文档库 最新最全的文档下载
当前位置:文档库 › 高材料复习

高材料复习

高材料复习
高材料复习

第一章

1. 具有满足指定工作条件下使用要求的形态和物理性质的物质称为材料。

2. 材料工艺工程(材料化过程):为适应某种使用目的而对物质体系某种物性、强度、形状所进行的种种操作或加工。

3. 材料可从不同的角度进行分类。按化学组成分类,可分为金属材料,无机材料和有机材料(高分子材料)三类。按状态分类,有气态,液态和固态三类。按作用分类,可分为功能材料和工程材料。

4. 复合材料是指由两种以上组分组成,并且具有与其组成不同的新的性能的多相固体材料

第二章

1. 高分子化合物又称聚合物,是由许多单个高分子(聚合物分子)组成的物质。分子量大于104,分子量小的聚合物称齐聚物。

2. 根据主链结构,可将聚合物分为从碳链,杂链和元素有机高分子三种。

3. 消耗初始自由基的副反应主要有两个,其一是诱导分解,其二是笼蔽效应。

4. 诱导效应:指链自由基向引发剂的转移反应。原来的链自由基或简单自由基在形成稳定分子的同时,生成一个新的自由基。由于无偿的消耗了一个引发剂分子,故使实际引发效率降低。

5. 笼蔽效应:由于初级自由基受溶剂分子包围,限制了自由基的扩散,导致初级自由基的偶合(或岐化)终止,使引发效率f 降低.

6. 当转化率较高时,聚合速率反而大幅度增大,这称之为自动加速效应。自动加速作用由体系黏度引起的也称凝胶效应。自动加速现象是体系黏度增加、活性基被包裹、双基终止困难造成的。

7. K12 = P1,2Q2exp (-e1e2)式中P1和Q2代表自由基M1? 和单体M2的活性,它们与共轭效应有关;e代表自由基和单体的极性,与极性效应有关。

8. Q值大小代表共轭效应,也就是表示单体转变成自由基的容易程度。e值代表极性。吸电子基团,使烯烃双键带正电性,e为正值;带有供电子基团的烯类单体e 为负值。

9. Q值和e值都相近的单体对之间易进行理想共聚;Q值相同,e值正负相反的单体对倾向于进行交替共聚。

10. 聚合实施方法主要有:本体聚合、溶液聚合、悬浮聚合、乳液聚合。逐步聚合的实施方法主要有:熔融聚合、溶液聚合、界面聚合

11. 本体聚合是单体本身在不加溶剂以及其它分散剂的条件下,由引发剂或直接由光热等作用下引发的聚合反应。

12. 溶液聚合是将单体和引发剂溶于适当溶剂中,在溶液状态下进行的聚合反应。

13. 悬浮聚合是通过强力搅拌并在分散剂的作用下,把单体分散成无数的小液珠悬浮于水中由油溶性引发剂引发而进行的聚合反应。

14. 乳液聚合是在乳化剂的作用下并借助于机械搅拌,使单体在水中分散成乳状液,由水溶性引发剂引发而进行的聚合反应。

15. 典型的乳液聚合可分为三个阶段:乳胶粒生成期、恒速期、降速期.

16. 逐步聚合最重要的特征:聚合体系中任何两分子(单体分子或聚合物分子)间都能相互反应生成聚合度更高的聚合物分子。

第三章

1. 聚合物结构包括大分子本身的结构和大分子之间的排列(凝聚态结构)这两方面。

2. 根据大分子链的化学组成,可分为碳链大分子、杂链大分子、元素有机大分子等。根据结构单元的空间排列方式可分为几何异构,结构单元的旋光异构。

3. 聚合物的分子量有两个基本特点,一是分子量大,二是分子量具有多分散性。

4. 在分子内旋转的作用下,大分子链具有很大的柔曲性,可采取各种各种可能的形态,每种形态所对应的院子及键的空间排列称为构象。

5. 聚合物凝聚态结构是指在分子间力作用下大分子相互敛集在一起所形成的组织结构。

6. 聚合物凝聚态结构有两个不同于低分子物凝聚态的明显特点。其一,聚合物晶态总是包含一定量的非晶相,100%结晶的情况是很罕见的。其二,聚合物凝聚态结构不但与大分子链本身的结构有关,而且强烈地依赖于外界条件。

7. 聚合物的非晶态结构是指玻璃态、橡胶态、黏流态(或熔融态)及结晶高聚物非晶区的结构。

8. 聚合物晶态结构模型基本模式有两种,一种是缨状胶束模型,另一种是折叠链模型。

聚合物晶体结构可归纳为以下三种结构的组合,分子链是无规则团的非晶态结构;分子链折叠排列、横向有序的片晶;伸直平行取向的伸直链晶体。

9. 聚合物的分子运动特点:多重性,明显的松弛性,时温等效性。

10. 聚合物存在晶体和非晶态(无定形)两种相态,非晶态在热力学上可视为液相.

11. 非晶态聚合物,在玻璃化温度以下时处于玻璃态。玻璃态聚合物受热时,经高弹态最后转化成黏流态,开始转变为黏流态的温度称为流动温度或黏流温度。这三种状态称为力学三态。

12. 玻璃化温度是非晶态塑料的使用的上限温度,熔点则是结晶聚合物使用的上限温度。对于橡胶,玻璃化温度则是其使用的下限温度,塑料的下限温度是脆化温度。

13. 聚合物熔体流动特点:粘度大。流动性差;聚合物熔体是假塑性流体,黏度随剪切速率的增加而下降;聚合物熔体流动时伴有高弹形变,即表现弹性行为。

14. 熔融指数定义为,在恒定压力跟温度下,单位时间内流过特定毛细管聚合物的质量。

15. 弹性模量,常简称为模量,是单位应变所需应力的大小,是材料刚性的表征。模量的倒数称为柔量,是材料容易形变程度的一种表征。

16. 橡胶材料(高弹性)的特点:弹性模量小、形变大;弹性模量与绝对温度成正比,而一般固体的模量随温度的提高而下降;形变时有热效应,伸长时放热,回缩时吸热;才在一定条件下,高弹形变表现明显的松弛现象。

17. 高弹形变的本质:熵弹性

18. 静态粘弹性是指在固定的应力(或应变)下形变(或应力)随时间延长而发展的性质。典型的表现是蠕变力跟应力松弛。

19. 在一定温度、一定应力作用下,材料的形变随时间的延长而增加的的现象称为蠕变。

20. 在温度、应变恒定的条件下,材料的内应力随时间延长而逐渐减小的现象称为应力松弛。

21. 动态粘弹性是指在应力周期性变化作用下聚合物的力学行为,也称为动态力学性质。

22. 两曲线相交时的临界温度Tb称为聚合物的脆化温度,脆化温度是塑料使用的下限温度。

23. 屈服过程包含两种可能的过程,即剪切形变过程和银纹化过程。

24. 用来隔开电容器极板的物质叫电介质,这时的电容与极板间为真空时的电容之比叫该电介质的介电常数。

25. 电介质在交变电场作用下,由于发热而消耗的能量称为节点损耗。当电场强度超过某一临界值时,电介质就丧失其绝缘性能,这称为电击穿。发生电击穿的电压称为击穿电压。击穿电压与击穿处介质厚度之比称为击穿电场强度,简称介电强度。

26. 两种物体互相接触和摩擦时,会有电子的转移而使一个物体带正电,另一个带负电,这种现象称为静电现象。

27. 液体分子或气体分子可以从聚合物膜的一侧扩散到浓度较低的另一侧,这种现象称为渗透或渗析

28. 高分子的化学反应的特征:①在化学反应中,扩散因素常常成为反应速度的决定步骤,官能团的反应能力受聚合物相态(晶相或非晶相)、大分子的形态等因素影响很大。②分子链上相邻官能团对化学反应有很大影响。分子链上相邻的官能团,由于静电作用、空间位阻

等因素,可改变官能团反应能力,有时使反应不能进行完全。

29. 聚合物及其制品在使用或贮存过程中由于环境(光、热、氧、潮湿、应力、化学侵蚀等)的影响,性能(强度、弹性、硬度、颜色等)逐渐变坏的现象称为老化。

30. 氧指数:在规定的条件下,试样在氧气和氮气的混合气流中维持稳定燃烧所需的最低氧气浓度。

31. 阻燃剂:指能保护材料不着火或使火焰难以蔓延的药剂。吸热效应、覆盖效应、稀释效应、转移效应、抑制效应、协同效应。

第四章

1. 塑料:是以聚合物为主要成分,在一定条件(温度、压力等)下可塑成一定形状并且在常温下保持其形状不变的材料.

2. 按组分数目分:单一组分塑料、多组分塑料;按受热后形态性能表现的不同分:热塑性

塑料、热固性塑料;按使用范围分:通用塑料、工程塑料

3. 塑料的成型加工方法:挤出、注射、压延、吹塑盒模压。

4. 工程塑料的主要品种有聚酰胺、聚碳酸酯、聚甲醛、改性聚苯醚、聚酯、聚砜、聚苯硫醚等8种。

5. 橡胶,是有机高分子弹性化合物,在很宽的温度(-50~1500C)范围内具有优异的弹性,又称高弹体。具有独特的无可比拟的高弹性,同时具有良好的疲劳强度、电绝缘性、耐化学腐蚀性以及耐磨性等。

6. 橡胶结构特征:大分子链具有足够的柔顺性;在使用条件下不结晶或结晶度很小;在使用条件下无分子间相对滑动.

7. 产量最大的几种:丁苯橡胶、顺丁橡胶、丁基橡胶、异戊橡胶、乙丙橡胶、氯丁橡胶和丁腈橡胶。

8. 合成纤维最主要的是聚酯纤维(涤纶),聚酯胺纤维(锦纶)和聚丙烯晴纤维(腈纶)三大类。

9. 最主要的碳纤维:聚乙烯醇缩甲醛(维纶)、聚丙烯(丙纶)、聚氯乙烯(氯纶)

10. 胶粘剂又称粘合剂,是一种能把各种材料紧密地结合在一起的物质。借助胶粘剂将各种物件连接起来的技术称为胶接(粘接、粘合)技术。

11. 按胶接强度特性分类可分为结构型胶粘剂、非结构型胶粘剂及次结构型胶粘剂三种类型结构型胶粘剂具有足够高的胶接强度,胶接接头可经受较苛刻的条件,因而此类胶粘剂可用以胶接结构件。非结构型胶粘剂的胶接强度较低,主要用于非结构部件的胶接。次结构型胶粘剂则介于二者之间。

12. 显而易见,要达到良好的胶接,必须具备两个条件:第一、胶粘剂要能很好地润湿被粘物表面;第二、胶粘剂与被粘物之间要有较强的相互结合力,这种结合力的来源和本质就是胶接机理。

13. 环氧胶是当前应用最广泛的胶种之一。环氧胶有很强的粘合力,故有“万能胶”之称。

14. 涂料是指涂布在物体表面而形成具有保护和装饰作用膜层的材料,旧称“油漆”。

15. 成膜物质一般为聚合物或能形成聚合物的物质,它是涂料的基本成分,决定了涂料的基本性能。

第五章

1. 某些物质的受热熔融或被溶解后,虽然失去了固态物质的大部分特性,外观呈液态物质的流动性,但可能仍然保留着晶态物质分子的有序排列,从而在物理性质上表现为各向异性,形成一种兼有晶体和液体部分性质的过渡中间相态,这种中间相态被称为介晶态,液晶态为一种主要的介晶态。其主要特征是其聚集状态在一定程度上既类似于晶体,分子呈有序排列;又类似于液体,有一定的流动性。

2. 根据分子排列的形式和有序性的不同,液晶有四种结构类型:近晶型、向列型、胆甾型

和碟型。根据液晶相形成的条件不同,液晶物质可分为热致型液晶和溶致型液晶两种类型。

3. 根据液晶态的年度-温度之间的关系,已创造出新的纺丝技术——液晶纺丝,解决了通常高浓度必然伴随高黏度的问题,获得高强度、高模量、综合性能好的纤维。

4. 按交换基团性质的不同,可将离子交换树脂分为阳离子交换树脂、阴离子交换树脂和特殊的离子交换树脂三大类。

5. 活性碳纤维孔结构特点:①微孔占孔体积的90%以上,孔径小而且分布窄,故吸附分离性能好;②微孔直接分布于纤维表面,吸附和解析的途径短,因而具有很高的吸附和解析速度。

6. 感光性高分子又称为感光性树脂,是具有感光性质的高分子物质。高分子的感光现象是指高分子吸收了光能量后,分子内产生化学的或结构的变化。

第六章

1.聚合物共混体是指两种或者两种以上聚合物通过物理共混的或化学共混的方法混合而成的宏观上均匀的固体高分子材料。

2. 聚合物共混物特征:存在两相结构。

3. 聚合物共混物有许多类型,但一般是指塑料与塑料的共混物以及在塑料中掺混橡胶的共混物,在工业上常称之为高分子合金或塑料合金。对于在塑料中掺混少量橡胶的共混物,由于在抗冲性能上获得很大提高,故亦称为橡胶增韧塑料。

4.聚合物优点:

(1)综合均衡各聚合物组分的性能,取长补短,消除各单一聚合物组分性能上的弱点,获得综合性能优异的高分子材料。

(2)使用少量的某一聚合物可以作为另一聚合物的改性剂,改性效果显著。

(3)通过共混可改善某些聚合物的加工性能。

(4)聚合物共混可满足某些特殊性能的需要,制备一系列具有崭新性能的高分子材料。

5. 物理共混法包括干粉共混、熔体共混、溶液共混及乳液共混等方法。

6. 互穿网络聚合物,简记为IPNs,是用化学方法将两种或两种以上的聚合物相互贯穿成交织网络状的一类新型复相聚合物共混材料,IPNs技术是制备聚合物共混物的新方法。

7. IPNs有分步型、同步型、互穿网络弹性体及胶乳-IPNs等不同类型,它们是用不同的合成方法制备的。

8. 增容作用有两方面涵义:一是使聚合物之间易于相互分散以得到宏观上均匀的共混产物;另一是改善聚合物之间相界面的性能,增加相间的粘合力,从而使共混物具有长期稳定的优良性能。产生增容作用的方法有:加入增容剂(亦称增混剂),加入大分子共溶剂。在聚合物组分之间引入氢键或离子键以及形成互穿网络聚合物等。

9. 由两种聚合物构成的两相聚合物共混物,按照相的连续性可分成三种基本类型:单相连续结构,即一个相是连续的而另一个相是分散的;两相互锁或交错结构以及相互贯穿的两相连续结构。

10. 橡胶增韧塑料的特点是具有很高的抗冲强度,常比基体树脂的抗冲强度高5~10倍乃至数十倍。

11. 橡胶颗粒不但能引发银纹,而且更主要的是还能支化银纹。

12. 银纹和剪切带的相互作用有三种可能方式

(1)银纹遇上已存在的剪切带而得以愈合、终止

(2)在应力高度集中的银纹尖端引发新的剪切带,所产生的剪切带反过来又终止银纹的发展。

(3)剪切带使银纹的引发及增长速率下降并改变银纹动力学模式。

13. 影响抗冲强度的因素:树脂基体的影响,橡胶项结构和相间结合力。

14非弹性体对塑料增韧特点:脆性聚合物粒子的用量有一个最佳范围。在此范围内,可获得良好的增韧效果,在此范围外,抗冲性能会急剧下降。以非弹性体对塑料增韧在于提高抗

冲强度的同时并不降低材料的刚性。

脆性聚合物一般具有良好的加工流动性。因而非弹性体增韧体系也可使加工流动性得到改善

第七章

1. 增强剂的主要品种:玻璃纤维,碳纤维,硼纤维及陶瓷纤维,芳纶纤维,其他纤维.

2. 界面作用机理是指界面发挥作用的微观机理。偶联剂之类的表面处理剂对界面作用起着关键性的影响。所以界面作用机理,有人也称为偶联剂作用机理。(1)化学键理论(2)物理吸附理论(3)可变层理论和抑制层理论(4)减弱界面局都应力作用理论

3. 纳米微粒:纳米效应,小尺寸效应和表面效应,量子尺寸效应,宏观量子隧道效应

4. 聚合物/蒙脱石纳米复合材料和聚合物粘土/纳米复合材料常指同一个意思,都可以记为PLSNs

5. 选择插层剂时应注意以下原则:①应与聚合物或其单体有较大的相互作用,相容性好,有利于聚合物与粘土之间的亲合;②价廉易得。有时,单体亦可作为插层剂。

6.脱土的有机改性主要有以下几种方法:离子交换法,硅烷偶联剂法,冠醚改性法冠醚能与碱金属、碱土金属、镧系金属离子形成稳定的络合物,单体或活性有机物插层剂法,引发剂或催化剂插层法,二次插层法。

部分缩写:

ABS 丙烯晴-丁二烯-苯乙烯三元共聚物

PV A 聚乙烯醇

PV Ac 聚醋酸乙烯醇

PVC 聚氯乙烯

LDPE 低密度聚乙烯

PA 聚酰胺

PAA 聚乙烯酸

PAN 聚丙烯晴

PE 聚乙烯

PMMA 聚甲基丙烯酸甲酯

PP 聚丙烯

PS 聚苯乙烯

PVF 聚氟乙烯

PVF 聚乙烯醇缩甲酯

HIPS 高抗冲聚苯乙烯

高分子材料成型加工考试重点复习内容

第二章高分子材料学 1、热固性塑料:未成型前受热软化,熔融可塑制成一定形状,在热或固化剂作用下,一次硬化成型。受热不熔融,达到一定温度分解破坏,不能反复加工。在溶剂中不溶。化学结构是由线型分子变为体型结构。举例:PF、UF、MF 2、热塑性塑料:受热软化、熔融、塑制成一定形状,冷却后固化成型。再次受热,仍可软化、熔融,反复多次加工。在溶剂中可溶。化学结构是线型高分子。举例:PE聚乙烯,PP聚丙烯,PVC聚氯乙烯。 3、通用塑料:是指产量大、用途广、成型性好、价格便宜的塑料。 4、工程塑料:具有较好的力学性能,拉伸强度大于50MPa,冲击强度大于6kJ/m2,长期耐热温度超过100度的、刚性好、蠕变小、自润滑、电绝缘、耐腐蚀可作为结构材料。举例:PA聚酰胺类、ABS、PET、PC 5、缓冷:Tc=Tmax,结晶度提高,球晶大。透明度不好,强度较大。 6、骤冷(淬火):Tc=Tg,有利晶核生成和晶体长大,性能好。透明度一般,结晶度一般,强度一般。

8、二次结晶:是指一次结晶后,在一些残留的非晶区和结晶不完整的部分区域,继续结晶并逐步完善的过程。 9、后结晶:是指聚合物加工过程中一部分来不及结晶的区域,在成型后继续结晶的过程。 第三章添加剂 1、添加剂的分类包括工艺性添加剂(如润滑剂)和功能性添加剂(除润滑剂之外的都是,如稳定剂、填充剂、增塑剂、交联剂) 2、稳定剂:防止或延缓高分子材料的老化,使其保持原有使用性能的添加剂。针对热、氧、光三个引起高分子材料老化的主要因素,可将稳定剂分为热稳定剂、抗氧剂(防老剂)、光稳定剂。 热稳定剂是一类能防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂。主要用于热敏性聚合物(如PVC聚氯乙烯树脂),是生产PVC塑料最重要的添加剂。 抗氧剂是可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质。 光稳定剂是指可有效抑制光致降解物理和化学过程的一类添加剂。 3、热稳定剂分为

导电高分子材料的应用、研究状况及发展趋势(精)

导电高分子材料的应用、研究状况及发展趋势 熊伟 武汉纺织大学化工学院 摘要:与传统导电材料相比较 , 导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键字:导电高分子分类制备现状 Abstract : Compared with conventional conductive materials, conductive polymer material has many unique properties. Conducting polymers can be us ed as radar absorbing materials, electromagnetic shielding materials, antistatic materials. Describes the structure of conductive polymer materials, types and conducting mechanism, synthesis methods, the application of conductive poly mer materials, research status and development trend. Keywords : conductive polymer categories preparation status 1 导电高分子的结构、种类 按照材料结构和制备方法的不同可将导电高分子材料分为两大类 :一类是结构型 (或本征型导电高分子材料,另一类是复合型导电高分子材料 [3]。 结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料。 根据加入基体聚合物中导电成分的不同 , 复合型导电高分子材料可分为两类 :填充复合型导电高分子材料和共混复合型导电高分子材料 [5]。

化学与生活知识点总结.

化学与生活知识点总结 专题一洁净安全的生存环境 第一单元空气质量的改善 一、空气质量报告 (一)、空气质量评价包括:二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物 空气污染指数:根据空气中二氧化硫(SO2)、二氧化氮(NO2)、可吸入颗粒物等污染物的浓度计算出来的数值。首要污染指数即位该地区的空气污染指数 (二)、大气主要污染物及其危害 1、温室效应 (1)原因:①全球化石燃料用量猛增排放出大量的CO2;②乱砍乱伐导致森林面积急剧减少,吸收CO2能力下降。 2、主要危害:(1)冰川熔化,使海平面上升(2)地球上的病虫害增加(3)气候反常,海洋风暴增多(4)土地干旱,沙漠化面积增大。 3、控制温室效应的措施 (1)逐步调整能源结构,开发利用太阳能、风能、核能、地热能、潮汐能等,减少化石燃料的燃烧;(2)进一步植树造林、护林、转化空气中的CO2 2、酸雨 (1)原因:酸性氧化物(SO2、NO2)SO2+H2O H2SO3 2H2SO3+O2==2H2SO4 (2)防止方法:①开发新能源(太阳能、风能、核能等)②减少化石燃料中S的含量

钙基脱硫CaCO3==CaO+CO2 CaO+SO2==CaSO3 2CaSO3+O2==2CaSO4 ③吸收空气中的SO2 ④加强环保教育 3、机动车尾气污染:尾气净化装置2NO+2CO N2+2CO2 4、CO 能和人体的血红蛋白结合使能中毒 5、可吸入颗粒物:静电出尘 6、居室空气污染物:甲醛、苯及其苯的同系物、氡等 危害:甲醛对人体健康的影响(肝功能异常等) 7、白色污染的危害:①破坏土壤结构②降低土壤肥效③污染地下水④危及海洋生物的生存第二单元水资源的合理利用 一、自来水厂净化水的一般步骤 混凝沉降过滤活性碳吸附池除味杀菌消毒 明矾---目的:净水原理:Al3++3H2O Al(OH)3(胶体)+3H+ Al(OH)3(胶体)有吸附性吸附水中杂质沉降 活性碳目的:去除异味。原理:吸附性 液氯目的:杀菌消毒Cl2+H2O HCl+H ClO(强氧化性) 二、污水处理中化学方法及其原理 污水处理常见有物理方法、化学方法、生物方法 1、化学方法中和法氧化还原法沉淀法 (1)中和法适合于处理酸性污水 (2)氧化还原法适合处理油类、氰化物、硫化物等(空气、臭氧、氯气)是常见氧化剂(3)沉淀法适合于处理含重金属离子污水(如加入适量的碱控制废水的PH值) 第三单元生活垃圾的分类处理 无害化处理:焚烧法、卫生填埋法、回收作特殊处理 垃圾处理资源化处理:垃圾产生沼气、废弃塑料回收、废玻璃的回收利用 专题二营养均衡与人体健康 第一单元摄取人体必需的化学元素

高分子材料复习要点

UP 定义不饱和聚酯是由二元酸(饱和二元酸和不饱和二元酸)同二元醇,经过缩聚反应而成的一种线型聚合物,通常以该化合物在烯烃类活性单体(如苯乙烯)中的溶液形式出现。 1.力学性能:分子量--分子量增大,树脂强度硬度、抗弯强度增大。不饱和键的 数目--越多,交联密度越大、刚度增大、耐磨性提高。聚酯分子链结构规整性—越规整,树脂分子排布越有序,有利于提高拉伸强度。 2.耐化学药品性:增加不饱和二元酸的量;提高分子的有序性 3.电性能:脂肪烃的比例增多——电性能提高。提高缩聚反应程度——减少未反 应的羧基含量可提高电性能。 4.UP的广泛应用领域: (1)用量最大的热固性树脂 (2)玻纤增强UP(聚酯玻璃钢)比强度高于铝合金 ①通过手糊成型或喷涂成型制造各类型的船体.②通过袋压成型法制造船体、安全帽、机器外罩等. ③采用真空袋压法生产飞机部件、雷达罩.④采用整体模压成型法生产卫生洁具.(2)非玻纤增强UP:浇注UP:可制成人造玛瑙、等装饰性材料;人造大理石;墙面和地面装饰砖。柔性UP,常用滑石粉、木粉等做填料,制造仿木家具。作为涂层材料 PA 1.聚酰胺(俗称尼龙)是指分子主链上含有酰胺基团(-NHCO-)的高分子化合 物。 2.聚酰胺的前30年是作为合成纤维材料,尼龙(Nylon)的俗称就是来自与此。 尼龙的最早发明商——美国杜邦公司曾宣传:尼龙比蜘蛛丝还细、比钢铁还强。 3.脂肪族聚酰胺是线形高分子材料,由亚甲基链段和极性基团(酰胺基)有规 律交替链接而成。 4.聚酰胺中的氢键结构对其聚集态结构和最终的性能起到了决定性的作用 5.脂肪族PA微观结构与性能的关系——氢键的重要作用、酰胺基团的密度、 亚甲基的奇偶性?

高分子材料复习总结

高分子材料复习总结 1、乳白色半透明的蜡质状,易燃烧,离火后能继续燃烧,密度为0、85~ 1、0g/cm 32、熔层:105℃~137℃、脆化温度(Tb)低于-50℃、最高使用温度100℃,最低使用温度-70℃、3、产量居塑料首位,约占塑料总量的1/ 3、4、分子呈非极性,其吸水性低,小于0、01%,加工前可以不进行干燥、合成:自由基聚合:偶氮类如偶氮二异丁腈(AIBN)、过氧类如过氧化二苯甲酰(BPO)配位聚合:Zieger-Natta 引发体系、茂金属引发体系分类:低密度聚乙烯LDPE0、91~0、94g/cm3高密度聚乙烯HDPE0、94~0、99g/cm3中密度聚乙烯MDPE线性低密度聚乙烯LLDPE超高分子量聚乙烯UHMWPE和茂金属聚乙烯mPE 1、LDPE:高压法、压力150~250Mpa,温度180~300℃,在微量氧的存在下,氧气与乙烯作用可能生成乙烯过氧化氢 (CH2=CHOOH),分解后产生自由基,引发自由基聚合、易产生支链,影响了分子的对称性和空间规整性,结晶度小,密度低、2、HDPE:离子型聚合、分子量高,支链短而少,结晶度大,密度高、采用Ziegler-Natta型引发剂或钼、镍、铬的氧化物、知识点:

1、在HDPE,LDPE和LLDPE中,HDPE的透气性能最好,且对油、脂的阻隔性能也最高、 2、 LLDPE:是乙烯与含量约8%的高级α 烯烃(如1-丁烯、1-己烯和1-辛烯等)的共聚物、3、聚乙烯主链基本是饱和的脂肪烃长链,分子链上有甲基、短的或较长的烷基支链、不同类型的双键、4、在低压法获得的HDPE含有较多的双键,而在低密度聚乙烯中还存在有羰基和醚基、5、结晶性高聚 物,LDPE结晶能力64%,HDPE结晶能力高87%~93%,LLDPE的结晶度略高于LDPE,远低于HDPE、6、高分子量聚乙烯(HMWHDPE)和超高分子量聚乙烯(UHMWPE)仍属高密度聚乙烯,分子结构和普通HDPE 相同,1) 耐磨性能、优于PTFE、MC尼龙、POM等、2) 冲击强度、工程塑料中最高的,远高于ABS、PC和尼龙等材料3) 自润滑性能、摩擦系数极低,与PTFE相当、4) 耐化学腐蚀性能、分子链上不存在可反应的基因,且结晶度较高,具有良好的化学稳定性 7、几种聚乙烯的结构: 8、 PE在空气中会被氧化,在高温下更容易被氧化,因此,在加工过程中应避免与空气接触;或者在PE中加入抗氧剂、9、 PE的结晶能力强,结晶度高,成型收缩率大,一般在 1、0~ 3、5%内,对于HDPE的成型收缩率可达5%、

光至发光材料的研究进展(精)

光至发光材料的研究进展 关键字光至发光材料荧光反光 Keyword photoluminescence material fluorescence listen 摘要;综述了光致发光材料的大致研究进展,阐述了光致发光材料的发光原理,常见的发光材料,并对未来光致发光材料发展趋势作了展望。 Abstract It is summarize the investigation of photoluminescence material. And tell us about the theory of photoluminescence material. And familiar photoluminescence material. Future development aspects of researches and applications about the material are proposed 前言 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂。发光材料分永久性发光材料(放射性辐射激发)和外加能量激发而发光如光激发、电场激发、阴极射线激发、X射线激发等的材料。 光致发光材料又称超余辉的蓄光材料。它是一种性能优良,无需任何电源就能自行发光的材料。 1发展历史 光致发光材料的研究历史非常悠久。最早可追溯到1866 年法国人Sidot 制备的ZnS :Cu 上,它是第一个具有实际应用意义的长余辉蓄光材料。20 世纪初,Lenard 制备出了ZnS :M (M = Cu ,Ag ,Bi ,Mg 等) 发光材料,并研究了荧光衰减曲线,提出了“中心论”。但该类发光材料由于发光亮度不高,寿命短等缺点,人们往其中引入了放射性物质,虽然能解决以上问题,但又会危害人体安全、损害环境,因而人们将目光又投向了其他基质的发光材料领域。1934 年,Haberlandt 在研究天然CaF2 结构时发现,痕量Eu2+ 占据矿石中Ca2+ 的位置时,引起矿石发出蓝光。1964 年, Y2O3 : Eu , Y2O2S : Eu3+发光材料的研制发明,使彩色电视机得到迅速的推广。20 世纪80年代,石春山等对复合氟化物中的光谱特性进行研究,得出Eu2+ 的f - f 跃迁出现的若干判据,推进了我国发光材料的发展。20 世纪80 年代以后,一些制备发光材料的新工艺及一系列超长余辉发光材料的研究成功,为发光材料的应用开辟了广阔的领域。 2发光机理 2.1.反光与发光的区别 在生活中人眼睛能看看到的发光的材料分成两大类。1. 反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。所以反光材料和发光材料有很大的不同,发光机理不一样:光致发光材料是向外发光,而不是反射光。

最新高二化学重点知识点总结分享五篇

最新高二化学重点知识点总结分享五篇 相信有很多同学到了高中会认为化学是理科,所以没必要死记硬背。其实这是错误的想法,高中化学知识点众多,光靠一个脑袋是记不全的,好记性不如烂笔头,要想学好数学,同学们还是要多做知识点的总结。 高二化学知识点1 一、硫及其化合物的性质 1.铁与硫蒸气反应:Fe+S△==FeS 2.铜与硫蒸气反应:2Cu+S△==Cu2S 3.硫与浓硫酸反应:S+2H2SO4(浓)△==3SO2↑+2H2O 4.二氧化硫与硫化氢反应:SO2+2H2S=3S↓+2H2O 5.铜与浓硫酸反应:Cu+2H2SO4△==CuSO4+SO2↑+2H2O 6.二氧化硫的催化氧化:2SO2+O22SO3 7.二氧化硫与氯水的反应:SO2+Cl2+2H2O=H2SO4+2HCl 8.二氧化硫与氢氧化钠反应:SO2+2NaOH=Na2SO3+H2O 9.硫化氢在充足的氧气中燃烧:2H2S+3O2点燃===2SO2+2H2O 10.硫化氢在不充足的氧气中燃烧:2H2S+O2点燃===2S+2H2O 二、镁及其化合物的性质 1.在空气中点燃镁条:2Mg+O2点燃===2MgO

2.在氮气中点燃镁条:3Mg+N2点燃===Mg3N2 3.在二氧化碳中点燃镁条:2Mg+CO2点燃===2MgO+C 4.在氯气中点燃镁条:Mg+Cl2点燃===MgCl2 5.海水中提取镁涉及反应: ①贝壳煅烧制取熟石灰:CaCO3高温===CaO+CO2↑CaO+H2O=Ca(OH)2 ②产生氢氧化镁沉淀:Mg2++2OH-=Mg(OH)2↓ ③氢氧化镁转化为氯化镁:Mg(OH)2+2HCl=MgCl2+2H2O ④电解熔融氯化镁:MgCl2通电===Mg+Cl2↑ 三、Cl-、Br-、I-离子鉴别: 1.分别滴加AgNO3和稀硝酸,产生白色沉淀的为Cl-;产生浅黄色沉淀的为Br-;产生黄色沉淀的为I- 2.分别滴加氯水,再加入少量四氯化碳,振荡,下层溶液为无色的是Cl-;下层溶液为橙红色的为Br-;下层溶液为紫红色的为I-。 四、常见物质俗名 ①苏打、纯碱:Na2CO3;②小苏打:NaHCO3;③熟石灰:Ca(OH)2; ④生石灰:CaO;⑤绿矾:FeSO4?7H2O;⑥硫磺:S;⑦大理石、石灰石主要成分:CaCO3;⑧胆矾:CuSO4?5H2O;⑨石膏:CaSO4?2H2O;⑩明矾:KAl(SO4)2?12H2O 五、铝及其化合物的性质 1.铝与盐酸的反应:2Al+6HCl=2AlCl3+3H2↑ 2.铝与强碱的反应:2Al+2NaOH+6H2O=2Na[Al(OH)4]+3H2↑

稀土高分子光致发光材料的研究进展

稀土高分子光致发光材料的研究进展 张秀菊1,2,陈鸣才23,冯嘉春2,李抢满3,贾德民1 (1.华南理工大学,广东广州510640;2.中科院广州化学研究所,广东广州510650;3.中国科学技术大学,安徽合肥230026) 摘 要:综述了稀土高分子光致发光材料的研究基础,比较了不同方法合成的稀土高分子发光材料的结构与性能,介绍了当前该领域的研究进展。 关 键 词:稀土;高分子;配合物;荧光材料 中图分类号:TQ314.266 文献标识码:A 文章编号:1001Ο9278(2002) 05Ο0016Ο05 稀土金属离子作为一种有效的发光中心,在无机 和有机发光材料中已有广泛应用。然而稀土无机材料存在着难加工成型、价格高等问题;稀土有机小分子配合物则存在稳定性差等问题,这些因素限制了稀土发光材料更为广泛的应用。高分子材料本身具有稳定性好及来源广、成型加工容易等特点,如果将稀土元素引入到高分子基质中制成稀土高分子光致发光材料,其应用前景将十分广阔。 稀土高分子配合物发光材料的研究始于20世纪60年代初,Wolff和Pressley[1]以聚甲基丙烯酸甲酯为基质制得稀土荧光材料,发现铕与α噻吩甲酰三氟丙酮的配合物Eu(TTA)3(TTA2α噻吩甲酰三氟丙酮)在高分子基质中发生从配体TTA到Eu3+的能量转移,从而使Eu3+发强荧光。近年来,由于含发光稀土离子的高分子材料兼有稀土离子优异的发光性能和高分子化合物易加工的特点,引起了广泛关注。研究方法基本分为两种:(1)稀土小分子络合物直接与高分子混合得到掺杂的高分子荧光材料;(2)通过化学键合的方式先合成可发生聚合反应的稀土络合物单体,然后与其他有机单体聚合得到发光高分子共聚物,或者稀土离子与高分子链上配体基团如羧基、磺酸基反应得到稀土高分子络合物。以下就这两类稀土络合物作一简单介绍。 1 稀土有机配合物 1.1 稀土β2二酮配合物 三价稀土β2二酮配合物发光研究早在20世纪60年代,曾作为激光材料引起人们的关注。β2二酮与稀土离子配合物的通式表示为: 收稿日期:2002Ο03Ο07 3通讯联系人 R1C O Eu3+ C H H C R2 O 由于在这类配合物中存在着从具有高吸收系数的β2二酮配体到Eu3+、Tb3+等的高效能量传递,从而使得它们在所有稀土有机配合物中发光效率最高,它们与镧系离子形成稳定的六元环,直接吸收激发光并可有效地传递能量。 配合物中中心稀土离子发光过程大致为:配体先发生π3←π吸收,也就是先经过单重态—单重态(S0→S)电子跃迁,再经系间窜越到三重态T1,接着由最低三重态T1向稀土离子振动能级进行能量转移。关于稀土β2二酮配合物的研究综述很多,一般认为[2~5]: ①发光效率与配合物结构的关系相当密切,即配合物体系共轭平面、刚性结构程度越大,配合物中稀土发光效率就越高。 ②配体取代基对中心稀土离子发光效率有明显的影响。R1基团为强电子给体时发光效率明显提高,并有噻吩>萘>苯的影响次序,R2基团为—CF3是敏化效果最强,因为F的电负性高,使得金属2氧键成为离子键。 ③稀土发光效率取决于配体最低激发三重态能级位置与稀土离子振动能级的匹配情况。 ④协同试剂是影响稀土离子发光效率的另一重要因素。 1.2 稀土羧酸配合物 稀土羧酸配合物涉及很多有趣的发光现象,加之羧酸类配体成本远远低于β2二酮类,可望发展成为极具应用前景的发光材料[6,7]。目前羧酸类的配体一般为芳香羧酸,大量的研究发现稀土离子能与生物体内的羧酸及氨基酸分子形成稳定的配合物,这类配合物具有发光时间长、强度高且稳定的特性,对于模拟生命 第16卷 第5期中 国 塑 料Vol.16,No.5 2002年5月CHINA PLASTICS May.,2002

高分子实验复习要点

复习提纲: 1、市售的单体一般需要蒸馏精制后才能参与聚合反应,为什么? 答:对于一个化学反应必须接触才能进行反应,而市售试剂单体为了防止其聚合变质,必须降低其浓度来阻止反应,所以要加入稀释剂使其不能接触。从而使该单体长时间保存,当然用的时候要把稀释剂除去(一般采用蒸馏法)后才能发生反应。 2、在悬浮聚合中如何控制悬浮聚合产物颗粒的大小。 答:悬浮聚合产物的颗粒尺寸大小与搅拌速度、分散剂用量及油水比(单体与水的体积比)成反比,主要通过控制反应温度,搅拌速度,以及调节分散剂用量来加以控制悬浮聚合粒径。 3、聚合物的分子量与其熔体流动速率有什么关系?为什么熔体流动速率不能在结构不同的聚合物之间进行比较? 答:熔体流动速率(MFR)是指在一定的温度和压力下,聚合物在单位时间内通过规定孔径的量,用g/min来表示熔体流动速率。一般来说,同一类的聚合物如聚乙烯,聚合度越大即分子量越大,分子链之间作用力越大,链缠结越严重,导致聚合物熔体流动阻力增大,它的熔体流动速率越小;同样分子量的聚合物,由于它们的化学结构不同,它的熔体流动速率也不一样,这主要跟它们分子间的滑动系数有关。 由于不同聚合物测定时的标准条件不同,因此不具有可比性。 4、本体聚合的工业生产分两个阶段,先与预聚合到一定转化率,再进入第二阶段聚合。试解释采取上述步骤的原因。 答:如何排散聚合热,维持聚合温度恒定是实施本体聚合时必须考虑和解决的主要问题。本体聚合的生产分段进行,是为了先在较低温度下使单体以较低聚合速率转化,有利于聚合热的排散;同时由于转化率不高,聚合体系的粘度低,也有利于排散自动加速效应带来的集中放热,以避免由局部过热导致产物分子量分布较宽以及由温度失控而引起爆聚。在聚合塔中逐渐升温聚合是为了逐渐提高单体转化率,尽量使单体完全转化,减少残余单体。 5、与其他聚合方法相比较,乳液聚合的特点是什么?有何缺点?在乳液聚合中如何控制乳胶颗粒的大小和数目? 答:优点:(1)易散热。与本体聚合不同;乳液聚合体系的连续相是水,聚合反应发生在分散于水相中的乳胶粒内荨,尽管乳胶粒内黏度很高,但整个反应体系的黏度并不高,基本上接近于连续相水的黏度,并且在聚合过程中体系黏度也不会发生大幅度的变化,因为同本体聚合相比,乳液聚合体系易散姜,不会出现局部过热,更不易发生爆聚。 同乳液聚合体系中的介质水类似,在溶液聚合中要加入溶剂,介质和溶剂的稀释作用均可降妓热强度[kJ/(min·m3)]。但是乳液聚合体系的散热要比溶液聚合容易得多。这一方面是由于乳液聚合体系要比溶液聚合体系黏度低,前者黏度一般小于100mPa·s,而后者可达几万毫啦·秒;另一方面是由于水的比热容要比溶剂大,水的比热容为4.18kJ/(kg·℃),而有机溶蔫的比热容一般在1.05~2.51kJ/(kg·℃)范围内,故放热量相同时,乳液聚合体系要比溶液爱合体系温升幅度小。 尽管悬浮聚合和乳液聚合有相似之处,即它们的反应中心都是分散在介质水中的粒子中,但是芤液聚合要比悬浮聚合更易散热。对悬浮聚合来说,聚合反应发生在分散于水中的单体珠滴中,单体珠滴的直径一般在100~1000gm范围之内。而在乳液聚合体系中,反应中心乳胶粒直弪一般在O.05~O.1ktm之间。若把悬浮聚合体系中的珠滴比作一个10m直径的大球,那么,乳爱粒则仅相当于一颗绿豆粒。所以从乳胶粒内部向水相传热要比从悬浮聚合的珠滴内部向水相传姜容易得多。故乳胶粒中的温度分布要比悬浮聚合的珠滴中均匀得多。如果说在悬浮聚合中常常因为珠滴向外传热不良而导致“鱼眼”、黑点、红点及烧芯现象出现的话,那么可以认为在乳液藿合体系的乳胶粒中不存在因温度不均而导致的产品质量问题。 综上所述,乳液聚合不仅比本体聚合容易散热,而且也比溶液聚合和悬浮聚合更容易散热。

高分子材料试题及答案.pdf

《高分子材料》试卷答案及评分标准 一、填空题(20分,每空1分): 1、材料按所起作用分类,可分为功能材料和结构材料两种类型。 2、按照聚合物和单体元素组成和结构变化,可将聚合反应分成 加成聚合反应和缩合聚合反应两大类。 3、大分子链形态有伸直链、折叠链、螺旋链、无规线团四种基本类型。 4、合成胶粘剂按固化类型可分为化学反应型胶粘剂、热塑性树脂溶液胶粘剂、热熔胶粘剂 三种。 5、原子之间或分子之间的系结力称为结合键或价键。 6、高分子聚合物溶剂选择的原则有极性相近、溶解度参数相近、 溶剂化原则。 7、液晶高分子材料从应用的角度分为热致型和溶致型两种。 8、制备高聚物/粘土纳米复合材料方法有插层聚合和插层复合两种。 二、解释下列概念(20分,每小题4分): 1、 材料化过程:由化学物质或原料转变成适于一定用场的材料,其转变 过程称为材料化过程或称为材料工艺过程。 2、 复合材料:由两种或两种以上物理和化学性质不同的物质,用适当的 工艺方法组合起来,而得到的具有复合效应的多相固体材料称之为复合材料。 3、 聚合物混合物界面:聚合物的共混物中存在三种区域结构:两种聚合物 各自独立的相和两相之间的界面层,界面层也称为过渡区,在此区域发生两相的粘合和两种 聚合物链段之间的相互扩散。 4、 共混法则:共混物的性能与构成共混物的组成均质材料的性能有关, 一般为其体积分数或摩尔分数与均质材料的性能乘积之和。或是倒数关系。 5、 纳米复合材料:是指复合材料结构中至少有一个相在一维方向上是纳米 尺寸。所谓纳米尺寸是指1nm~100nm的尺寸范围。纳米复合材料包括均质材料在加工过程中所析出纳米级尺寸增强相和基体相所构成的原位复合材料、纳米级尺寸增强剂的复合材料以及刚性分子增强的分子复合材料等。 三、比较下列各组聚合物的柔顺性大小,并说明理由(5分,每小题2.5分): 1、 聚丙烯与聚苯烯 聚丙烯>聚苯烯,原因:随着长链上侧基体积的增大,限制了分子链的运动,分子的柔性降低。 2、 聚乙烯、氯化聚乙烯和聚氯乙烯 聚乙烯>氯化聚乙烯>聚氯乙烯,原因:随着长链上氯原子的增加,分子间作用力增强,分子的柔性降低。 四、比较下列各组聚合物的Tg大小,并说明理由(5分,每小题2.5分): 1、 聚丙烯、聚氯乙烯、聚乙烯醇和聚丙烯腈 聚丙烯<聚氯乙烯<聚乙烯醇<聚丙烯腈,原因:随着分子链上侧基的极性增强,分子链产生的内旋转受到限制越大,是其Tg增高。 2、 聚( 3、3-二甲基—1-丁烯)、聚苯乙烯和聚乙烯基咔唑 聚(3、3-二甲基—1-丁烯)<聚苯乙烯<聚乙烯基咔唑,原因:随着分子链上侧基体积的增大,分子运动越困难,所以Tg增高。 五、按照给出条件鉴别高分子材料(6分,每小题3分): 1、 序号 密度(g/cm3) 洛氏硬度 软化温度℃ 冲击强度J/m

高分子材料化学重点知识点总结只是分享

第一章水溶性高分子 水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)

高分子材料基础复习总结

高分子材料(聚合物材料) 以高分子化合物(树脂)为基体,再配有其它添加剂(助剂)。 高分子化合物(高分子) 往往由许多相同的、简单的结构单元通过共价键(有些是离子键)有规律的重复连接而成。蠕变现象 受到一个恒定应力σ0时,形变随时间无限发展。 应力松弛 在恒定形态下,物理的应力随时间而逐渐衰减。 滞后现象 高聚物在交变应力(周期性应力)作用下,形变落后于应力的现象。 力学内耗 出现滞后现象时,则由于形变功与恢复功并不相等而产生功的损耗。 屈服 是指在较大外力作用下材料发生塑性变形的行为。 塑料 以合成或天然高聚物为基本成分,并配以一定的高分子助剂如填料、增塑剂、稳定剂、着色剂等经加工可塑成型,并在常温下保持其形状不变的材料。 热塑性弹性体 是指在高温下能塑化成型而在常温下能显示橡胶弹性的一类材料,因此其既显示橡胶的物理性能,又具有热塑性塑料加工特性的材料。 回弹率 将纤维拉伸后除去负荷,可回复的弹性伸长与总伸长之比。 弹性模量 每单位截面积的纤维延伸原来1%所需的负荷(单位:N/tex 互穿网络弹性体 由两种线型弹性体胶乳混合在一起,再进行凝聚并同时进行交联 现代分析测试方法 一、高分子材料的化学分析 1,简单定性分析 受热行为,包括燃烧试验(火焰试验)、干馏试验。根据燃烧性、分解出气体的气味、火焰、外形变化等分析。 2,高分子材料的溶解性 3,高分子材料的分离和纯化溶解-沉淀萃取 二、高分子材料的波谱分析 1,红外光谱(IR) 1)分析与鉴别高聚物 2)高聚物反应的研究 3)共聚物的研究 4)结晶度的研究 5)高聚物的表面研究 6)高聚物的取向研究 2核磁共掁(NMR) 1)高分子的鉴别 2)共聚物组成的测定

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。 造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。 日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。 壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。 第二章、离子交换树脂 离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。 离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂 离子交换树脂的制备:(1)聚苯乙烯型:(方程式) 离子交换树脂的选择性:高价离子,大半径离子优先 离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。 离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。 第三章、高吸液树脂 淀粉接枝聚丙烯腈(丙烯酸) 改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。 纤维素类高吸水性树脂的特点:优点:1)原料来源丰富,2)吸水后凝胶强度高。缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。 壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。 聚丙烯酸型高吸水树脂:(1)丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制 聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好 高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格) 高吸油树脂类型及制备方法:(1)聚丙烯酸酯类(2)聚烯烃类树酯(3)丙烯酸酯和烯烃共聚物(4)聚氨酯吸油泡沫

高分子材料复习提纲

1.热塑性塑料和热固性塑料在结构与性能上区别。 结构:热塑性塑料结构一般为直链型或带有少量支链的线性结构,多数为碳—碳为主链的聚合物。热固性塑料一般是分子量不高的预聚物或齐聚物 性能:热塑性塑料在适当的溶剂中能溶解;在加热状态下能熔化。热固性塑料经过“固化反应”后不能溶于溶剂,受热也不会熔化。 2.塑料用加工助剂(添加剂)的种类及作用。 填料及增强剂(降低成本、增强、改善成型加工性,赋予塑料制品特殊的性能。) 增塑剂(增塑剂是增加高分子材料制品的塑性,改进其柔软性、延伸性和加工性的物质。) 稳定剂(保持高聚物的稳定性,防止其老化、分解) 润滑剂(防止塑料在成型加工过程中发生粘膜现象) 抗静电剂(通过降低电阻束减少摩擦电荷,从而能减少或消除制品表面静电荷的形成) 着色剂(提高塑料制品的商品价值,改善耐候性、光学性能及各种特殊用途) 防雾剂(避免小水滴的光散射造成雾化) 阻燃剂(隔绝氧气,阻止自由基的生成,中断链式氧化反应) 3.热塑性塑料和热固性塑料的成型加工工艺。 热塑性塑料:挤出、注射、压延、吹塑 热固性塑料:模压、铸塑及传递模塑 4.简述橡胶的结构与其性能之间的关系。 大分子链具有足够的柔性,玻璃化温度比室温要低,柔性越好,弹性越好。在使用条件下不结晶或结晶度很小,适当结晶度可以提高橡胶的强度,但结晶度过高,使橡胶的弹性变差。在使用条件下无分子间相对滑动,分子适当交联,形成网络结构;交联度越高,强度越高,但弹性变差。 5.橡胶的加工工艺有哪些? 塑炼、混炼、成型、硫化等工序 6.成纤聚合物的结构特征。 成纤高聚物均为线型高分子,具有适宜的分子量和分布,的分子链间必须有足够的次价力,应具有可溶性和熔融性,高分子链立体结构具有一定的规整性 7.纤维的加工工艺以及后处理的目的和后加工过程。 工业上常用的纺丝方法主要有两大类:熔体纺丝法和溶液纺丝法 根据凝固方式的不同,又分为湿法纺丝和干法纺丝。 后处理:由于处理后的分子链排列不规整,物理力学性能差,不能直接用于织物加工。为此,必须进行一系列后加工,以改进纤维结构,提高其性能。 后加工过程:⑴短纤维的后处理:集束,牵伸,水洗,上油,干燥,热定性,卷曲,切断,打包等⑵长丝后处理:拉伸,加捻,复捻,热定性,络丝,分级,包装等。⑶弹力丝的加工-假捻法⑷膨体纱的加工8.粘合剂的组成有哪些?要达到良好的胶接,须具备的条件。 按胶结强度特性分类:结构性胶粘剂,非结构性胶粘剂,次结构性胶粘剂 组成分类:有机胶粘剂,无机胶粘剂 固化类型:化学反应型,热塑性溶液型,热熔胶粘剂 条件:胶粘剂要能很好的润湿被粘物的表面,粘合剂与被粘物之间需要较强的相互作用力 9.粘合剂的胶接工艺。 初清洗,胶接接头机械加工,表面处理,配胶,涂胶,晾置,固化,检验 10.涂料的组成及作用。 组成:成膜物质,颜料,溶剂,增塑剂,催干剂,增稠剂,稀释剂 11.功能高分子材料的定义和分类。 功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应的高分子材料。分为反应性高分子材

第八章 高分子共混和复合材料

高分子共混和复合材料 摘要: 聚合物共混改性是实现高分子材料高性能化、精细化、功能化和发展新品种的重要途径。许多聚合物共混物具有性能优异、加工周期短、价格低廉等特点,已广泛应用于电子设备、家用电器、汽车工业、纺织业、建筑业等方面。发展速度非常快。据报导,80年代塑料工业的年增长率为2%-4%,而聚合物共混物的年增长率为9%-11%,工程塑料共混物的年增长率为13%-17%。以1987年为例,有60%-70%的聚烯烃和23%的其他聚合物是以共聚物的形式进入销售市场的。80年代末以来,塑料合金增长率为11%,单1997午产量就有200万吨左右。关于聚合物共混的历史可以追溯到1864年,当时Hancock将天然橡胶与古塔波胶混合制成了雨衣,并提出了两种聚合物混合以改进制品性能的思想。 正文: 一、高分子共混物的制备方法 高聚物共混物的制备方法主要有物理共混法和共聚-共混法两类,此外还有IPN(互穿高聚物网络化)法。各种共混法所得高聚物共混物的理想形态结构大多应为稳定的微观多相体系。影响高聚物共混物形态结构的最根本因素是其共混物组分的热力学相容性;但并非相容性好的共混体系就一定能形成理想的形态结构,它还要受共混方法及工艺条件的影响,所以有必要研究各种共混方法及相应的设备以及工艺条件。这里着重介绍物理共混法和共聚-共混法。 1物理共混法 物理共混法是依靠物理作用实现高聚物共混的方法,工程界又常称之为机械共混法,共混过程在不同种类的混合或混炼设备中完成。 大多数高聚物共混物均可用物理共混法制备。在混合及混炼过程中通常仅有物理变化。但有时由于强烈的机械剪切作用及热效应使一部分高聚物发生降解,产生大分子自由基,继而形成少量接枝或嵌段共聚物。这类化学反应应不成为该过程的主体,否则将不属于物理共混的范畴。 从物料形态分类,物理共混法包括粉料(干粉)共混、熔体共混、溶液共混及乳液共混四类: (1)粉料(干粉)共混法将两种或两种以上品种不同的细粉状高聚物在各种通用的塑料混合设备中加以混合,形成各组分均匀分散的粉状高聚物的方法称为粉料(干粉)共混法。用此种方法进行高聚物共混时,也可同时加入必要的各种塑料助剂(例如增塑剂、稳定剂、润滑剂、着色剂、填充剂等)。经干粉混合所得高聚物共混物料,在某些情况下可直接用于压制、压延、注射或挤出成型,或经挤出造粒后再用于成型。可见,干粉共混法具有设备简单、操作容易的优点。其缺点为:①所用高聚物原料必须呈细粉状,若原料颗粒较大,尚需采用粉碎设备制粉;②干粉混合时,高聚物料温低于它们的粘流温度(<Tf),物料不易流动,故混合分散效果较差。可见,一般情况下不宜单独使用干粉混合法。 (2)熔体共混法熔体共混法又称熔融共混,此法系将共混所用的高聚物组分在它们的粘流温度以上(>Tf)用混炼设备制取均匀高聚物共熔体,然后再冷却、粉碎(或造粒)的方法。初混合的设备和操作情况类似于前述之干粉共混。但由于熔融共混法中的初混合并非最终的共混操作,所以高聚物原料在粒度上的要求不很严格。某些情况下也可以不经初混合而直接在混炼设备中熔融共混。熔融共混法具有如下优点:共混的高聚物原料在粒度大小及粒度均一性方面不象干粉共混那样严格,所以原料准备操作较简单;共混物料成型后,制品内相畴

相关文档
相关文档 最新文档