文档库 最新最全的文档下载
当前位置:文档库 › 制冷剂简介

制冷剂简介

制冷剂简介
制冷剂简介

制冷剂简介:

在压缩式制冷剂中广泛使用的制冷剂是氨、氟里昂和烃类。按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。根据冷凝压力,制冷剂可分为三类:高温(低压)制冷剂、中温(中压)制冷剂和低温(高压)制冷剂。

常用的氟里昂制冷剂有R12、R22、R502及R1341a,由于其他型号的制冷剂现在已经停用或禁用。在此不做说明。

氟里昂12(CF2CL2,R12):是氟里昂制冷剂中应用较多的一种,主要以中、小型食品库、家用电冰箱以及水、路冷藏运输等制冷装置中被广泛采用。R12具有较好的热力学性能,冷藏压力较低,采用风冷或自然冷凝压力约0.8-1.2KPa。R12的标准蒸发温度为-29℃,属中温制冷剂,用于中、小型活塞式压缩机可获得-70℃的低温。而对大型离心式压缩机可获得-80℃的低温。近年来电冰箱的代替冷媒为R134a。

氟里昂22(CHF2CL,R22):是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。近年来对大型空调冷水机组的冷媒大都采用R134a来代替。

氟里昂502(R502):R502是由R12、R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115、R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。

氟里昂134a(C2H2F4,R134a):是一种较新型的制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,是近年来鼓吹的环保冷媒,但会造成温室效应。是比较理想的R12替代制冷剂。

环保型的制冷剂,一般有以下几种

※R-134a(四氟乙烷)制冷剂

R134a 是目前国际公认的替代R12 的主要制冷工质之一,常用于车用空调,商业和工业用制冷系统,以及作为发泡剂用于硬塑料保温材料生产,也可以用来配置其他混合制冷剂,如R404A 和R407C 等。

主要用途:主要替代R12 用作制冷剂,大量用于汽车空调、冰箱制冷。

产品包装:钢瓶包装,13.6kg/瓶,400kg/瓶,1000kg/瓶,ISO TANK。

※R-410A 制冷剂

物化特性:常温常压下,R410A 是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP 为0 ,因此R410A是不破坏大气臭氧层的环保制冷剂。

主要用途:R410A 主要用于替代R22 和R502 ,具有清洁、低毒、不燃、制冷效果好等特点,大量用于家用空调、小型商用空调、户式中央空调等。

产品包装:钢瓶包装,11.3kg/瓶,400kg/瓶,1000kg/瓶,ISO TANK。

※R-407C 制冷剂

物化特性:常温常压下,R407C 是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP 为0 ,因此R407C是不破坏大气臭氧层的环保制冷剂。

主要用途:R407C 主要用于替代R22,具有清洁、低毒、不燃、制冷效果好等特点,大量用于家用空调、中小型中央空调。

产品包装:钢瓶包装,11.3kg/瓶,400kg/瓶,1000kg/瓶,ISO TANK。

※R417A 制冷剂

物化特性:常温常压下,R417A 是一种不含氯的氟代烷非共沸混合制冷剂,无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP 为0 ,因此R417A是不破坏大气臭氧层的环保制冷剂。

主要用途:R417A 主要用于替代R22 ,具有清洁、低毒、不燃、制冷效果好等特点,用于热泵(OEM 初装替换R22)和空调(售后替换R22)等。

产品包装:钢瓶包装,11.3kg/瓶,400kg/瓶,1000kg/瓶。也可根据用户要求提供ISO 集装柜或运输罐装运;包装货物类别 2.2。

※R-404A 制冷剂

物化特性:R404A不得是一种不含氯的非共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP 为0 ,因此R404A是不破坏大气臭氧层的环保制冷剂。

主要用途:R404A 主要用于替代R22 和R502 ,具有清洁、低毒、不燃、制冷效果好等特点,大量用于中低温冷冻系统。

产品包装:钢瓶包装,10.9kg/瓶,1000kg/瓶。

※R-507 制冷剂

物化特性:R507 是一种不含氯的共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP 为0 ,因此R507是不破坏大气臭氧层的环保制冷剂。

主要用途:R507 主要用于替代R22 和R502 ,具有清洁、低毒、不燃、制冷效果好等特点,大量用于中低温冷冻系统。

产品包装:钢瓶包装,11.3kg/瓶,400kg/瓶。

※R-23(三氟甲烷)制冷剂

物化性质:R23(三氟甲烷,FREON 23),常压下沸点为-82.1℃,凝固点为-155.2℃,液体密度(25℃)为0.67 kg/L,临界密度0.525kg/L,临界压力4.83 MPa,消耗臭氧潜能值(ODP)为0,为环保型制冷剂。

主要用途:三氟甲烷,又称HFC-23,是一种高压液化汽,可用作制冷剂,替代CFC-13。同时又是哈龙1301 理想替代品,具有清洁、低毒、灭火剂效果好等特点。

产品包装:高压钢瓶包装,9.08kg/瓶,30kg/瓶。

※R-508A 制冷剂

物化特性:R508A是一种不含氯的共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP 为0 ,因此R508A是不破坏大气臭氧层的环保制冷剂。

主要用途:R508A 主要用于替代R13、R23、R503,具有清洁、低毒、不燃、制冷效果好等特点,大量用于超低温冷冻系统,比如医用制冷、科研制冷。

产品包装:高压钢瓶包装,5kg/瓶,9.08kg/瓶。

※R-508B制冷剂

物化特性:R508B是一种不含氯的共沸混合制冷剂,常温常压下为无色气体,贮存在钢瓶内是被压缩的液化气体。其ODP 为0 ,因此R508B是不破坏大气臭氧层的环保制冷剂。

主要用途:R508B 主要用于替代R13、R23、R503,具有清洁、低毒、不燃、制冷效果好等特点,大量用于超低温冷冻系统,比如医用制冷、科研制冷。

产品包装:高压钢瓶包装,5kg/瓶,9.08kg/瓶。

※R-152a(二氟乙烷)制冷剂

物化性质:HFC-152a(1,1-二氟乙烷CH3CHF2),分子量66.1,沸点-24.7℃,临界温度113.5℃,临界压力4.58MPa,可燃液化气体,破坏臭氧潜能值(ODP)为0。

主要用途:主要用作制冷剂、发泡剂、气雾剂和清洗剂,同时也是混合工质的重要组分。

产品包装:钢瓶包装,10kg/瓶,640kg/瓶,

制冷剂的种类及特性

氨(R717)的特性 氨(R717、NH3)是中温制冷剂之一,其蒸发温度ts为-33.4℃,使用范围是+5℃到-70℃,当冷却水温度高达30℃时,冷凝器中的工作压力一般不超过1.5MPa。 氨的临界温度较高(tkr=132℃)。氨是汽化潜热大,在大气压力下为1164KJ/Kg,单位容积制冷量也大,氨压缩机之尺寸可以较小。 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除外),故在氨制冷系统中对管道及阀件均不采用铜和铜合金。 氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮肤上时会引起冻伤。当空气中氨蒸气的容积达到0.5-0.6%时可引起爆炸。故机房内空气中氨的浓度不得超过0.02mg/L。 氨在常温下不易燃烧,但加热至350℃时,则分解为氮和氢气,氢气于空气中的氧气混合后会发生爆炸。 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组成和结构的氟里昂制冷剂热力性质相差很大,可适用于高温、中温和低温制冷机,以适应不同制冷温度的要求。 氟里昂对水的溶解度小,制冷装置中进入水分后会产生酸性物质,并容易造成低温系统的“冰堵”,堵塞节流阀或管道。另外避免氟里昂与天然橡胶起作用,其装置应采用丁晴橡胶作垫片或密封圈。 常用的氟里昂制冷剂有R12、R22、R502及R1341a,由于其他型号的制冷剂现在已经停用或禁用。在此不做说明。 氟里昂12(CF2CL2,R12):是氟里昂制冷剂中应用较多的一种,主要以中、小型食品库、家用电冰箱以及水、路冷藏运输等制冷装置中被广泛采用。R12具有较好的热力学性能,冷藏压力较低,采用风冷或自然冷凝压力约0.8-1.2KPa。R12的标准蒸发温度为-29℃,属中温制冷剂,用于中、小型活塞式压缩机可获得-70℃的低温。而对大型离心式压缩机可获得-80℃的低温。近年来电冰箱的代替冷媒为R134a。 氟里昂22(CHF2CL,R22):是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。近年来对大型空调冷水机组的冷媒大都采用 R134a来代替。 氟里昂502(R502):R502是由R12、R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115、R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 氟里昂134a(C2H2F4,R134a):是一种较新型的制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,

建环《制冷原理》部分练习题参考解答

建环《制冷原理与设备》课程 部分思考题、练习题参考解答 08年10月 一、判断题 1.湿蒸气的干度×越大,湿蒸气距干饱和的距离越远。 (×) 2.制冷剂蒸气的压力和温度间存在着一一对应关系。 (×) 3.低温热源的温度越低,高温热源的温度越高,制冷循环的制冷系数就越大。(×) 4.同一工质的汽化潜热随压力的升高而变小。(√) 5.描述系统状态的物理量称为状态参数。 (√) 6.系统从某一状态出发经历一系列状态变化又回到初态,这种封闭的热力过程称为热力循环。 (√) 7.为了克服局部阻力而消耗的单位质量流体机械能,称为沿程损失。(×) 8.工程上用雷诺数来判别流体的流态,当Re< 2000时为紊流。 (×) 9.流体在管道中流动时,沿管径向分成许多流层,中心处流速最大,管壁处流速为零。(√) 10.表压力代表流体内某点处的实际压力。 (×) 11.流体的沿程损失与管段的长度成正比,也称为长度损失。 (√) 12.使冷热两种流体直接接触进行换热的换热器称为混合式换热器。 (×) 13.制冷剂R717、R12是高温低压制冷剂。 (×) 14.氟利昂中的氟是破坏大气臭氧层的罪魁祸首。 (×) 15.混合制冷剂有共沸溶液和非共沸溶液之分。 (√) 16.氟利昂的特性是化学性质稳定,不会燃烧爆炸,不腐蚀金属.不溶于油。 (×) 17.《蒙特利尔议定书》规定发达国家在2030年停用过渡性物质HCFC。 (√) 18.二元溶液的定压汽化过程是降温过程,而其定压冷凝过程是升温过程。 (×) 19.工质中对沸点低的物质称作吸收剂,沸点高的物质称作制冷剂。 (×) 20.盐水的凝固温度随其盐的质量分数的增加而降低。 (×) 21.R12属于CFC类物质,R22属于HCFC类物质,R134a属于HFC类物质。 (√) 22.CFC类、HCFC类物质对大气臭氧层均有破坏作用,而HFC类物质对大气臭氧层没有破坏作用。 (√) 23.市场上出售的所谓“无氟冰箱”就是没有采用氟利昂作为制冷剂的冰箱。 (×) 24.R134a的热力性质与R12很接近,在使用R12的制冷装置中,可使用R134a替代R12而不需对原设备作任何改动。 (√) 25.比热容是衡量载冷剂性能优劣的重要指标之一。 (×) 26.对蒸气压缩式制冷循环,节流前制冷剂的过冷可提高循环的制冷系数。 (√) 27.半导体制冷效率较低,制冷温度达不到0℃以下温度。 (×) 28.压缩制冷剂要求“干压缩”,是指必须在干度线X=1时进行压缩。 (×) 29.螺杆式压编机和离心式压缩机都能实现无级能量调节。 (√) 30.当制冷量大干15KW时,螺杆式压缩机的制冷效率最好。 (√) 31.风冷冷凝器空气侧的平均传热温差通常取4~6℃。 (×) 32.满液式蒸发器的传热系数低于干式蒸发器。 (×) 33.两级氟利昂制冷系统多采用一级节流中间完全冷却循环。 (×)

新型制冷剂热力性质的快速计算及其特性研究

文章编号:1671-6612(2009)02-029-03 新型制冷剂热力性质的快速计算及其特性研究 陈锦华 敖永安 沈 琳 王聪民 高兴全 (沈阳建筑大学市政与环境学院 辽宁 110168) 【摘 要】 提出了新型制冷剂R407C 、R410A 及R227热力性质的快速计算方法,并对其特性分析比较。借 鉴Cleland 制冷剂热力性质简化计算公式,拟合出热力性质快速计算方程的系数,并从运行效率、经济性和安全性等角度来研究新型制冷剂的特性。结果在制冷空调的常用温度范围内,检验拟合系数的计算精度与Cleland 给出的其他制冷剂拟合精度相仿,在某些性能上新型制冷剂要优于被替代物。此快速计算方法可应用于装置的仿真和优化计算及装置或过程的实时控制。R407C 、R410A 能很好作为R22的替代物,R227是一种很有前途的制冷剂,很有可能作为混合物的一种阻燃组份用于HCFC 的混合替代物中,或作为热泵中CFC 的纯质替代物使用。 【关键词】 制冷剂;热力性质;计算;特性研究 中图分类号 TQ025 文献标识码 A The Comparison of Characteristics of Thermal Performance and Optimization and Simulation Calculation Method of Several New Refrigerant Chen Jinhua Ao Yong’an Shen Lin Wang Congmin Gao Xingquan (Institute of Urban Services and Environment , Architecture University , Liaoning, 110168) 【Abstract 】 Through comparing the thermodynamic properties of new refrigerant of R407C, R410A and R227,propose an optimization and simulation method. By using the simplified calculation formula of refrigerant of Cleland,draw the coefficient of quick calculation equation of thermodynamic properties,and study the characteristics of the new refrigerant from various angles such as operating efficiency, economy and security.result in the commonly used temperature range of refrigerating air-conditioning, the calculation accuracy of fitting coefficient is similar to fitting precision of other refrigerants which Cleland gives. In some performance,the new refrigerant is superior to the alternatives.conclusion This quick calculation method can be applied to simulation and optimization calculation of the device and the device or process real-time control. R407C, R410A can replace R22 very well, R227 is a promising refrigerant,it is possiblily used in the mixed HCFC alternatives as one flame-retardant component of the mixture,or as pure alternative of the CFC in the heat pump. 【Keywords 】 refrigerant ; thermodynamic properties ; calculation ; characteristics study 基金项目:“十一五”国家科技支撑计划重大项目(2006BAJ03B01) 作者简介:陈锦华(1981-),男,硕士研究生,主要从事建筑节能研究。 收稿日期:2008-11-06 0 引言 制冷工质的热力学性质和热物理性质数据是制冷系统流动、传热计算的基础。传统的查图表方法因效率低且精度不够,不满足系统仿真、优化计算及实时控制的要求,而被具有较高精度的简单快速计算公式所取代。许多研究者致力于这方面的工作,并提出了繁简不一的理论公式和经验方程。考虑到在装置的仿真和优化计算时,对制冷剂热力性质计算的速度和稳定性有较高的要求及在装置或过程的实时控制时,不可能在控制模块中附加很复杂的计算程序,因此笔者提出了简化快速计算方法。 第23卷第2期 2009年4月 制冷与空调 Refrigeration and Air Conditioning V ol.23 No.2 Apr. 2009.29~31

制冷剂 基础知识(DOC)

碳氢制冷剂基础知识 (一)制冷剂概述制冷剂概述制冷剂概述制冷剂概述 1、什么是制冷剂? 答:制冷剂又称制冷工质,它是在制冷系统中不断循环并通过其本身的状态变化以实现制冷的工作物质。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂在蒸发器内吸收被冷却介质(水或空气等)的热量而汽化,在冷凝器中将热量传递给周围空气或水而冷凝。它的性质直接关系到制冷装置的制冷效果、经济性、安全性及运行管理,因而对制冷剂性质要求的了解是不容忽视的。 2、对制冷剂性质有哪些要求? (1)环保性 要求工质的臭氧消耗潜能值(ODP)与全球变暖潜能值(GWP)尽可能小,以减小对大气臭氧层的破坏及引起全球气候变暖。 (2)具有优良的热力学特性 具有优良的热力学特性以便能在给定的温度区域内运行时有较高的循环效率。具体要求为:临界温度高于冷凝温度、与冷凝温度对应的饱和压力不要太高、标准沸点较低、流体比热容小、绝热指数低、单位容积制热量较大等。

(3)具有优良的热物理性能 具体要求为:较高的传热系数、较低的粘度及较小的密度。 (4)具有良好的化学稳定性 要求工质在高温下具有良好的化学稳定性,保证在最高工作温度下工质不发生分解。 (5)与润滑油有良好互溶性。 (6)安全性。工质应无毒、无刺激性、无燃烧性及爆炸性。 (7)有良好的电气绝缘性。 (8)经济性。要求工质低廉,易于获得。 3、制冷剂是怎样分类的? 在压缩式制冷剂中广泛使用的是氨、氟里昂和烃类。 一、按照化学成分,制冷剂可分为五类:无机化合物制冷剂、氟里昂、饱和碳氢化合物制冷剂、不饱和碳氢化合物制冷剂和共沸混合物制冷剂。 (1)无机化合物制冷剂:这类制冷剂使用得比较早,如氨(NH3)、水(H2O)、空气、二氧化碳(CO2)和二氧化硫(SO2)等。对于无机化合物制冷剂,国际上规定的代号为R及后面的三位数字,其中第一位为“7”后两位数字为分子量。如水R718...等。 (2)氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素(CL)、氟(F)和溴(Br)代替后衍生物的总称。国际规定用“R”作为这类制冷剂的代号,如R22...等。又有人称之为氟利昂的。 (3)饱和碳氢化合物制冷剂:这类制冷剂中主要有甲烷、乙烷、丙烷、丁

制冷剂的压焓图

制冷剂的压焓图 在制冷工程中,最常用的热力图就是制冷剂的压焓图。该图纵坐标是绝对压力的对数值lgp (图中所表示的数值是压力的绝对值),横坐标是比焓值h。1 、临界点K 和饱和曲线临界点K 为两根粗实线的交点。在该点,制冷剂的液态和气态差别消失。K 点左边的粗实线Ka 为饱和液体线,在Ka 线上任意一点的状态,均是相应压力的饱和液体;K 点的右边粗实线Kb 为饱和蒸气线,在Kb 线上任意一点的状态均为饱和蒸气状态,或称干蒸气。 2 、三个状态区Ka 左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb 右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka 和Kb 之间——湿蒸气区,即气液共存区。该区内制冷剂处于饱和状态,压力和温度为一一对应关系。在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。 3 、六组等参数线制冷剂的压-焓图中共有八种线条:等压线P、等焓线、饱和液体线等熵线等容线、干饱和蒸汽线、等干度线等温线(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。(3)等温线:图上用点划线表示的为等温线。等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h 图上等熵线以饱和蒸气线作为起点。(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。与等熵线比较,等比容线要平坦些。制冷机中常用等比容线查取制冷压缩机吸气点的比容值。(6)等干度线:从临界点K 出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。它只存在与湿蒸气区。上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。在lgp-h 图上确定其状态点,可查取该点的其余四个状态参数。

制冷剂充注量的简化计算方法之欧阳家百创编

制冷剂充注量的简化计算方法—— 工况参数法 1. 欧阳家百(2021.03.07) 2.计算原理 将制冷系统看作一个压力容器,而制冷剂在制冷系统中仅以四种状态出现,即冷凝压力下饱和气体、饱和液体,蒸发压力下饱和气体、饱和液体。而计算时只需要给出制冷系统所需计算部分的内容积,再给出该部分的饱和气体及饱和液体的相对比例及比容,就可以计算出制冷系统在某一工况下运行时需要的制冷剂充注量。3.计算方法 制冷系统运行压-焓简图如下: 在计算过程中,我们将做如下简化:将压缩机排气到冷凝器进口之间管路中的制冷剂看作冷凝压力下饱和蒸气;将冷凝器进口到冷凝器出口之间换热管中的制冷剂看作是在冷凝压力下饱和气体及饱和液体按一定比例的混合物(例如饱和液体比例占15%,饱和气体比例占85%,可根据具体情况调整);将冷凝器出口至节流装置进口之间管路中的制冷剂看作冷凝压力下饱和液体;(假设节流装置到蒸发器进口距离很短,可忽略这一段管路内容积)将蒸发器进口至蒸发器出口之间的换热管中的制冷剂看作是在蒸发压力下的饱和气体及饱和液体按一定比例的混合物(例如蒸发器进口干度为x,出口干度一般可设为1,则蒸发器内平均干度为(x+1)/2,即

蒸发压力下的饱和气体比例为(x+1)/2,蒸发压力下的饱和液体比例为(x+1)/2);蒸发器出口至压缩机吸气口之间管路(包括气液分离器)中的制冷剂看作是在蒸发压力下的饱和气体。通过以上假设,再计算出制冷系统各部分管路的内容积,查压-焓图获得3、4、7、9四点的比容,就可以计算出该制冷系统在冷凝压力tk、蒸发压力t0运行时所需的制冷剂充注量了。 4.该简化计算方法的优缺点 该简化计算方法的主要优点就是简单明了,手工均可很快计算出结果,而且计算的依据是制冷系统的运行参数,与制冷剂种类无关,所以其计算原理对各种制冷剂均是通用的。其缺点主要是计算精度较差,因为制冷系统运行时制冷剂时时刻刻存在着状态的变化,将其简单地看作只有四种状态显然不能精确地计算出制冷剂充注量,而且如果精确计算各部分管路内容积将会十分繁琐,所以一般情况下均是采取简化的方法,略去一些管路的内容积或是采取一些修正系数;其次,这种简化计算方法无法确定二次节流的中间过程的制冷剂状态,例如制冷时节流状置放在室外机,那么从节流装置到室内机蒸发器这一段管路中(包括连接管)的制冷剂状态如何确定现在还没有好的方法;由于还没有对贮液罐有比较深刻的认识(根据部门检查表:高压贮液罐的出口被制冷剂液体封住制冷系统即可正常工作,但已经有几位同事向我提出,实际上加装贮液罐后制冷系统的充注量明显增加,已经远高于高压贮液罐的出口时制冷系统才能正常工作),所以如何计算带有贮液罐的系统请大家在实践中摸索。

氟利昂制冷剂的分类和优劣势

氟利昂制冷剂的分类及优劣势 氟利昂是在制冷机中完成热力循环的工质。它在低温下吸取被冷却物体的热量,然后在较高温度下转移给冷却水或空气。在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,合肥空调加氟服务中心介绍,常见的有R12.R22.R502 、R123及R134a,由于其他型号的制冷剂已经停用或禁用。在此不做说明。 一、氟利昂R600a(C4H10) 2-甲基丙烷(异丁烷),属于CH类制冷剂A3类物质,充灌量很少时可用作冰箱制冷剂,具有节能、低噪、对大气无破坏的优势,但其易燃、易爆、安全性差。 二、氟利昂R410A 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5)以50%,50%的质量百分比混合而成的非(近)共沸制冷剂,温度滑移较小,发生相变时两组分比例基本保持恒定,物性接近单组分制冷剂。工作压力为普通R22空调的1.6倍左右,制冷(热)效率更高,不破坏臭氧层。另外,采用新冷媒的空调在性能方面也会有一定的提高。R410A 是目前为止国际公认的用来替代R22最合适的的冷媒,并在欧美,日本等国家得到普及。 三、氟利昂R407C 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5),四氟乙烷R134a(C2H2F4)以23%,25%,52%的质量百分比混合而成的非共沸制冷剂,温度滑移较高。 四、氟利昂134a(C2H2F4,R134a) 是一种较新型的制冷剂,HFC制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,是鼓吹的环保冷媒,但会造成温室效应。是比较理想的R12替代制冷剂。 五、氟里昂502(R502) R502是由R12.R22以51.2%和48.8%的百分比混合而成的共沸溶液。R502与R115.R22相比具有更好的热力学性能,更适用于低温。R502的标准蒸发温度为-45.6℃,正常工作压力与R22相近。在相同的工况下的单位容积制冷量比R22大,但排气温度却比R22低。R502用于全封闭、半封闭或某些中、小制冷装置,其蒸发温度可低达-55℃。R502在冷藏柜中使用较多。 六、氟利昂22(CHF2CL,R22) HCFC制冷剂,是氟里昂制冷剂中应用较多的一种,主要以家用空调和低温冰箱中采用。R22的热力学性能与氨相近。标准气化温度为-40.8℃,通常冷凝压力不超过1.6MPa。R22不燃、不爆,使用中比氨安全可靠。R22的单位容积比R12约高60%,其低温时单位容积制冷量和饱和压力均高于R12和氨。对大型空调冷水机组的冷媒大都采用R134a来代替。 七、氟利昂-13

常用制冷剂简介

常用制冷剂简介 制冷剂又称制冷工质,是制冷循环的工作介质,利用制冷剂的相变来传递热量,既制冷剂在蒸发器中汽化时吸热,在冷凝器中凝结时放热。当前能用作制冷剂的物质有80多种,最常用的是氨、氟里昂类、水和少数碳氢化合物等。 1987年9月在加拿大的蒙特利尔室召开了专门性的国际会议,并签署了《关于消耗臭氧层的蒙特利尔协议书》,于1989年1月1日起生效,对氟里昂在的R11、R12、R113、R114、R115、R502及R22等CFC类的生产进行限制。1990年6月在伦敦召开了该议定书缔约国的第二次会议,增加了对全部CFC、四氯化碳(CCL4)和甲基氯仿(C2H3CL3)生产的限制,要求缔约国中的发达国家在2000年完全停止生产以上物质,发展中国家可推迟到2010年。另外对过渡性物质HCFC提出了2020年后的控制日程表。 HCFC中的R123和R134a是R12和R22的替代品。 热力学的要求 1 在大气压力下,制冷剂的蒸发温度(沸点)ts要低。这是一个很重要的性能指标。ts愈低,则不仅可以制取较低的温度,而且还可以在一定的蒸发温度to下,使其蒸发压力Po高于大气压力。以避免空气进入制冷系统,发生泄漏时较容易发现。 2 要求制冷剂在常温下的冷凝压力Pc应尽量低些,以免处于高压下工作的压缩机、冷凝器及排气管道等设备的强度要求过高。并且,冷凝压力过高也有导致制冷剂向外渗漏的可能和引起消耗功的增大。 3 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量qv要求尽可能大,这样可以缩小压缩机尺寸和减少制冷工质的循环量;而对于小型或微型压缩机,单位容积制冷量可小一些;对于小型离心式压缩机亦要求制冷剂qv要小,以扩大离心式压缩机的使用范围,并避免小尺寸叶轮制造之困难。 4 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在常温或普通低温范围内能否液化。 5 凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 制冷剂分子式分子量u 正常蒸发温度ts(℃) 凝固点tf(℃) 临界温度tkp(℃) 临界压力PKP绝对压力绝热指数K 水(R718) H2O 18.02 +100 ±0 +374.1 225.6 1.33 氨(R717) NH3 17.03 -33.4 -77.7 +132.4 115.2 1.31 R11 CFCL3 137.39 +23.7 -111 +198 44.6 1.17 R12 CF2CL2 120.92 -29.8 -155 +111.5 40.86 1.15 R13 CF3CL 104.47 -81.5 -180 +28.8 39.4 -

R22压焓图解读

压焓图解读 在制冷工程中,最常用的热力图就是制冷剂的压焓图。该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。 1、临界点K和饱和曲线 临界点K为两根粗实线的交点。在该点,制冷剂的液态和气态差别消失。 K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。 2、三个状态区 Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度; Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度; Ka和Kb之间——湿蒸气区,即气液共存区。该区内制冷剂处于饱和状态,压力和温度为一一对应关系。 在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。 3、六组等参数线 制冷剂的压-焓(LgP-E)图中共有八种线条: 等压线P(LgP),等焓线(Enthalpy),饱和液体线(Saturated Liquid),等熵线(Entropy),等容线(Volume),干饱和蒸汽线(Saturated Vapor),等干度线(Quality),等温线(Temperature)

(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。 (2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。 (3)等温线:图上用点划线表示的为等温线。等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。 (4)等熵线:图上自左向右上方弯曲的细实线为等熵线。制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。 (5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。与等熵线比较,等比容线要平坦些。制冷机中常用等比容线查取制冷压缩机吸气点的比容值。 (6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。它只存在与湿蒸气区。 上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。在lgp-h图上确定其状态点,可查取该点的其余四个状态参数 压焓图画线 压焓图是以焓值为横坐标,以压力为纵坐标的坐标图。对于制冷工况来说,有四个重要的点,压缩机吸气温度点1,压缩机排气温度点2,冷凝器出口温度3,蒸发器入口温度4。可以这样来确定: a)确定蒸发压力和冷凝压力,按蒸发和冷凝的温度确定也可以。就可以在压焓图上画好两条横线L1和L2。 b) 确定过冷度和过热度。过冷度是冷凝温度与冷凝器出口温度的差值。过热度是压缩机吸气温度与蒸发温度的差值。蒸发压力线L1对应的压缩机吸气温度点就是1,冷凝压力线L2对应的冷凝器的出口温度点就是3。 c) 1点沿等熵线与L2的交点就是2。 d) 3点沿等焓线与L1的交点就是4。 以上指的是理想循环。

空调器制冷剂最佳充注量确定

空调器制冷剂最佳充注量确定 每一种空调器的设计都存在着如何确定制冷剂充注量的问题,特别是在采用毛细管作节流装置的空调器中,由于毛细管的调节能力较热力膨胀阀差,充注量的变化对其性能影响更大。目前这方面的研究较少,缺少成熟的理论计算方法,各生产厂家只好采取试验手段,依据经验估计值进行多次试验,以最终确定最佳充注量。这种重复的工作不仅费钱,也费时费力。为了使确定最佳充注量变得简单可行,本文在系统稳态性能模拟的基础上,对分体式空调器的最佳充注量进行了计算,并提出了确定系统最佳充注量的原则:当空调器的结构尺寸和工作条件一定,制冷量达到设计要求时,系统的能效比最大。此时,空调器及各部件处于最佳工作状态。本人曾对KFR-32GW/H分体挂壁式空调器反复做试验,理论计算和试验结果很吻合。 1充注量计算 制冷剂在制冷系统中的状态可分为单相和两相两种,这两部分的制冷剂质量计算应分别考虑。 1.1单相区质量计算 单相区制冷剂密度计算较为简单,处于单相区的各部分制冷 剂质量可通过积分计算。 (1) 式中m1为制冷剂质量,kg;ρ为密度,kg/m3;V为容积,m3;Pv为压力,Pa;Tv为制冷剂温度,K。 单相区制冷剂主要存在于蒸发器过热区、冷凝器过冷区、连接管路、压缩机壳体内、过滤器和润滑油中,故单相区制冷剂质量为: (2) 式(2)中各参数的下标含义为:filt过滤器,pipe管路,oil润滑油,com压缩机,V单相区容积。 考虑到压缩机、过滤器、接管内制冷剂温度变化不大,故式(2)中采用平均温度来计算密度。润滑油中溶解的制冷剂量,可根据油质量及制冷剂的溶解度

进行计算。 1.2两相区质量的计算 充注量计算的难点在于两相区中制冷剂量的确定,其关键是两相区空泡系数的计算。在两相区空泡系数修正模型的研究和验证方面,不少学者已经做了大量工作。笔者在此基础上,结合空调器的实际工作条件,在稳态工况下,假设换热器两相区单位面积热负荷一定,选用Hughmark模型计算两相区的制冷剂量。其数学表达式为: (3) 式中α为空泡系数,x为干度,β、kH为系数,其中kH=f(z)具体见表1。 (4) 式中G为质量流速,kg/(m2·s);μ为粘度,Pa·S;Di为管内径,m。 此模型系数计算中包括α,所以在计算α时必须经过迭代,计算量较大。 两相区中制冷剂量m2: (5) 式中ls为两相区长度,m;l为制冷剂管长,m。 制冷剂的总充注量m为各部分充注量之和: m=m1+m2(6) 2充注量对空调器性能的影响及试验结果

制冷原理考试题答案

制冷原理考试题答案 一、填空(每空 2 分,共20 分) 1.制冷压缩机、(冷凝器)、节流阀和(蒸发器),是制冷剂赖以循环制冷所必不 可少的机械设备,构成了最基本的制冷系统。 2?对制冷剂的热力学方面的选择要求,要求制冷剂的沸点要(低),临界温度要(高),凝固温度要(低)。(填高低) 3.在蒸发压缩式制冷系统中,目前广泛采用的制冷剂有(氨),(氟利昂),和氟 利昂的混合溶液等。 4?复叠式压缩制冷循环通常是由两个或两个以上(制冷系统)组成的多元复叠制冷循 环。 5?空气压缩式制冷循环的主要热力设备有(空气压缩机)、冷却器、(吸热器)及膨 胀器。 二、名词解释(每题 4 分,共20 分) 1人工制冷。 人工制冷是指用认为的方法(1 分)不断地从被冷却系统(物体或空间)排热至环境介质中 去(1分),从而使被冷却系统达到比环境介质更低的温度(1分),并在必要长的时间内维持所必要的低温的一门工程技术( 1 分)。 ?共沸溶液类制冷剂 共沸溶液类制冷剂是由两种或两种以上(1 分)互溶的单组分制冷剂(1 分)在常温下按一定的质量或容积比相互混合(2 分)而成的制冷剂。 .载冷剂 载冷剂是在间接冷却的制冷装置中( 1 分),完成被冷却系统(物体或空间)的热量传递给制冷剂的中间冷却介质(2分),亦称为第二制冷剂(1分)。 ?热力完善度 热力完善度是用来表示制冷机循环接近逆卡诺循环循环的程度( 2 分)。它也是制冷循环的一个技术经济指标( 2 分)。 5一次节流一次节流是指向蒸发器供液的制冷剂液体直接由冷凝压力节流至蒸发压力的节流过程 . 三简答(前两题 6 分,第三题8 分,共20 分)1对单级蒸汽压缩制冷理论循环作哪些假设理论循环假定: ①假设进入压缩机的为饱和蒸汽,进入节流阀的为饱和液体;( 1 分) ②假设压缩过程是等熵过程,节流过程是等焓过程;( 2 分) ③假设蒸发与冷凝过程无传热温差;(1 分)

浅谈制冷剂的压-焓图

浅谈制冷剂的压-焓图 以特定制冷剂的焓值Enthalpy(KJ/Kg)为横坐标,以压力Pressure(MPa)为纵坐标绘制成的线图称为该制冷剂的压-焓图。为了缩小图的尺寸,并使低压区内的线条交点清楚,所以纵坐标使用压力的对数值LgP绘制,因此压-焓图又称LgP-E图。 LgP-E图中有两条比较粗的曲线,左边的一条称饱和液体线(Saturated Liquid),右边的一条称干饱和蒸汽线(Saturated Vapor),两条曲线向上延伸交于一点,称临界点(c.p.)。因为一般制冷循环都在远离临界点以下进行,所以一些制冷剂的LgP-E图中临界点都未表示出。 饱和液体线与干饱和蒸汽线将LgP-E图分成三个区域: 饱和液体线的左边------过冷液体区。 饱和液体线与干饱和蒸汽线之间------湿饱和蒸汽区;饱和 状态下制冷剂蒸汽与液体的混合物称湿饱和蒸汽。在湿饱和蒸汽中 制冷剂蒸汽所占的重量比例称干度,用x表示。制冷剂饱和液体 的干度x=0,湿饱和蒸汽的干度0

干饱和蒸汽线的右边------过热蒸汽区。 Lgp-E图中,还绘有等温线(Temperature),等温线在湿饱和蒸汽区内与等压线P(LgP)重合;在过热蒸汽区,等温线与等压线分开,成为向右下倾斜的一组曲线;在过冷液体区,等温线则与等焓线(Enthalpy)重合。 图中还绘有等熵线(Entropy)和等容线(Volume)。 对R717(氨)制冷剂,由于实际使用的压力都在2 MPa以下,所以R717的LgP-E图只标明2 MPa以下的部分,并把湿饱和蒸汽区的中间部分去掉(实际计算时用不到),使图形清楚紧凑。 不同性质的制冷剂其LgP-E图的形状是不相同的。 综上所述,制冷剂的压-焓(LgP-E)图中共有八种线条: 等压线P(LgP) 等焓线(Enthalpy) 饱和液体线(Saturated Liquid) 等熵线(Entropy)等容线(Volume)干饱和蒸汽线(Saturated Vapor) 等干度线(Quality) 等温线(Temperature) 其中等压线P(LgP)和等焓线(Enthalpy)由直角坐标系的纵、横坐标确定;其余的等熵线(Entropy)、等容线(Volume)、等干度线(Quality)、等温线(Temperature)则构成了各自的自然坐标系。

《制冷原理与设备》复习题答案doc资料

《制冷原理与设备》复习题答案

1.<什么叫制冷剂蒸气干度?干度x=1和x=0各是什么含义?> 1.答干度是制冷剂蒸气在饱和状态下,湿蒸气中所合的饱和蒸气量与湿蒸气总量之比值.用符号x表示 x=1,即饱和蒸气占100%,称为干饱和蒸气;x=0,饱和蒸气含量为零,为饱和液体。 2.<减少流动阻力的措施有哪些?> 2.答减少流动阻力的主要途径是改善边壁对流动的影响,措施包括减少沿程阻力(减少管壁的粗糙度和采用柔性边壁),以及减少局部阻力(使流体进口尽量平顺,采用渐扩和渐缩代替流通截面的突然扩大和缩小,减少转弯,处理好三通管的结构布置,合理衔接和布置管件、泵或风帆,尽量缩短管线等)。 3.<何为传热方程?如何使传热增强或削弱?> 3.答传热方程为Q=KAΔtm。根据传热方程,提高传热系数K,扩展传热面积A,增大传热温差都可使传热量增大,反之则减少。增强传热的措施有;合理扩大传热面积.加大传热温差,增大流体流速,去除污垢降低热阻:削弱传热的措施有:敷设保温材料,降低流体流速,改变传热面表面状况(如加遮热板)等。 4.<简述氟利昂制冷剂的性质和应用范围。> 4.答氟利昂是饱和碳氢化合物中全部或部分氢元素被卤族元素氟、氯、溴取代后衍生物的总称。氟利昂制冷剂广泛应用于电冰箱、空调机等各种制冷空调设备中。 5.<蒸气压缩式制冷用制冷剂是如何分类的?> 5.答按化学结构分类有;①无机化合物(R717等);②氟利昂(R22、E134a 等);③多元混合溶液(非共沸溶腋有R407C等,共沸溶液有R502等);④碳氢

化合物(R600a、R290等)。按蒸发温度和冷凝压力分类有:①高温低压制冷刑;②中温中压制冷剂;⑦低温高压制冷剂。按可燃性和毒性分类,分为不可燃、可燃、易燃、低毒、高毒等组合类别。 6.<何为CFC类物质?为何要限制和禁用CFC类物质?> 6.答CFC类物质就是不合氢的氟利昂。 CFC类物质对大气中臭氧和地球高空的具氧层有严重的破坏作用,会导致地球表面的紫外线外线辐射强度增加,破坏人体免疫系统,还会导致大气温度升高,加剧温室效应。因此,减少和禁止CFC类物质的使用和生产,已成为国际社会环保的紧迫任务。 7.<载冷剂的作用是什么?对裁冷剂的性质有哪些基本要求?> 7.答载冷剂的作用就是向被间接冷却的物体输送制冷系统产生的冷量。对载冷剂性质的基本要求有:载冷剂的比热容和传热系数要大,粘度和密度要小,凝固点要低,挥发性和腐蚀性要小,无毒无臭,对人体无害,化学性质稳定.价格低廉,易于获得。 8 .<制冷剂节流前过冷对蒸气压缩式制冷循环有何影响?>在实际中可采用哪些方法实现节流前制冷剂的过冷? 8.答节流前制冷剂的过冷将提高单位质量制冷量,而且压缩机的功耗基本不变.因此提高了制冷循环的制冷系数,制冷剂节流前过冷还有利于膨胀阀的稳定工作。在实际中可采用过冷器、回热循环、增加冷却介质的流速和流量等方法实现节流前制冷剂的过冷。 9.<吸气过热对蒸气压缩式制冷循环有何影响?> 9.答吸气过热可提高单位质量制冷量(无效过热除外),同时单位压缩功也将增加,对过热有利的制冷剂(如R12、R502等)的制冷系数将提高,而对过热无利

常用制冷剂种类及特性

说明 制冷剂又称制冷工质, 1987 HCFC 制冷剂的要求 热力学的要求 在大气压力下, 要求制冷剂在常温下的冷凝压力 对于大型活塞式压缩机来说,制冷剂的单位容积制冷量 制冷剂的临界温度要高些、冷凝温度要低些。临界温度的高低确定了制冷剂在

凝固温度是制冷剂使用范围的下限,冷凝温度越低制冷剂的适用范围愈大。 物理化学的要求 制冷剂的粘度应尽可能小,以减少管道流动阻力、提换热设备的传热强度。制冷剂的导热系数应当高,以提高换热设备的效率,减少传热面积。 制冷剂与油的互溶性质:制冷剂溶解于润滑油的性质应从两个方面来分析。如 应具有一定的吸水性, 应具有化学稳定性:不燃烧、不爆炸,使用中不分解,不变质。同时制冷剂本

安全性的要求 由于制冷剂在运行中可能泄漏,故要求工质对人身健康无损害、无毒性、无刺激作用。 制冷剂的分类 在压缩式制冷剂中广泛使用的制冷剂是氨、 无机化合物制冷剂:这类制冷剂使用得比较早,如氨( 氟里昂(卤碳化合物制冷剂):氟里昂是饱和碳氢化合物中全部或部分氢元素饱和碳氢化合物:这类制冷剂中主要有甲烷、乙烷、丙烷、丁烷和环状有机化不饱和碳氢化合物制冷剂:这类制冷剂中主要是乙烯( 共沸混合物制冷剂:这类制冷剂是由两种以上不同制冷剂以一定比例混合而成高温、中温及低温制冷剂:是按制冷剂的标准蒸发温度和常温下冷凝压力来分

氨( 氨( 氨的临界温度较高 纯氨对润滑油无不良影响,但有水分时,会降低冷冻油的润滑作用。 纯氨对钢铁无腐蚀作用,但当氨中含有水分时将腐蚀铜和铜合金(磷青铜除氨的蒸气无色,有强烈的刺激臭味。氨对人体有较大的毒性,当氨液飞溅到皮氨在常温下不易燃烧,但加热至 氟哩昂的特性 氟哩昂是一种透明、无味、无毒、不易燃烧、爆炸和化学性稳定的制冷剂。不同的化学组氟里昂对水的溶解度小,

氟利昂的种类

氟利昂的种类 我们知道氟利昂是在制冷机中完成热力循环的工质。它在低温下吸取被冷却物体的热量,然后在较高温度下转移给冷却水或空气。在蒸气压缩式制冷机中,使用在常温或较低温度下能液化的工质为制冷剂,合肥空调加氟服务中心介绍,常见的有R12.R22.R502 、R123及R134a,由于其他型号的制冷剂已经停用或禁用。在此不做说明。 一、氟利昂R600a(C4H10) 2-甲基丙烷(异丁烷),属于CH类制冷剂A3类物质,充灌量很少时可用作冰箱制冷剂,具有节能、低噪、对大气无破坏的优势,但其易燃、易爆、安全性差。 二、氟利昂R410A 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5)以50%,50%的质量百分比混合而成的非(近)共沸制冷剂,温度滑移较小,发生相变时两组分比例基本保持恒定,物性接近单组分制冷剂。工作压力为普通R22空调的1.6倍左右,制冷(热)效率更高,不破坏臭氧层。另外,采用新冷媒的空调在性能方面也会有一定的提高。R410A是目前为止国际公认的用来替代R22最合适的的冷媒,并在欧美,日本等国家得到普及。 三、氟利昂R407C 是一种新型环保制冷剂,HFC制冷剂,由二氟甲烷R32(CH2F2),五氟乙烷R125(C2HF5),四氟乙烷R134a(C2H2F4)以23%,25%,52%的质量百分比混合而成的非共沸制冷剂,温度滑移较高。 四、氟利昂134a(C2H2F4,R134a) 是一种较新型的制冷剂,HFC制冷剂,其蒸发温度为-26.5℃。它的主要热力学性质与R12相似,不会破坏空气中的臭氧层,是鼓吹的环保冷媒,但会造成温室效应。是比较理想的R12替代制冷剂。 五、氟里昂502(R502)

制冷循环压焓图分析和制冷剂流程图

第二章制冷循环压焓图分析和制冷剂流程图 Copy Right By: Thomas T.S. Wan ( ) Sept. 3, 2009 All Rights Reserved 工业冷冻系统设计从制冷循环压焓(P-H)图分析和制冷剂流程图开始: (1)制冷循环P-H图分析 (P-H Diagram Refrigeration Cycle Analysis)。 使用PH图计算制冷系统的热力学物性可以分析制冷循环的可行性。通过PH图分析,可以很清楚的确定系统设计点的制冷剂流量和运行工况。 (2)制冷剂流程图 (Refrigerant Flow Diagram) 制冷剂流程图给出了系统所用设备,设备间管道走向和尺寸,保温要求;还确定了压降、吸气过热度等等。制冷剂流程图可能非常简易,如果有必要也可以推广到工艺仪表流程图中(P&I D)。 制冷剂流程图是要与P-H图一起阅读。从制冷剂流程图和PH图中可以获悉完整的系统信息。P-H (Pressure-Enthalpy)图分析: R22典型PH(压焓)图如图2-1所示。利用P-H 图可以表达理论制冷循环,如图2-2所示。图2-3为制冷循环图2- 2简化版,但是只体现了与理论制冷循环相关的数据,省略了纵坐标(压力)和横坐标(比焓)。与循环相关的压力和比焓值如PH图所示。 蒸发器- A-B-C对应蒸发温度,B点与C点比焓差为单位质量制冷量。 压缩机- C-D为等熵压缩过程。压缩过程比焓差为H D-H C。压缩过程(绝热过程)也可以用英尺表示为(H D- H C)×778。对于实际压缩,不再遵循绝热过程,而是多变过程,如图2-3中C-D’所示。 冷凝- 冷凝(放热)过程为D-E(实际过程为D’-E)。冷凝器总放热量等于蒸发器吸热量与系统输入功率之和。

制冷器具中制冷剂充注量的计算

制冷器具中制冷剂充注量的计算 作者:时阳发布人:mxlly 发布时间:2006-12-18 10:15:15 浏览次数:217 【关键词】制冷器,制冷剂 【摘要】讨论了制冷器具中制冷剂充注量与制冷量的关系以及系统中各部分制冷剂的状态和数量.提出以计算的方法来确定制冷剂充注量以及单相区、两相区工质数量,并给出了计算公式.采用这一方法可减少充注量优化实验时间,已成功运用于新产品开发. 浏览字体设置:10pt 绝大部分制冷器具中的制冷系统采用毛细管进行节流,此类制冷系统具有结构简单、运转可靠 等优点.但因毛细管属不可调节的节流元件,因此,此类制冷系统中制冷剂充注量对系统性能特别 是制冷量有很大影响. 制冷剂充注量的确定一般以实验方法为主.有些文献介绍了利用经验公式来计算[1],但经验公 式通用性不强,准确程度差.随着制冷系统中各设备数学模型的完善和计算机的广泛应用,制冷器具 中绝大部分设备的设计和优化可在计算机上进行.在新产品开发过程中,制冷剂充注量的确定成了 实验工作量最大的环节,约占全部实验工作量的40%.因此,如能以计算的方法确定充注量,以实验 加以验证,在生产中将有相当大的应用价值. 1 对于以毛细管节流的制冷系统,制冷量与能效比呈正相关关系,因此仅需讨论充注量与制冷量 的关系.这类系统的制冷循环在lg p—h图上的表示如图1.如系统中的制冷剂充注量过少,则不能在 毛细管进口处保持液封,冷凝压力上升后,循环成为1—2—3—5′—6′—7—1.此时毛细管流阻急 剧上升,流量下降,制冷剂又开始在冷凝器聚集,使循环恢复至1—2—3—4—5—6—7—1.但恢复后 流阻下降,液封又被破坏.如此反复振荡,系统不能稳定工作,平均制冷量很小.

相关文档