文档库 最新最全的文档下载
当前位置:文档库 › 实验一_丝素纤维与丝胶蛋白的分离

实验一_丝素纤维与丝胶蛋白的分离

实验一_丝素纤维与丝胶蛋白的分离
实验一_丝素纤维与丝胶蛋白的分离

实验一、丝素纤维与丝胶蛋白的分离

一、实验目的

蚕丝蛋白是一种是生物资源高分子,其降解产物为18种氨基酸和不同分子量的多肽,具有重要的生物功能。蚕丝蛋白也是一种特殊的蛋白质资源,可以作为各种生物材料的前体物质。

蚕丝蛋白主要由70~80%的丝素纤维和20~30%的丝胶蛋白组成。而丝素纤维与丝胶蛋白是有结构性能差异的两类蛋白质,一般根据对热水和化学试剂的不同反应而分别提取加以利用。本实验介绍一种采用热水和碳酸钠分离丝素纤维和丝胶蛋白的方法。

通过实验,了解和掌握分离丝素纤维和丝胶蛋白的方法,为蚕丝蛋白的材料加工和性能检测建立基础。

二、实验原理

在热水中,丝胶蛋白能被热水溶解,而丝素纤维不能被热水溶解,只发生吸水膨润。在稀碳酸钠溶液中,丝胶蛋白被溶解破坏,而丝素纤维不被溶解破坏。利用在热水和稀碳酸钠溶液中的反应,可以将蚕丝蛋白中的丝素纤维和丝胶蛋白进行分离。

三、实验材料

蚕茧(或茧层、废丝)、电子天平、碳酸钠、蒸馏水、烧杯、玻璃棒、纱布、电炉等。

四、实验步骤

1、称取茧层样品

在电子天平上,称取5g 洁净茧层备用。

2、称取碳酸钠试剂

在电子天平上称取两份2.5g 碳酸钠试剂备用。

3、配制0.5%质量浓度的碳酸钠沸水溶液

在500ml 的烧杯中,放入250ml 的蒸馏水,再加入2.5g 碳酸钠试剂,用玻璃棒搅拌使碳酸钠溶解。然后,放在电炉上加热至沸腾。

4、脱胶

将5g 茧层加入到碳酸钠沸水溶液中,煮30min ,其间常用玻璃棒搅拌,然后小心倾去溶液,并用蒸馏水洗涤脱胶丝、拧干,得一次脱胶丝。

再以相同的方法进行第二次脱胶,脱完后仍用蒸馏水洗涤、拧干,得二次脱胶丝(脱胶完全),即获得纯纤维状丝素。

然后,将脱胶丝(纯纤维状丝素)放入烘箱中烘干,计算脱胶率。

%100茧-1 %胶?=层量

原干脱胶丝)率(脱 5、实验报告

通过实验后,写出一份有数据表格的实验报告。

蛋白质的盐析与透析

蛋白质的盐析与透析 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液。 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。 附:胶棉半透膜的制备 市售5%的胶棉液,加入干燥的150mL锥形瓶中,将锥形瓶横斜不断转动,使瓶的内壁和瓶口都均匀沾有胶棉液。倒出多余的胶棉液,然后倒置约1min使乙醚、乙醇不断蒸发,直到干燥。逐步剥离瓶口的薄膜,沿瓶壁薄膜夹缝注入蒸馏水,使薄膜逐步跟瓶壁胶离,轻轻取出,浸入蒸馏水中备用。 如有侵权请联系告知删除,感谢你们的配合!

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蔗糖水解反应 实验报告

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.测定蔗糖水解反应的速率常数和半衰期。 2.了解该反应的反应物浓度与旋光度之间的关系。 3.了解旋光仪的基本原理,幷掌握其正确的操作技术。 (2)实验原理 蔗糖在水中转化成葡萄糖与果糖,其反应方程式为 C12H22O11 + H2O === C6H12O6 + C6H12O6 为使水解反应加速,反应常常以H+为催化剂,故在酸性介质中进行。由于在较稀的蔗糖溶液中,水是大量的,反应达到终点时,虽有部分水分子参加反应,但可认为其没有改变。因此,在一定的酸度下,反应速度只与蔗糖的浓度有关,所有本反应可视为一级反应。该反应的速度方程为: -dt/dc=KC 积分后: ln(C0/C)=Kt 或㏑C=-k t+㏑C。式中,C。为反应开始时蔗糖的浓度;C为时间t时

的蔗糖浓度,K为水解反应的速率常数。 从上式中可以看出,在不同的时间测定反应物的浓度,并以㏑Ct对t作图,可得一条直线,由直线斜率即可求出反应速率常数K。然而反应是不断进行的,要快速分析出某一时刻反应物的浓度比较困难。但根据反应物蔗糖及生成物都具有旋光性,且他们的旋光性不同,可利用体系在反应过程中旋光度的改变来量度反应的进程。 旋光度与浓度呈正比,且溶液的旋光度为各组分的旋光度之和(加和性)。若以α0,αt,α∞分别为时间0,t,∞时溶液的旋光度,则可导出:C0∝(α0-α∞),Ct∝(αt-α∞) 所以可以得出: ㏑(α0-α∞)/(αt-α∞)=k t 即:㏑(αt-α∞)=-k t﹢㏑(α0-α∞) 上式中㏑(αt-α∞)对t作图,从所得直线的斜率即可求得反应速度常数K。 一级反应的半衰期则用下式求取: 2/1t=㏑2/k=0.693/k (3)简述实验所需测定参数及其测定方法: 1、温度设定与准备 (1)将旋光仪电源开启预热10min。 (2)将超级恒温槽的温度调节到25℃。 2、溶液配制与恒温 称取10g蔗糖于烧杯中,加蒸馏水溶解,移至50mL容量瓶定容至刻度,

血液凝固、抗凝系统和纤维蛋白溶解之间的关系

Q:试分析血液凝固、抗凝系统和纤维蛋白溶解之间的关系? 答: 血液自血管流出后,由流动的溶胶状态变为不流动的胶冻状态的过程称为血液凝固。凝血的整个过程可分为三个阶段:1、凝血酶原激活物的形成,即因子X被激活成因子Xa;2、凝血酶原在Xa、Ca2+、V因子的作用下被激活成凝血酶;3、纤维蛋白原在凝血酶的作用下转变为纤维蛋白。 人体内的抗凝系统包括体液抗凝系统和细胞抗凝系统。体液抗凝系统包括丝氨酸蛋白抑制物如抗凝血酶Ⅲ、组织因子途径抑制物即小血管内皮细胞释放的一种糖蛋白、蛋白质C系统以及肝素。细胞抗凝系统即网状内皮系统对凝血因子、组织因子、凝血酶原复合物、可溶性纤维蛋白单体的吞噬。除此之外,正常血管的光滑的内皮和不断流动的血液以及血液中的纤维溶解系统也辅助构成了抗凝系统。 血凝过程中生成的不溶性纤维蛋白,可在一系列水解酶的作用下,发生溶解,变成可溶性的纤维蛋白降解产物。这种纤维蛋白被解液化的过程,称为纤维蛋白溶解,简称纤溶。纤溶系统包括纤溶酶原、纤溶酶、纤溶酶原激活物和纤溶抑制物。纤溶过程可分为两个阶段,即:1、纤溶酶原在其激活物的作用下,激活形成纤溶酶;2、纤维蛋白在纤溶酶的作用下发生降解。 血液凝固、抗凝系统、纤溶系统三者相互对立而统一,共同为机体维持一个相对稳定的平衡状态。生理状态下,有少量纤维蛋白形成并覆盖于血管内膜上,参与维持血管的正常通透性,同时抗凝系统使其不易造成凝血和形成血栓,纤溶系统又将其水解,使凝血与纤溶处于动态平衡中,机体既不易出血,又无血栓形成。当血管受损,一方面要求迅速凝血形成止血栓,以避免血液的流失;另一方面抗凝系统要使凝血反应局限在损伤部位,以保证全身血管内的液体状态。当组织损伤所形成的止血栓在完成使命之后,将由纤溶系统逐步溶解,以恢复血管的畅通,也有利于受损组织的再生和修复。若纤溶系统活动亢进,可因止血栓的提前溶解而有新的出血的倾向;如果纤溶系统活动低下,则不利于血管的再通,并可加重血栓。因此这三者共同作用于机体,各自行驶正常的功能,对维持机体正常的生理状态起着十分重要的作用。

蔗糖水解反应实验报告

蔗糖水解反应实验报告 一、实验目的 1、了解蔗糖水解反应体系中各物质浓度与旋光度之间的关系。 2、测定蔗糖水解反应的速率常数和半衰期。 3、了解旋光仪的基本原理,并掌握其正确的操作技术。 二、实验原理 蔗糖在水中转化成葡萄糖与果糖,其反应为: C12H22O11 + H2OC6H12O6 + C6H12O6 (蔗糖) (葡萄糖) (果糖) 它属于二级反应,在纯水中此反应的速率极慢,通常需要在H+离子催化作用下进行。由于反应时水大量存在,尽管有部分水分子参与反应,仍可近似地认为整个反应过程中水的浓度是恒定的,而且H+是催化剂,其浓度也保持不变。因此蔗糖转化反应可看作为一级反应。 一级反应的速率方程可由下式表示: — 式中c为时间t时的反应物浓度,k为反应速率常数。 积分可得: Inc=-kt + Inc0 c0为反应开始时反应物浓度。 一级反应的半衰期为: t1/2= 从上式中我们不难看出,在不同时间测定反应物的相应浓度,是可以求出反应速率常数k的。然而反应是在不断进行的,要快速分析出反应物的浓度是困难的。但是,蔗糖及其转化产物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应进程。 测量物质旋光度所用的仪器称为旋光仪。溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质,溶液浓度,样品管长度及温度等均有关系。当其它条件均固定时,旋光度α与反应物浓度c呈线性关系,即 α=Kc 式中比例常数K与物质旋光能力,溶剂性质,样品管长度,温度等有关。

物质的旋光能力用比旋光度来度量,比旋光度用下式表示: 式中“20”表示实验时温度为20℃,D是指用纳灯光源D线的波长(即589毫微米),α为测得的旋光度,l为样品管长度(dm),c A为浓度(g/100mL)。 作为反应物的蔗糖是右旋性物质,其比旋光度=66.6°;生成物中葡萄糖也是右旋性物质,其比旋光度=52.5°,但果糖是左旋性物质,其比旋光度=-91.9°。由于生成物中果糖的左旋性比葡萄糖右旋性大,所以生成物呈左旋性质。因此随着反应的进行,体系的右旋角不断减小,反应至某一瞬间,体系的旋光度可恰好等于零,而后就变成左旋,直至蔗糖完全转化,这时左旋角达到最大值α∞。 设最初系统的旋光度为 α0=K反c A,0(t=0,蔗糖尚未水 解)(1) 最终系统的旋光度为 α∞=K生c A,0(t=∞,蔗糖已完全水 解)(2) 当时间为t时,蔗糖浓度为c A,此时旋光度为αt αt= K反c A+ K生(c A,0-c A) (3) 联立(1)、(2)、(3)式可得: c A,0==K′(α0-α∞) (4) c A== K′(αt-α∞) (5) 将(4)、(5)两式代入速率方程即得: ln(αt-α∞)=-kt+ln(α0-α∞)我们以In(αt-α∞)对t作图可得一直线,从直线的斜率可求得反应速率常数k,进一步也可求算出t1/2。 三、仪器与试剂 1、仪器:旋光仪、秒表、恒温水浴一套、移液管(50ml)、磨口锥形瓶(100ml)、烧杯(100ml)、台秤、洗耳球。 2、药品:蔗糖(AR)、盐酸(3mol/L,AR)。 四、旋光仪原理 光路:起偏镜——石英条——样品管——检偏镜——刻度盘——望

凝血过程和纤溶系统

小血管损伤后血液将从血管流出,但在正常人,数分钟后出血将自行停止,称为生理止血。用一个小撞针或注射针刺破耳垂或指尖使血液流出,然后测定出血延续的时间,这一段时间称为出血时间(bl eeding time)。出血时间的长短可以反映生理止血功能的状态。正常出血时间为1-3分钟。血小板减少,出血时间即相应延长,这说明血小板在生理止血过程中有重要作用;但是血浆中一些蛋白质因子所完成的血液凝固过程也十分重要。凝血有缺陷时常可出血不止。 生理止血过程包括三部分功能活动。首先是小血管于受伤后立即收缩,若破损不大即可使血管封闭;主要是由损伤刺激引起的局部缩血管反应,但持续时间很短。其次,更重要的是血管内膜损伤,内膜下组织暴露,可以激活血小板和血浆中的凝血系统;由于血管收缩使血流暂停或减缓,有利于激活的血小板粘附于内膜下组织并聚集成团,成为一个松软的止血栓以填塞伤口。接着,在局部又迅速出现血凝块,即血浆中可溶的纤维蛋白源转变成不溶的纤维蛋白分子多聚体,并形成了由血纤维与血小板一道构成的牢固的止血栓,有效地制止了出血。与此同时,血浆中也出现了生理的抗凝血活动与纤维蛋白溶解活性,以防止血凝块不断增大和凝血过程漫延到这一局部以外。显然,生理止血主要由血小板和某些血浆成分共同完成。 一、血凝、抗凝与纤维蛋白溶解 血液离开血管数分钟后,血液就由流动的溶胶状态变成不能流动的胶冻状凝块,这一过程称为血液凝固(blood coagulation)或血凝。

在凝血过程中,血浆中的纤维蛋白源转变为不溶的血纤维。血纤维交织成网,将很多血细胞网罗在内,形成血凝块。血液凝固后1-2小时,血凝块又发生回缩,并释出淡黄色的液体,称为血清。血清与血浆的区别,在于前者缺乏纤维蛋白原和少量参与血凝的其他血浆蛋白质,但又增添了少量血凝时由血小板释放出来的物质。 血浆内具备了发生凝血的各种物质,所以将血液抽出放置于玻璃管内即可凝血。血浆内又有防止血液凝固的物质,称为抗凝物质(a nticoagulant)。血液在血管内能保持流动,除其他原因外,抗凝物质起了重要的作用。血管内又存在一些物质可使血纤维再分解,这些物质构成纤维蛋白溶解系统(简称纤溶系统)(fibrinloytic system)。 在生理止血中,血凝、抗凝与纤维蛋白溶解相互配合,既有效地防止了失血,又保持了血管内血流畅通。 (一)血液凝固 凝血因子血浆与组织中直接参与凝血的物质,统称为凝血因子(b lood clotting factors),其中已按国际命名法用罗马数字编了号的有12种(表3-4)。此外,还有前激肽释放酶、高分子激肽原以及来自血小板的磷脂等直接参与凝血过程。除因子Ⅳ与磷脂外,其余已知的凝血因子都是蛋白质,而且因子Ⅱ、Ⅶ、Ⅸ、Ⅹ、Ⅺ、Ⅻ以及前激肽释放酶都是蛋白酶。这些蛋白酶都属于内切酶,即每一种酶只能水解某两种氨基酸所形成的肽键。因而不能将某一知肽链分解成很多氨基

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

盐类的水解实验报告

实验名称:盐类的水解 一、实验目的 1、掌握盐的分类与其相应溶液的酸碱性的关系 2、练习PH试纸 PH计、酸碱指示剂的使用方法。 3、体验“提出问题—作出假设—实验探究—得出结论”的科学探究方法。 二、实验用品 PH试纸 PH计、酸碱指示剂、玻璃棒、试管、烧杯、蒸馏水、酒精灯,Na 2CO 3 NH 4 Cl Al 2 (SO 4 ) 3 CH 3COONa NaCl KNO 3 Fe 2 (SO 4 ) 3 H 2 SO 4 溶液 实验步 骤 现象结论或反应方程式 1、认识PH计 2、选择合适的实验方法测定几种溶液的酸碱性,并将结果记录在右表中。 3、根据上述实验事实,归纳盐的类型与盐溶液的酸碱性之间的关系,并试着从电离平衡的角度加以解释。溶 液 Na 2 CO 3 CH 3 COON a NaC l KNO 3 NH 4 C l Al 2 (SO 4 ) 3 酸 碱 性 盐 的 类 型 实验步骤现象结论或反应方程式

三、问题和讨论: 1、教材上选取的六种盐具有代表性,分别代表了强 酸强碱盐,强碱弱酸盐,强酸弱碱盐;同时六种盐的酸根和阳离子都是中学阶段常见的,便于学生理解。 2、如果条件允许各种类型的盐可以相应的增加几种,增加实验的可信度,让学生理解信服。 3、切忌用自来水配制溶液,因为自来水显酸性,应该用蒸馏水配制。 4、在小烧杯中加入20mL 0.1 mol·L -1 FeCl 3 溶液,用PH 计测 量该溶液的PH 。 5、在另一只小烧杯中加入5mL 0.1 mol·L -1 FeCl 3 溶液,加水稀释到50 mL ,用PH 计测量该溶液的PH 。 6、 在A.B.C 三支试管中加入等体积0.1 mol·L -1 Fe 2(SO 4) 3溶液。 将A 试管在酒精灯上加热到溶液沸腾,向B 试管中加3滴6 mol·L -1 H 2SO 4溶液。 观察A 、B 试管中溶液的颜色,并和C 试管中溶液颜色比较。 用化学平衡移动的原理解释上述实验现象

蛋白质的盐析与透析

蛋白质的分离纯化 一、实验目的 1.了解蛋白质的分离纯化方法 2.掌握蛋白质的盐析及透析方法 二、实验原理 在蛋白质溶液中加入一定浓度的中性盐,蛋白质即从溶液中沉淀析出,这种作用称为盐析。盐析法常用的盐类有硫酸铵、硫酸钠等。 蛋白质用盐析法沉淀分离后,需脱盐才能获得纯品,脱盐最常用的方法为透析法。蛋白质在溶液中因其胶体质点直径较大,不能透过半透膜,而无机盐及其它低分子物质可以透过,故利用透析法可以把经盐析法所得的蛋白质提纯,即把蛋白质溶液装入透析袋内,将袋口用线扎紧,然后把它放进蒸馏水或缓冲液中,蛋白质分子量大,不能透过透析袋而被保留在袋内,通过不断更换袋外蒸馏水或缓冲液,直至袋内盐分透析完为止。透析常需较长时间,宜在低温下进行。 三、实验材料和试剂 10%鸡蛋白溶液,含鸡蛋清的氯化钠蛋白溶液,饱和硫酸铵溶液,硫酸铵晶体,1%硝酸银溶液,双缩脲试剂 四、实验步骤 (一)蛋白质盐析 取10%鸡蛋白溶液5ml于试管中,加入等量饱和硫酸铵溶液,微微摇动试管,使溶液混合后静置数分钟,蛋白即析出,如无沉淀可再加少许饱和硫酸铵溶液,观察蛋白质的析出; 取少量沉淀混合物,加水稀释,观察沉淀是否会再溶解。 (二)蛋白质的透析 注入含鸡蛋清的氯化钠蛋白溶液5ml于透析袋中,将袋的开口端用线扎紧,然后悬挂在盛有蒸馏水的烧杯中,使其开口端位于水面之上。 经过10分钟后,自烧杯中取出1ml溶液于试管中,加1%硝酸银溶液一滴,如有白色氯化银沉淀生成,即证明蒸馏水中有Cl-存在。 再自烧杯中取出1ml溶液于另一试管中,加入1ml 10%的氢氧化钠溶液,然后滴加1-2滴1%的硫酸铜溶液,观察有无蓝紫色出现。 每隔20分钟更换蒸馏水一次,经过数小时,则可观察到透析袋内出现轻微混浊,此即为蛋白质沉淀。继续透析至蒸馏水中不再生成氯化银沉淀为止。 实验报告记录透析完毕所需的时间。

纤维蛋白原

纤维蛋白原一种由肝脏合成的具有凝血功能的蛋白质。纤维蛋白是在凝血过程中,凝血酶切除血纤蛋白原中的血纤肽A和B而生成的单体蛋白质。简单地说,就是一种与凝血有关的蛋白质,即凝血因子。 适应症用于先天性低纤维蛋白原血症、原发性和继发性纤溶引起的低纤缩蛋白原血症。用量用法静滴,60滴/分钟,视病情而定。 注意事项 偶有过敏反应。仅供静脉输注,速度宜慢,快速过量输入可发生血管内凝血。反复多次输注可产生抗纤维蛋白原抗体,少数人可形成血栓。可成为传播传染性肝炎的媒介。本品一旦被溶解后,应立即使用。溶解后应为澄清并略带乳光的溶液,允许有微量细小的蛋白颗粒存在,输注时应使用带有过滤网的输血器。血栓静脉炎、动脉血栓形成、心肌梗死、心功能不全者忌用。 规格 1.0/瓶,1.5/瓶。 纤维蛋白原(xianweidanbaiyuan)一种由肝脏合成的具有凝血功能的蛋白质,是纤维蛋白的前体。分子量340,000,半衰期4~6日。血浆中参考值2~4克/升。纤维蛋白原由α、β、γ三对不同多肽链所组成,多肽链间以二硫键相连。在凝血酶作用下,α链与β链分别释放出A肽与B肽,生成纤维蛋白单体。在此过程中,由于释放了酸性多肽,负电性降低,单体易于聚合成纤维蛋白多聚体。但此时单体之间借氢键与疏水键相连,尚可溶于稀酸和尿素溶液中。进一步在Ca+2与活化的ⅩⅢ因子作用下,单体之间以共价键相连,则变成稳定的不溶性纤维蛋白凝块,完成凝血过程。肝功能严重障碍或先天性缺乏,均可使血浆纤维蛋白原浓度下降,严重时可有出血倾向 进一步研究显示,纤维蛋白原与一种叫β3黏合素的受体结合,启动神经细胞上的表皮

生长因子受体,后者会抑制神经轴突的生长。 这项研究显示脊髓受伤后血液的渗透会妨碍神经再生,揭示了血液与中枢神经系统损伤在分子水平上的联系。如果能找到方法阻止纤维蛋白原启动神经细胞受体,可望促进脊髓的修复,缓解脊髓受伤导致的瘫痪症状。纤维蛋白原发挥凝血功能时,结合的受体蛋白质与此不同,因此有关疗法并不会妨碍它发挥正常凝血作用。 临床意义 1.纤维蛋白原与肝脏疾病纤维蛋白原系肝脏合成,主要分布在血浆,亦存在于血小板和巨核细胞。正常血浆浓度为~L,因此当肝脏严重受损,使肝脏合成纤维蛋白原功能发生障碍,则血浆中纤维蛋白原浓度降低。纤维蛋白原是肝脏合成的一种血浆糖蛋白.可参与血栓及冠状动脉的形成和发展,是反映血栓状态一个指标,也是急性冠状动脉事件的独立预报因子之一。纤维蛋白原升高提示机体纤溶活性降低,促血栓形成。 2.纤维蛋白原与肾病综合征 ( NS) NS患者的凝血因子改变,以纤维蛋白原水平增高最为明显。纤维蛋白原水平增高可达10g/L,这是由于合成增加的结果,这种增高与其从尿中丢失的量成比例,但纤维蛋白原的分解代谢率则正常。NS患者的纤维蛋白原和胆固醇水平有显着相关性,而且两者与血清白蛋白水平呈负相关 3.纤维蛋白原与粥样硬化纤维蛋白原和纤维素与粥样斑块形成的关系极为密切。已知纤维蛋白溶解机制受到多种因素影响,例如吸烟、糖尿病,尤其是高血清甘油三酯都能引起血浆纤维酶原激活物抑制剂升高,从而降低了纤溶酶原的合成。血液粘稠度比较高,这些均有利于纤维素的形成。纤维蛋白原是一种急性时相蛋白,作为凝血因子I由血液进入动脉壁内,在凝血酶作用下转变为纤维蛋白单体继发交联为纤维蛋白,可直接破坏内皮细胞吸附在红细胞表面,使动脉血栓发生率增加,并促进粥样斑快进展。另外血浆纤维蛋白原可沉积于血管壁,加速动脉粥样硬化,人们已发现动脉粥样硬化的斑块中纤维蛋白凝聚物的量组疾病纤维蛋白原含量均增高,并都具有血液粘度增高.动脉粥样硬化甚者阻塞的特征. 4.纤维蛋白原与心脑血管疾病对急性缺血综合征中血栓的研究表明,血浆纤维蛋白原水平是独立的危险因素,有冠状动脉阻塞病的患者血浆中纤维蛋白原水平较高,心肌梗死的范围也与纤维蛋白原增加程度密切相关。有不稳定心绞痛的病人,在其发生心肌梗死之前,往往有血浆纤维蛋白原水平升高现象。在心肌梗死病程中,再梗死多发生在纤维蛋白原水平超过7g/L的患者。 5.纤维蛋白原与血液流变学发现纤维蛋白原与全血粘度、血浆粘度、血沉及血小板聚集之间呈显着正相关,提示血浆纤维蛋白原含量升高,可使血液粘度增高.红细咆聚集增高,血小板聚集增高,从而使血液处于高凝状态促进血栓形成。血浆纤维蛋白原含量升高因其

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

纤维素的水解实验报告

纤维素的水解 一、实验目的 1. 掌握纤维素水解的原理,理解运用银镜实验和新制的氢氧化铜检验醛基的原理。 2. 掌握纤维素水解实验的操作技能和演示方法。 二、实验原理 1.纤维素的水解 纤维素在一定温度和酸性催化剂条件下,发生水解,最终生成葡萄糖: (C6H10O5)n+n H2O===n C6H12O6 2.葡萄糖的检验 葡萄糖分子中含有醛基,故具有较强的还原性,在碱性条件下能将新制得的氢氧化铜还原为红色的Cu2O沉淀;能和银氨溶液发生银镜反应。反应方程式分别如下: C6H12O6+2Cu(O H)2△CH2OH(CHOH)4COOH+Cu2O+2H2O C6H12O6+2Ag(NH3)2OH△CH2OH(CHOH)4COONH4+2Ag↓+3NH3+H2O 三、主要仪器与药品 1. 实验仪器及材料 烧杯(50mL,250mL)﹑石棉网﹑三角架﹑试管﹑试管夹﹑酒精灯﹑玻璃棒、滤纸或脱脂棉。 2. 实验药品 浓H2SO4、NaOH、5% NaOH溶液、pH试纸、无水Na2CO3、2% AgNO3溶液、5% CuSO4溶液、2%氨水、蒸馏水。 四、实验操作过程与实验现象 1. 按浓硫酸与水7∶3(体积比)的比例配制H2SO4溶液20mL于50mL的烧杯中。 2. 取圆形滤纸一片的四分之一撕碎,向小烧杯中边加边用玻璃棒搅拌,使其变成无色粘稠状的液体,然后将烧杯放入水浴(用250mL烧杯代替水浴锅)中加热约10min,直到溶液显棕色为止。(溶液显棕色是因为纤维素部分炭化的结果)水解方程为: (C6H10O5)n+n H2O===n C6H12O6 3. 取出小烧杯,冷却后将棕色溶液倾入另一盛有约20mL蒸馏水的烧杯中,用移液管取该溶液1mL注入一大试管中。用固体NaOH中和溶液(加固体NaOH

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

蔗糖水解实验报告

蔗糖水解 一、实验目的 1、用旋光法测定蔗糖在酸存在下的水解速率常数。 2、掌握旋光仪的原理与使用方法。 二、实验原理 蔗糖水溶液在有氢离子存在时将发生水解反应: C12H22O11 (蔗糖)+H2O→C6H12O6 (葡萄糖)+ C6H12O6 (果糖) 蔗糖、葡萄糖、果糖都是旋光性物质,它们的比旋光度为: [α蔗]D=, [α葡]D=, [α果]D= 式中:表示在20℃用钠黄光作光源测得的比旋光度。正值表示右旋,负值表示左旋。由于蔗糖的水解是能进行到底的,并且果糖的左旋远大于葡萄糖的右旋性,因此在反应进程中,将逐渐从右旋变为左旋。当氢离子浓度一定,蔗糖溶液较稀时,蔗糖水解为假一级反应,其速率方程式可写成: (1) 式中:CA0——蔗糖初浓度;CA——反应t时刻蔗糖浓度。 当某物理量与反应物和产物浓度成正比,则可导出用物理量代替浓度的速率方程。 对本实验而言,以旋光度代入(1)式,得一级反应速度方程式:

(2) 以ln(α-α∞)/对t作图,直线斜率即为-k。 通常有两种方法测定α∞。一是将反应液放置48小时以上,让其反应完全后测;一是将反应液在50—60℃水浴中加热半小时以上再冷到实验温度测。前一种方法时间太长,而后一种方法容易产生副反应,使溶液颜色变黄。本实验采用Guggenheim法处理数据,可以不必测α∞。 把在t和t+△(△代表一定的时间间隔)测得的分别用αt 和αt+△表示,则有 (3) (4) (3)式—(4)式: 取对数: (5) 从(5)式可看出,只要△保持不变,右端第一项为常数,从ln(αt-αt+△) 对t作图所得直线的斜率即可求得k。△可选为半衰期的2-3倍,或反应接近完成的时间之半。本实验可取△=30min,每隔5min取一次读数。 仪器与试剂旋光仪全套;25ml容量瓶1个;25ml移液管1支;

盐析法

盐析法综述 摘要:沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。盐析法是其中的一种,盐析法是在中药水提液中,加入无机盐至一定浓度,或达饱和状态,可使某些成分在水中溶解度降低,从而与水溶性大的杂质分离。常作盐析的无机盐有氯化钠、硫酸钠、硫酸镁、硫酸铵等。 关键词:沉淀法;盐析;原理;方法评价;蛋白质盐析 沉淀法 沉淀法是利用沉淀反应,将被测组分转化为难溶物,以沉淀形式从溶液中分离出来,并转化为称量形式,最后称定其重量进行测定的方法。 有机溶剂沉淀法多用于生物小分子、多糖及核酸产品的分离纯化,有时也用于蛋白质沉淀。有机溶剂的沉淀机理是降低水的介电常数,导致具有表面水层的生物大分子脱水,相互聚集,最后析出。等电点沉淀法用于氨基酸、蛋白质及其它两性物质的沉淀。但此法单独应用较少,多与其它方法结合使用。两性电解质分子上的净电荷为零时溶解度最低,不同的两性电解质具有不同的等电点,以此为基础可进行分离。、非离子多聚体沉淀法用于分离生物大分子非离子多聚物是六十年代发展起来的一类重要沉淀剂,最早用于提纯免疫球蛋白、沉淀一些细菌和病毒,近年来逐渐广泛应用于核酸和酶的分离提纯。最常用的是铅盐法,可以用于除去杂质,也可用于沉淀有效成分。沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加人适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。一般来说,所有固体溶质都可以在溶液中加入中性盐而沉淀析出,这一过程叫盐析。在生化制备中,许多物质都可以用盐析法进行沉淀分离,如蛋白质、多肽、多糖、核酸等,其中以蛋白质沉淀最为常见,特别是在粗提阶段。 对沉淀形式的要求 (1)沉淀的溶解度要小,以保证被测组分能沉淀完全。 (2)沉淀要纯净,不应带入沉淀剂和其他杂质。 (3)沉淀易于过滤和洗涤,以便于操作和提高沉淀的纯度。 (4)沉淀易于转化为称量形式。 盐析法 胶体的盐析 胶体的盐析是加盐而使胶粒的溶解度降低,形成沉底析出的

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

蔗糖水解反应实验报告

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:蔗糖水解反应速率常数的测定

一、 实验预习(30分) (1) 实验目的 1.根据物质的光学性质研究蔗糖水解反应,测定其反应率度常数。 2.了解自动旋光仪的基本原理、掌握使用方法。 (2) 实验原理 蔗糖在水中水解成葡萄糖与果糖的反应为: C 12H 22O 11 + H 2O H C 6H 12O 6 +C 6H 12O 6 蔗糖 葡萄糖 果糖 为使水解反应加速,反应常常以H 3O +为催化剂,故在酸性介质中进行。水解反应中,水是大量的,反应达终点时,虽有部分水分子参加反应,但与溶质浓度相比可认为它的浓度没有改变,故此反应可视为一级反应,其动力学方程式为: kc dt dc =- (1) 或 c c t k 0lg 303.2= (2) 式中: c 0 为反应开始时蔗糖的浓度; c 为时间t 时蔗糖的浓度。 当021c c =时,t 可用k t 2ln 2/1=表示,即为反应的半衰期。 上式说明一级反应的半衰期只决定于反应速度常数 k ,而与起始浓度无关,这是一级反应的一个特点。 蔗糖及其水解产物均为旋光物质,当反应进行时,如以一束偏振光通过溶液,则可观察到偏振面的转移。蔗糖是右旋的,水解的混合物中有左旋的,所以偏振面将由右边旋向左边。偏振面的转移角度称之为旋光度,以α表示。因此可利用体系在反应过程中旋光度的改变来量度反应的进程。溶液的旋光度与溶液中所含旋光物质的种类、浓度、液层厚度、光源的波长以及反应时的温度等因素有关。 为了比较各种物质的旋光能力。引入比旋光度 ][α 这一概念,并以下式表示: ][t D ?=c l ?α (3) 式中:t 为实验时的温度;D 为所用光源的波长;α为旋光度;l 为液层厚度(常以10cm 为单位);c 为浓度(常用100 mL 溶液中溶有m 克物质来表示),

相关文档