f dx D .??+1 2 2),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分? ? =4 2),(x x dy y x f dx ( ) A . ?? 40 412),(y y dx y x f dy B .?? -4 412),(y y dx y x f dy C . ? ?4 4 1),(y dx y x f dy D .??40 2 1 2 ),(y y dx y x f dy 5.累次积分? ?=-2 2 2 x y dy e dx ( ) A . )1(212--e B .)1(314--e C .)1(214--e D .)1(3 1 2--e 6.设D 由14122≤+≤y x 确定,若??σ+=D d y x I 2211,??σ+=D d y x I )(2 22, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( ) A .321I I I << B .231I I I << C .132I I I << D .123I I I << 7.设D 由1||≤x ,1||≤y 确定,则 =??D xy xydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e 8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且 ? ?=1 1 )()(x dx x xf dx x f , 则 ??=D dxdy x f )(( )

二重积分部分练习题

题目部分,(卷面共有100题,分,各大题标有题量和总分) 一、选择 (16小题,共分) (2分)[1] (3分)[2]二重积分D xydxdy ?? (其中D :0≤y ≤x 2 ,0≤x ≤1)的值为 (A ) 16 (B )112 (C )12 (D )14 答 ( ) (3分)[3]若区域D 为0≤y ≤x 2,|x |≤2,则2 D xy dxdy =??= (A )0; (B ) 323 (C )64 3 (D )256 答 ( ) (3分)[4]设D 1是由ox 轴,oy 轴及直线x +y =1所圈成的有界闭域,f 是区域D :|x |+|y |≤1上的连续函数,则二重积分 22(,)D f x y dxdy =??__________1 22 (,)D f x y dxdy ?? (A )2 (B )4 (C )8 (D ) 1 2 答 ( ) (3分)[5]设f (x ,y )是连续函数,则二次积分 (A)1 1 2 11 1 (,)(,)y dy f x y dx dy f x y dx ---+?? ? (B)1 1 1 (,)y dy f x y dx --?? (C)11 1 1 1 (,)(,)y dy f x y dx f x y dx ---+?? ? (D) 2 1 (,)dy f x y dx -? ? 答 ( ) (3分)[6] 设函数f (x ,y )在区域D :y 2≤-x ,y ≥x 2上连续,则二重积分(,)D f x y dxdy ??可化累次积分 为 (A)20 1(,)x dx f x y dy -? (B)2 1(,)x dx f x y dy -?? (C) 2 1 (,)y dy f x y dx -?? (D)210 (,)y dy f x y dx ? 答 ( ) (3分)[7]设f (x ,y ) 为连续函数,则二次积分 21 10 2 (,)y dy f x y dx ?? 可交换积分次序为 (A) 1 1 (,)(,)dx f x y dy f x y dy +?

第八章二重积分习题答案

第八章二重积分习题答案 练习题8.1 1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =2220 01()2d a r π θ=--?? 332012236 a d a ππ θ==? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy = ??22 1 26d rdr π θπ=? ? 练习题8.2 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =2 22 (1)84x dx --=? 3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28 (2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积

解: 22 222 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 习 题 八 一.判断题 1.d D σ??等于平面区域D 的面积.(√) 2.二重积分 100f(x,y)d y dy x ??交换积分次序后为1 1 f(x,y)d x dx x ? ? (×) 二.填空题 1.二重积分的积分区域为2214x y ≤+≤,则4dxdy = ?? 12π12π. 2.二重积分d d D xy x y ??的值为 112 ,其中2:0D y x ≤≤,01x ≤≤. 112 3.二重积分 10 (,)y dy f x y dx ?? 交换积分次序后为 11 (,)x dx f x y dy ?? . 11 (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y =0 .0 5. 交换积分次序 1 d (,)y f x y dx ? = 2 1 1 (,)(,)x dx f x y dy f x y dy +?? . 2 1 1 (,)(,)x dx f x y dy f x y dy +?? 6.设D 是由221x y +≤所确定的区域。则22 1D dxdy x y ++?? =_ln 2πln 2π 三. 选择题 1.设1ln D I =??(x y +)d d x y ,2D I =??(x y +)2d d x y ,3D I =??(x y +)d d x y ,其中D 是由直线0x =,0y =,12 x y +=,1x y +=所围成的区域,则1I ,2I ,3I 的大小顺序为( B ). A 321I I I << B 123I I I << C 132I I I << D 312I I I <<

经济数学(二重积分习题及答案)

第九章二重积分 习题 9-1 1.设0),(≥y x f ,试阐述二重积分(,)d D f x y σ ??的几何意义. 解 当0),(≥y x f 时,二重积分(,)d D f x y σ??表示的是以xy 平面上的有界闭区间为底, 以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积. 2.试确定下列积分的符号并说明理由: 221 (1) ln()d d x y x y x y +<+?? 224 (2) d x y x y *+≤?? 解 (1) 因 1x y +<, 则将此式两边平方,得 220121 x y xy ≤+<-< 于是 0)ln(2 2 <+y x 故 221 ln()d d 0. x y x y x y +<+

二重积分练习题

二重积分自测题 (一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+=D d y x I )ln(1,??σ+=D d y x I )(ln 22,则( ) A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??= σD yd ( ) A .6 π B .4 π C .3 π D .2 π 3.设积分区域D 由2x y =和2+=x y 围成,则= σ??D d y x f ),(( ) A .??-+2 12 2 ),(x x dy y x f dx B .??-21 2 ),(dy y x f dx C .??-+122 2 ),(x x dy y x f dx D .??+10 2 2),(x x dy y x f dx

4.设),(y x f 是连续函数,则累次积分??=402),(x x dy y x f dx ( ) A .??404 12 ),(y y dx y x f dy B .?? -4 0412 ),(y y dx y x f dy C .??4041),(y dx y x f dy D .??402 12 ),(y y dx y x f dy 5.累次积分??=-202 2 x y dy e dx ( ) A .)1(212--e B .)1(314--e C .)1(2 1 4--e D .)1(3 1 2--e 6.设D 由 141 22≤+≤y x 确定,若??σ+=D d y x I 2 2 11,??σ+=D d y x I )(222, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( ) A .321I I I << B .231I I I << C .132I I I << D .123I I I << 7.设D 由1||≤x ,1||≤y 确定,则=??D xy xydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e

二重积分练习题,DOC

二重积分自测题(一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+=D d y x I )ln(1,??σ+=D d y x I )(ln 22,则() A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd () A .6π B .4π C .3π D .2 π 3.设积分区域D 由2x y =和2+=x y 围成,则=σ??D d y x f ),(() A .??-+212 2 ),(x x dy y x f dx B .??-212 0),(dy y x f dx C .??-+1 22 2 ),(x x dy y x f dx D .??+1 02 2 ),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分??=4 02),(x x dy y x f dx () A .??404 12 ),(y y dx y x f dy B .?? -4 0412),(y y dx y x f dy C .??4041),(y dx y x f dy D .??402 12 ),(y y dx y x f dy 5.累次积分??=-202 2 x y dy e dx () A .)1(212--e B .)1(314--e C .)1(214--e D .)1(3 12--e 6.设D 由 141 22≤+≤y x 确定,若??σ+=D d y x I 2 2 11,??σ+=D d y x I )(222, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为()

二重积分习题答案

二重积分习题答案 This model paper was revised by the Standardization Office on December 10, 2020

第八章二重积分习题答 案 练习题 1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =222 01()2r d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =222(1)84 x dx --=?

3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 222 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 习 题 八 一.判断题 1.d D σ??等于平面区域D 的面积.(√) 2.二重积分 100f(x,y)d y dy x ??交换积分次序后为1 1 f(x,y)d x dx x ? ? (×) 二.填空题 1.二重积分的积分区域为2214x y ≤+≤,则4dxdy = ?? 12π12π. 2.二重积分d d D xy x y ??的值为 1 12 ,其中2:0D y x ≤≤,01x ≤≤. 112 3.二重积分10 (,)y dy f x y dx ??交换积分次序后为 11 (,)x dx f x y dy ?? . 11 (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序

二重积分习题答案

第 八 章 二 重 积 分 习 题 答 案 练习题8.1 1.设D : 0y ≤,0x a ≤≤,由二重积分的几何意义 计算 d x y 1.D ??2D 解:σd y x D 341(--??= 22 1 21 1212(1[(1]4346x y x y dx dy y dx ------=--??? =2 22(1)84 x dx --=? 3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.

解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 2222 2 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 1.D ??2.1.2. 3.二重积分0 (,)dy f x y dx ?? 交换积分次序后为 (,)x dx f x y dy ?? . (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序 1 d (,)y f x y dx ? = 2 1 1 (,)(,)x dx f x y dy f x y dy +?? .

2 1 1 (,)(,)x dx f x y dy f x y dy +?? 6.设D 是由221x y +≤所确定的区域。则22 1D dxdy x y ++?? =_ln 2πln2π 三. 选择题 1. 20x =, ). 2.3. ). 4.设D 是由22x y a +≤所确定的区域,当a =( B )时D π= A 1 B C . D 四 计算二重积分

第09篇二重积分(习题)

第九章 二重积分 习题9-1 1、设??+= 1 322 1)(D d y x I σ, 其中}22,11|),{(1≤≤-≤≤-=y x y x D ; 又??+= 2 322 2)(D d y x I σ, 其中}20,10|),{(2≤≤≤≤=y x y x D , 试利用二重积分的几何意义说明1I 与2I 之间的关系. 解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =. 2、利用二重积分的几何意义说明: (1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即 ),(),(y x f y x f -=-时,有0),(=??D d y x f σ; (2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即 ),(),(y x f y x f =-时,有 ????=1),(2),(D D d y x f d y x f σ σ,其中1D 为D 在 0≥x 的部分. 并由此计算下列积分的值,其中}|),{(2 2 2 R y x y x D ≤+=. (I)??D d xy σ4 ; (II)??--D d y x R y σ2 2 2 ; (III)??++D d y x x y σ2 231cos . 解:令??= D d y x f I σ),(,??=1 ),(1 D d y x f I σ,其中1 D 为D 在0≥x 的部分, (1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0

二重积分测试题

单项选择题 (10 满分) 1.设D是x=0,y=x,y=π围成的区域,则?D cos(x+y)dσ=( )。 - 未答复 10?1?2 2.设D是由x轴,y轴和抛物线y=1?x2在第一象限内所围成的区域,则 ?D3x2y2dσ= - 未答复 163151610583158105 3.设D是由y=x,y=x+a,y=a,y=3a围成的区域(a>0),则?D(x+y)dσ=( )。 - 未答复 a33a35a37a3 4.设D是由抛物线y2=x和直线y=x?2所围成的区域,则?Dxy dσ=( )。 - 未答复 1452445852114 5.设D是由y=x,y=1x和x=2围成的区域,则?Dx2y2dσ=( )。 - 未答复 3432942512 6.设D是由y=1,x=2和y=x2围成的区域,则?Dxy dσ=( )。 - 未答复 3ln2924ln2?3232 7.设D={(x,y)∈R2||y|?f(x),|x|?1},其中f(x)∈C[?1,1]且f(x)>0,x∈[?1,1],若g(x,y)是R2上的连续函数满足g(x,y)+g(x,?y)=0,?(x,y)∈R2,则?Dg(x,y)dσ ( )。 - 未答复 不能确定等于0大于0小于0 8.设D是由y=1,y=x3和x=?1围成的区域,则?Dxy ln(1+x2+y2)dσ=( )。 - 未答复 0ln214ln2ln3 9.设a?0,交换累次积分的积分顺序∫a0d x∫a2?x2√a?xf(x,y)d y=( )。 - 未答复 ∫a0d y∫a+ya2?y2√f(x,y)d x∫a0d y∫a2?y2√a?yf(x,y)d x∫a0d y∫a?ya2?y2√f(x,y)d x ∫a0d y∫a+ya2?y2√f(x,y)d x 10.设a?0,交换累次积分的积分顺序∫2a0d x∫2ax√2ax?x2√f(x,y)d y=( )。 - 未答复

高等数学不定积分例题及答案

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)

思路:52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式 加上或减去一个真分式的形式,再分项积分。

22二重积分例题

二重积分例题 1.将二重积分(,)D f x y d σ?? 写成二次积分 01:01x D y ≤≤??≤≤? , 0:01y x D x ≤≤??≤≤?, 2:01x y x D x ?≤≤?≤≤? 2.求二重积分223D x y d σ?? , 201:01y x D x ?≤≤-?≤≤? 3.求二重积分2y D e d σ-??, 1:01x y D x ≤≤??≤≤? (也可说区域D 由直线x =0,y =1和y =x 围成) 4.交换下列积分次序 1/211/41/21/2(,)(,)y dy f x y dx dy f x y dx +? ? 5.求二重积分2 D y x d σ-?? , 02:11y D x ≤≤??-≤≤?

6 .sin D σ?? 2222:4D x y ππ≤+≤ 7.2D xy d σ?? 22 :D x y y +≤ 8 .D σ?? 22:2D x y x +≤ 9.22x y D e d σ--?? 222:D x y a +=围成的在第I 象限部分 10.计算20x e dx +∞-? 和20y e dy +∞-? 11.求由 22(0)y mx y nx m n ==<<和(0)y x y x αβαβ==<<围成平面图形的面积。 12.y x y x D e dxdy -+?? D 由x =0,y =0和x+y =2围成

应用题 +y+z =1与三个坐标面围成立体的体积 =0,y =0,x+y =1柱体被z =0,22 6x y z +=-截得部分得体积 3.222z x y =+和2262z x y =--围成立体的体积 4.以xoy 面上22 x y ax +=为底,以 22z x y =+为顶的曲顶柱体体积 5.求两个直交圆柱面围成立体的体积 6.求球面2222 x y z a ++=被椭圆柱面2224x y a +=截出部分的面积。

最新二重积分练习题

二重积分自测题 (一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+= D d y x I )ln(1,??σ+=D d y x I )(ln 22 ,则( ) A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd ( ) A . 6π B .4π C .3π D .2 π 3.设积分区域D 由2 x y =和2+=x y 围成,则=σ??D d y x f ),(( ) A .? ?-+2 1 22),(x x dy y x f dx B .??-21 2 ),(dy y x f dx C . ? ?-+1 2 22),(x x dy y x f dx D .??+10 2 2),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分? ? =4 2),(x x dy y x f dx ( ) A . ?? 40 4 12),(y y dx y x f dy B .?? -4 412),(y y dx y x f dy C . ? ?4 4 1),(y dx y x f dy D .??40 2 1 2 ),(y y dx y x f dy 5.累次积分? ?=-2 2 2 x y dy e dx ( ) A . )1(212--e B .)1(314--e C .)1(214--e D .)1(3 1 2--e 6.设D 由14122≤+≤y x 确定,若??σ+=D d y x I 2211,??σ+=D d y x I )(2 22, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( ) A .321I I I << B .231I I I << C .132I I I << D .123I I I << 7.设D 由1||≤x ,1||≤y 确定,则 =??D xy xydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e 8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且 ? ?=1 1 )()(x dx x xf dx x f , 则 ??=D dxdy x f )(( )

第八章二重积分习题答案

第八章二重积分习题答案 练习题 1.设D :0y ≤0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =20 r d π θ?? =222 01()2d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =2 22 (1)84x dx --=? 3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28 (2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 22220 (4)(4)48D V x y d d r rdr d π π σθθπ=--=-==????? 习 题 八

二重积分习题答案

二重积分习题答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第 八章二重积分习题答案 练习题 1.设D :0y ≤0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =2220 01()2r d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 22121 1212(1)[(1)]4346x y x y dx dy y dx ------=--??? =2 22(1)84 x dx --=? 3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28 (2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 22220 (4)(4)48D V x y d d r rdr d π π σθθπ=--=-==????? 习 题 八

相关文档