文档库 最新最全的文档下载
当前位置:文档库 › 简单数学建模100例

简单数学建模100例

简单数学建模100例
简单数学建模100例

“学”以致用

-----简单数学建模应用问题100例

数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢理想状态下的公式直接运用,在生产及生活中的实例是少之又少。为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.

数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模

如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。

一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.

二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.

三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构

成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.

四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为.

不难发现,在上述的五个步骤中,关键的是第三步“模型构成”——由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。所以说模型构成是数学建模的核心,它和数学的关系最密切。所得出的数学公式、图形或算法称之为数学模型(即解决实际问题的数学描述)。通常所说的数学建模实际上就是:寻找有用的数学模型的过程为了避免作业书写中不必要的繁琐,通常用“分析”,“假设”,“模型”,“解析”,“检验”来表示数学建模的五个不同步骤,虽然每题不一定面面俱到,但假设,模型,解析三个步骤要求明确

第一关:接触数学建模

【 1 】一副扑克牌有54张,从中任取

多少张,可以保证一定有5张牌的花色

是一样的

分析除去大、小鬼还有52张牌,其中4种

花色各13张.运气最好的情况下所取

的5张牌都是同一花色的,哪运气不

佳时至少要取多少张牌,才能保证一定有5张牌的花色是一样的呢假设假定至少要取N张,才能保证一定有5张牌的花色是一样的.

模型逆向地思维

解析在运气最不好的情况下,每种花色各4张,再加大、小鬼2张,共取18张是保证一定没有5张牌的花色一样的最大可能。

所以442119

N=?++=张就可以保证一定有5张牌的花色是一样的.

检验在很多情况下采用逆向地思维,可以使解题思路清晰、便捷.

练习题

公园里准备对300棵珍稀树木依次从1—300进行编号,问所有的编号中“1”共会出现的几次

【2】一只猫发现离它10步远的前方有一只老鼠在奔跑,猫便紧追。猫的步子大,它跑5步的路程,老鼠要跑9步。但是老鼠的动作频率快,猫跑2步的时间,老鼠能跑3步。 请问:按照这种速度,猫能追得上老鼠吗如果能,它要跑多少步才能追到。

假设 此题两问可归结为一个问题:假定猫跑x 步就能追上老鼠 模型 猫与老鼠之间频率的最小公倍数

解析 由频率关系可知,老鼠跑339?=步时,猫跑了236?=步.

根据路程关系知,猫跑6步其中有1步是追上老鼠的路程

可得本题的数学模型为

1006

x

-= 解得60x =(步)

检验 由此可见,按照现有速度,猫要跑60步才能追得上老鼠.

练习题

现有玩具模型20个,交给小黄加工,规定加工合格一个可得5元,不合格一个扣2元,未完成的不得不扣.最后小黄共得到56元.问小黄在加工玩具模型中不合格的共有几个

【3】在小傅家门口有一个十字型的交通路口(如图所示),小傅就想了,警察叔叔需要指挥多少种情况的汽车运行线路

分析此问题需要分是否可以原路调头的情况来讨论.

假设(1)每条线路都有往返双向线

(2)设4条路分别为A,B,C,D;

(3)以A为起始,

①如允许原路调头,则有,,,,

A A A

B A

C A D

②如不允许原路调头,则有,,,

A B A C A D

模型分步乘法计数原理

解析第一步:始线路条数;第二步:终线路条数。

①如允许原路调头:则44=16

N=?(种可能)

②如不允许原路调头,则43=12

N=?(种可能)

检验如果允许汽车原路调头,那么在此交通路口共有16种不同的行车情况;如果不允许汽车原路调头,那么在此交通路口共有12种不同的行车情况。

练习题

铁路京广线(北京—广州)共有36个大站,问用电脑上购票时需要有多少种不同的火车票

【4】杭州市车辆管理所的工作人员为汽车牌照的事弄得焦头烂额,现在有个问题要请教一

的汽车牌照共有多少块

分析由条件知,问题为三个

W中各可以填入多少种数字或字母

假设假定按要求的汽车牌照共有N种可能,且在第i个W中共有(1,2,3)

i

n i=种

字符可以填写.

根据汽车牌照的特点,在每个W 中可以填入1~0共10个阿

拉伯数字和A,B,C,D ……,26个英语字母,即36(1,2,3)i n i ==

模型 分步乘法计数原理.

解析 因为各W 中填入的字符数符合123N n n n =创

故363636N =创=46656

检验 的汽车牌照共有46656块。不难发现,无论B 和5在何位置,所得结论不变.

练习题

出租车在开始10千米以内收费元,以后每走1千米,收费元,问走20千米需收多少钱

【5】把20个苹果全部分给小明、小惠、小曼三人,要求每人最少分3个,可以有多少种不同的分法

假设 先取9个苹果,平均每人3个,剩下的11个再按不同情况讨论. 模型 排列数公式 解析 可以有 :

(11,0,0),(10,1,0),(9,2,0),(9,1,1),(8,3,0),(8,2,1),(7,4,0),(7,3,1),

(7,2,2),(6,5,0),(6,4,1),(6,3,2),(5,5,1),(5,4,2),(5,3,3),

15种不同种类,对每一种类再考虑小明、小惠、小曼的不同次序,用排列

A即可求解.

数公式n

m

①对(11,0,0),(9,1,1),(7,2,2),(5,5,1),(5,3,3)五类,各类可以有3

种次序排法,故共有15种分发法.

A)种次序排法,故共有60种分发法

②对其余的10类,各类可以有6(3

3

检验所以按要求可以有75种不同的分法.

练习题

一个立方体随意翻动,每次翻动朝上一面的颜色与翻动前都不同,那么这个立方体的颜色至少有几种

【6】有243颗外形一模一样的珠子,其中有一颗稍重一点。用一架没有砝码的天平,至少称几次才能找出这颗珠子来

分析与假设①将243颗珠子平均分成3份,每份81颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另1份中;若不平衡则稍重的一颗在天平下沉的1

份中.

②在找出含有稍重珠子的一份中(含81颗),再将其81颗珠子平均分成3

份,每份27颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另1份中;

若不平衡则稍重的一颗在天平下沉的1份中.

③在找出含有稍重珠子的一份中(含27颗),再将其27颗珠子平均分

成3份,每份3颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另

1份中;若不平衡则稍重的一颗在天平下沉的1份中.

④在找出含有稍重珠子的一份中(含1颗),再将其3颗珠子平均分成

3份,每份1颗,任取其2颗放置在天平两边,若平衡则另1颗稍重的一颗;

若不平衡则稍重的一颗为天平下沉的1颗.

模型“三分法”

解析按“分析与假设”所述可知,至少称4次才能找出这颗珠子来.

检验此题的关键是珠子的颗数243,可以平均分成3份,每份81颗,而81又可以平均分成3份,每份27颗,而27又可以平均分成3份,每份3颗,而3可以

平均分成3份,每份1颗,最后找出异样的珠子.

练习题

小敏把100只彩色小灯泡串联起彩灯,用来布置教室,可是其中有只小灯泡坏了,这可急坏了小敏。你能用最速捷的方法很快地找出了那只损坏的小灯泡吗

【7】水果店进了十筐苹果,每筐

10个,共100个,每筐里的苹果重

量都一样,其中有九筐每个苹果的

重量都是1斤,另一筐中每个苹果

的重量都是斤,但是外表完全

一样,用眼看或用手摸无法分辨。

现在要你用一台普通的大秤一次把

这筐重量轻的找出来。你可以办到么

分析与假设普通的大秤上是有刻度,可以称得具体重量.从这点考虑不妨将十筐苹果进

A i

行标号(1,2,3,4,5,6,7,8,9,10)

i

并取与标号对应的苹果数——1,2,3,4,5,6,7,8,9,10,共计55个,再用所给的

大枰称得这55个苹果的总重量

若此55个苹果重量均为1斤(理想状态),则总重量应为55斤,由题目条

件知其中某一框苹果重量均为斤,假定为第j框时,那么所取苹果数为j个,

大枰称得总重量就要比55斤少j两.

模型等差数列的求和

解析利用框数与所取苹果数的对应关系,考虑大枰称得总重量与理想状态55个苹果的总重量之间的差

按“分析与假设”所述可解得.若大枰称得总重量为54斤3两,比55斤差7

A的这框苹果重量为斤.

两,即得框号为

7

练习题

某单位某月1~12日安排甲、乙、丙三人值夜班,每人值班4天.要求三个人各自值班日期数字之和相等。已知甲头两天值夜班,乙9、10日值夜班,问丙在自己第一天与最后一天值夜班之间,最多有几天不用值夜班

【8】甲、乙两人去沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可带一个人4天的食物和水。如果允许将部分食物存放于途中,其中1人最远可深入沙漠多少千米(要求最后两人返回出发点)

分析与假设要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和水

?=千米,但回程就没有食物和水了),

①经过商议让甲走得更远(最远走44080

需要乙在适当的地点留小足够的食物和水.

②第1天乙在10千米处留下1份食物和水,到20千米处吃1份留下1份,第2

天走到30千米处留下1份食物和水后马上往回返,到20千米处再吃1份,第3

天走20千米回出发点.

③第1天甲20千米处吃1份,第2天走到40千米处吃1份,第3天走到60千

米处吃1份,第4天走到65千米处然后往回返,到50千米处吃1份(到此为止

甲自带的食物和水已吃完),第5天走到30千米处吃1份(此处食物和水是乙留

下的),第6天走到10千米处吃1份,然后回出发点

模型错位推进法

解析所谓“错位推进法”对于本题来说,关键点为“乙在30千米和10千米处给甲留下食物和水”,根据分析与假设推知结论——其中的1位沙漠探险家最多可深入沙

漠65千米.

检验从“第6天走到10千米处吃1份,然后回出发点”,感觉似乎还有10千米可以走,但已经回出发点了. 考虑一下甲是否还可以再往前推进5千米呢

练习题

在一排10个花盆中种植3种不同的花卉,要求每3个相邻的花盆中所种的花的品种各不相同,问共可有多少种不同的种植方法

【9】家里有两个容积分别为5升和6升的空水壶.问大明怎样用这两个水壶得到3升的水.

分析从5升的满水壶倒出2升即可得到3升的水,问题是如何使6升的水壶空出2 升的空间(即得到4升水),问题是如何使5升的水壶空出1升的空间(即得到

4升水),问题是如何使6升的水壶空出1升的空间(即得到5升水),此问题

不难解决.

假设由上分析可以如下操作:

①将5升的满水壶的水全部倒出6升的空水壶中,在6升的水壶中得到1升

的空间.

②用5升水壶取满水,倒满6升水壶中的1升空间,此时的5升水壶空出了

1升的空间.

③将5升水壶中的4升水倒进6升的空水壶,在6升水壶中的得到2升的空

间.

④用5升水壶取满水,倒满6升水壶中的2升空间,.

此时在5升的水壶里剩下的就是3升的水了.

模型逆向推理综合法

解析按分析及假设即可将问题解决,得到3升的水.

检验逆向推理综合法是一种非常有用的数学思维方法,用途非常广泛.

练习题

某盐溶液的浓度为20%,加水后溶液的浓度稀释为15%.如果再加同样多的水,问溶液的浓度为多少

【10】箱子里放着一箱梨,第一个人拿了梨总数的一半又多半只,第二个人拿了剩下梨的一半又多半只,第三个人拿了第二次剩下的一半又多半只,第四个人3拿了第三次剩下的一

半又多半只,第五个人拿了第四次剩下的一半又多半只。这时箱子里的梨正好拿完,而且每人手里的梨都没有半只的,请问箱子里原来有多少只梨

假设假定箱子里原来有x只梨,则有条件

①第一个人拿梨数:

11 222

x x+

+=;

②第二个人拿梨数:

1111 ()

2224

x x

x

++ -+=

③第三个人拿梨数:

11111 ()

24228

x x x

x

+++ --+=

④第四个人拿梨数:

111111 ()

2482216

x x x x

x

++++ ---+=

⑤第五个人拿梨数:

1111111 ()

248162232

x x x x x

x

+++++ ----+=

模型解一元一次方程

解析解方程

11111

()(1)31 2481632

x x x +++++=?=

检验按题意验证当箱子里原来有31只梨时,题目条件符合.

练习题

去年某种货物的进价为15元/公斤,今年该货物的进口量增加了一半,进口价增加了20%,问今年该货物的进口价是多少

第二关:初识数学建模

【11】暑假里,班里共30名学生,其中有姓赵、姓钱、姓孙、姓李、姓周各6位,为了进行社会调查,需要分成15个小组,现要使每个小组的姓都不同,该如何分呢

分析 题目没有问共有多少种分法,而是问如何分,也就是说只要找出方法即可,如何

描述把事情说清楚是关键.

假设 ①以姓氏赵、钱、孙、李、周分成5组,每组6人,用对应的字符

,,,,(1,2,3,4,5,6)i i i i i A B C D E i =表示.

②用一个大圆作为辅助工具,将其6等分,把(1,2,3,4,5,6)i A i =依次放在圆上

的6个等弧上,再将i B (1,2,3,4,5,6)i =依次放在圆上的6个等弧上,对,,i i i C D E 作同样的操作.此时大圆上已有30个字符(次序以

,,,,(1,2,3,4,5,6)i i i i i A B C D E i =排列).

③从圆上任一字符开始,依次两个一组,两个一组,所得15个小组中每个小组的

姓都不同.

模型 “等分圆特征的利用”.

解析 根据分析、假设的讨论即得问题的解答.

检验 巧妙利用几何图形,借助其几何特征,使问题的讨论更有条理,这也是一种数学

模型.

练习题

100人参加7项活动,要求每人只能参加1项活动,而且每项活动参加的人数都不能相同,问参加人数第四多的活动最多有多少人

【12】2001个学生排成一排,从左向右1至2报数,与从右向左1至5报数,其中两种报数时都是偶数的共有多少人

分析 根据题目中条件的周期性,可采用通过局部(10个)结论推广到全体的方法.

假设不妨取最右端的局部:

…… 2 1 2 1 2 1 2 1 2 1

…1992,1993,1994,1995,1996,1997,1998,1999,2000,2001

… 1 2 3 4 5 1 2 3 4 5

不难得出,在最右的10个数字中满足条件的只有2个.

模型数型结合法

解析

20011

2400

10

-

?=(人)

检验两种报数时多是偶数的共有400人.

练习题

某市将在今年12月举办一个全国招商引资交

流会议,目前确定参加的人数已经达到4300人。

在安排会场的时候,负责人打算租用一个设置50

排座位的大剧院,第一排有48个座位,往后每排

都比前一排多2人。估算一下这个大剧院是否可

【13】小新开着一艘帆船在河里航行,一阵狂风吹来,把小新的草帽吹落水中,6分钟后小新才发现草帽被风吹走了,于是开船返回去追,试问小新需要几分钟方可追上落水的草帽.

分析此题按帆船逆水与顺水两种情况讨论

假设①设船速为x米/分,水速为y米/分

②当船顺水行驶时,船6分钟共向前行驶路程为()6,x y +草帽向前漂的路程为

6y ,两者相距6x .

③当船逆水行驶时,船6分钟共向前行驶路程为()6,x y -草帽向后漂的路程为

6y ,两者相距6()66x y y x -+=.

模型 船要追上草帽所需时间=船帽距离/船行速度 解析 船要追上草帽所需时间=6/x x =6(分钟) 检验 由上述推论可知,船往回返到追上草帽所需时间同等于草帽落水到发现草帽落

水所化时间,此结论对判断能否打捞草帽十分有用.

练习题

如左图,有正整数1、2、3、4…16,每一个数在正方形中占有一

小格,图中已填入若干数字,试将其余数字填入正方形的空格处,使每 一行,每一列,每一条对角线上的4个数字的和都相等.

【14】两根同样长的蜡烛,点完粗蜡烛要3小时,点完细蜡烛要1小时。现同时点燃两根蜡烛,一

段时间后同时熄灭,发现粗蜡烛的长度是细蜡烛的3倍。问两根蜡烛燃烧了多长时间

分析及假设 ①设两根蜡烛额长度为l 厘米,粗、细蜡烛的燃烧速度分别为x y 、(厘米/小

时).则有3y l x ==;

②点燃两根蜡烛一段时间后同时熄灭,粗、细蜡烛的长度分别为R r 、,则3R r =. 模型 代数方法,等量关系叠代 解析 根据条件有:

3l r l r

y x

--= (燃烧时间相同) 化简为4l r =,即细蜡烛燃烧后的长度是原来长度的

14(也即燃烧了3

4

). 所以燃烧的时间为

33

3444

l l

y l ==(小时). 检验 为了明确各量之间的相互关系,在必要的地方可以加注.

练习题

将自然数1—100分别写在完全相同的100张卡片上,然后打乱卡片,先后随机取出4张,问这4张先后取出的卡片上的数字呈增序的几率是多少

【15】一个十位数字为0的三位数,恰好是各数字之和的34倍.现交换个位于百位数字后得到一个新的三位数,求新数是各数字和的几倍

假设 三位数可记为0a b .其值为100a b +;则新三位数可记为0b a .其值为100b a + 模型 代数方法

解析 由条件10034(0)2a b a b a b +=++?= 所以

1002016703b a a

a b a

+==++

即新数是各数字和的67倍.

练习题

【16】果农要用绳子捆扎甘蔗,有三种规格的绳子可供选择:长绳子1米,每根可捆扎7根甘蔗;中绳子米,每根可捆扎5根甘蔗;短绳子米,每根可捆扎3根甘蔗.现在有甘蔗46根,问果农共有多少种绳子的取法其中最节约的是哪一种

分析 先求三种绳子各需多少根,根据长、中、短绳子的价值(长度于所捆甘蔗的根数

之比),不难发现,用短绳子比较合算.

假设 设所需三种绳子的根数以次为(x 、y 、z ) 模型 求不定方程的自然数解

解析 有条件可得方程4653753467

y z

x y z x --++=?=

要使x 有自然数解需分子4653y z --是7的倍数,按0,7,14,21,28,35,42讨

论可得:(0,8,2),(1,6,3),(2,4,4),(3,2,5),(4,0,6). 其中最合算的是(0,8,2),即最合算方法是:用8根中绳子和2根短绳子即可捆扎46根甘蔗.

练习题

从1,2,3,…,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除,问最多可取几个数

【17】甲、乙、丙三人跑步比赛,从跑道起点出发,跑了20分钟,甲超过乙一圈,又跑了

10分钟,甲超过丙一圈,问再过多长时间丙超过乙一圈

分析 为了将所给条件对应的关系理清楚,需要假设大量的未知数,但大部分都会在方程

的化简中消去.

假设 ①再过t 小时丙超过乙一圈;

②环形跑道总长为a ;

③甲、乙、丙三人跑步速度分别为123,,v v v

模型 待定系数法解方程

数学建模小实例

数学建模小实例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下: 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员 解: 设i x为第i班应报到的人员 i,建立线性模型如下: )6, ( ,2,1 LINGO程序如下: MODEL:

min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢 解答:

3、 棋子颜色问题 在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a

19191-数学建模-3.1

微分方程模型 浙江大学数学建模实践基地

§3.1 微分方程的几个简单实例 在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题, 本节将通过一些最简单的实例来说明微分方程建模的一般方法。在连续变量问题的研究中,微分方程是十分常用的数学工具之一。

例1(理想单摆运动)建立理想单摆运动满足的微 分方程,并得出理想单摆运动的周期公式。 从图3-1 中不难看出,小球所受的合力为mgsin θ,根据牛顿第二定律可得:sin ml mg θ θ=-从而得出两阶微分方程:0sin 0(0)0,(0)g l θθθθθ+==?=????(3.1)这是理想单摆应满足的运动方程 (3.1)是一个两阶非线性方程,不 易求解。当θ很小时,sin θ≈θ,此时,可 考察(3.1)的近似线性方程: 0(0)0,(0)g l θθθθθ+==?=?? ??(3.2)由此即可得出2g T l π=(3.2)的解为: θ(t )=θ0cosωt g l ω=其中当时,θ(t )=04T t =42g T l π =故有M Q P mg θl 图3-1 (3.1)的 近似方程

例2我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了 我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。 这一问题属于对策问题,较为复杂。讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。 设巡逻艇在A 处发现位于B 处的潜水艇,取极坐标,以B 为极点,BA 为极轴,设巡逻艇追赶路径在此极坐标下的方程为r =r (θ),见图3-2。 B A A1 dr ds dθ θ图3-2 由题意,,故ds =2dr 2ds dr dt dt =图3-2可看出, 2 2 2 ()()()ds dr rd θ=+

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

一些基本的数学建模示例

1.3 一些基本的数学建模示例 1.3.1椅子的摆放问题 1.3.2 双层玻璃的功效问题 1.3.3 搭积木问题 1.3.4 四足动物的身长和体重关系问题 1.3.5 圆杆堆垛问题 1.3.6 公平的席位分配问题 1.3.7 中国人重姓名问题 1.3.8实物交换问题 椅子能在不平的地面上放稳吗?下面用数学建模的方法解决此问题。 模型准备 仔细分析本问题的实质,发现本问题与椅子腿、地面及椅子腿和地面是否接触有关。如果把椅子腿看成平面上的点,并引入椅子腿和地面距离的函数关系就可以将问题1与平面几何和连续函数联系起来,从而可以用几何知识和连续函数知识来进行数学建模。为讨论问题方便,我们对问题进行简化,先做出如下3个假设: 模型假设 1、椅子的四条腿一样长,椅子脚与地面接触可以视为一个点,四脚连线是正方形(对椅子的假设) 2、地面高度是连续变化的,沿任何方向都不出现间断。(对地面的假设) 3、椅子放在地面上至少有三只脚同时着地,(对椅子和地面之间关系的假设) 根据上述假设做本问题的模型构成: 模型构成Array用变量表示椅子的位置,引入平面图形及坐 标系如图1-1。图中A、B、C、D为椅子的四只脚, 坐标系原点选为椅子中心,坐标轴选为椅子的四 只脚的对角线。于是由假设2,椅子的移动位置 可以由正方形沿坐标原点旋转的角度θ来唯一表 示,而且椅子脚与地面的垂直距离就成为θ的函 数。注意到正方形的中心对称性,可以用椅子的 相对两个脚与地面的距离之和来表示这对应两 个脚与地面的距离关系,这样,用一个函数就可 以描述椅子两个脚是否着地情况。本题引入两个 函数即可以描述椅子四图 1-1

数学建模案例分析线性代数建模案例例

线性代数建模案例汇编 目录

案例一. 交通网络流量分析问题 城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。 【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆). 图3 某城市单行线车流量 (1) 建立确定每条道路流量的线性方程组. (2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值. (4) 若x 4 = 200, 则单行线应该如何改动才合理? 【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等. 【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足 500 = x 1 + x 2 ① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组 12142334500100300300x x x x x x x x +=??-=-??+=??-+=? 其增广矩阵 (A , b ) =1100500100110001103000011300?? ?-- ? ? ?-??????→初等行变换10011000101600001130000000--?? ? ?-- ? ?? ? 由此可得

142434 100600300x x x x x x -=-??+=??-=-? 即 14243 4100600300x x x x x x =-??=-+??=-?. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50. 若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = ?100 < 0. 这表明单行线“③?④”应该改为“③?④”才合理. 【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计. (2) 由142434100600300x x x x x x =-??=-+??=-?可得213141500200100x x x x x x =-+??=-??=+?, 123242500300600x x x x x x =-+??=-+??=-+?, 13234 3200300300x x x x x x =+??=-+??=+?, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值. Matlab 实验题 某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开 图4 某城市单行线车流量 (1)建立确定每条道路流量的线性方程组. (2)分析哪些流量数据是多余的. (3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.

数学建模spss-时间预测-心得总结及实例

《一周总结,底稿供参考》 我们通过案例来说明: 假设我们拿到一个时间序列数据集:某男装生产线销售额。一个产品分类销售公司会根据过去10 年的销售数据来预测其男装生产线的月销售情况。 现在我们得到了10年120个历史销售数据,理论上讲,历史数据越多预测越稳定,一般也要24个历史数据才行! 大家看到,原则上讲数据中没有时间变量,实际上也不需要时间变量,但你必须知道时间的起点和时间间隔。 当我们现在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记!

这时候你要决定你的时间序列数据的开始时间,时间间隔,周期!在我们这个案例中,你要决定季度是否是你考虑周期性或季节性的影响因素,软件能够侦测到你的数据的季节性变化因子。

定义了时间序列的时间标记后,数据集自动生成四个新的变量:YEAR、QUARTER、MONTH 和DATE(时间标签)。 接下来:为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点: ?此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝??此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在? 这时候我们就可以看到时间序列图了! 我们看到:此序列显示整体上升趋势,即序列值随时间而增加。上升趋势似乎将持续,即为线性趋势。此序列还有一个明显的季节特征,即年度高点在十二月。季节变化显示随上升序列而增长的趋势,表明是乘法季节模型而不是加法季节模型。

此时,我们对时间序列的特征有了大致的了解,便可以开始尝试构建预测模型。时间序列预测模型的建立是一个不断尝试和选择的过程。 spss提供了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA ?指数平滑法 指数平滑法有助于预测存在趋势和/或季节的序列,此处数据同时体现上述两种特征。创建最适当的指数平滑模型包括确定模型类型(此模型是否需要包含趋势和/或季节),然后获取最适合选定模型的参数。

数学建模实例—-汽车购买决策

实用标准 购买汽车的选择 摘要 “我没有车我没有房”攒了几年钱终于有钱买车了,但我又担心买不到最称心的车子,于是我们团队就试图用数学建模的方法解决这个问题。 对于这种关键因素难以量化的问题,我们决定用最适合的层次分析法。首先,考虑到课题目标除了“做出购买决定”之外还要评出配置最高、最舒适、最漂亮的车子,所以我们将这个决策问题分成四层:首层是目标层,即本课题最重要的目标—购买汽车的决策,第二层是准则层,分成“舒适”“配置”“美观”“价格”四个准则,这样做的好处是便于达到课题的二级目标。第三层是次准则层,将准则层的四大准则细分为八个准则,需要指出的是“价格”因为无法细分我们将它设定为同时属于二三层。第四层,即最后一层是方案层,有三套方案供选择。 当思维过程转化为层次结构之后,从层次结构的第二层开始,对于从属于或影响上一层每个因素的同一层诸因素,用层次比较法和1-9比较尺度构造成对比较阵,直到最下层。 对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验,若检验通过,特征向量即为权向量;若不通过则需重新构造【1】。 最后组合权向量并做一致性检验。都通过之后就便得到了一个决策。此刻我们做的是重新审视模型讨论模型的局限以及不完整之处,力求改进,直到做出满意的模型。

Ⅰ问题重述 工作五年后,你决定要购买一辆汽车,预算十万左右。在汽车网上浏览了很久,初步确定将从三种价格相当的车型中选购一种。一般在购买汽车时考虑的标准可能包括:品牌、配置、动力、耗油量大小、舒适程度和外观美观情况等等。(以上提到的标准仅供参考,因人而异 (1 )不同的标准在你心目中的比重也许是不同的,请用定量的方法将其按比重的高低进行排序。 (2 )请用定量的方法说明哪种车配置最好、哪种车最舒适、哪种车最漂亮? (3 )建立数学模型,用确定的量化方法作出购买决定。 Ⅱ问题分析 本题要求用定量的方法研究购买汽车的决策。而购买汽车,人们多半是凭经验或者主观判断的提出决策方案。如何用定量的方法解决定性的问题,是首先要解决的问题。我们马上想到了层次分析法(AHP),这是一种定性和定量相结合的系统化的、层次化的分析方法。用这种方法,首先我们需要查阅大量资料,了解汽车主要构造,相关配置,外观设置等。之后就是尝试着将这些资料整合分类为能为决策提供帮助的一个个准则,然后去确定这些准则在心中的比重。于是得到了层次结构模型。结合三款车子资料,通过成对比较阵、最大特征根、组合权向量等方法求出一个决策结果,接下来并不着急给模型定型,而是审视模型改进模型直到获得满意的模型。 Ⅲ模型假设 1)获得的三款车子资料准确无误。 2)三款车子都没有质量问题。 3)车子的售后服务都一样。 Ⅳ模型的建立与求解 4.1 建立模型

经典的数学建模例子

一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1

二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3

建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答; 从上列图表可知道在4月20到5月7日期已确诊的发病人总数呈指数增长趋势5月20到6月1日增长缓慢,6月1日到6月12日总数几乎不变。其形式与生物学中真菌繁殖总数相似。 从表格和准备中,作如下假设。 1、不考虑SARS在人体中的潜伏期,也就是说当人一旦传染就表现出来立即就具有传染 性。 2、当健康者满足一地条件时,健康者才被传染。 3、整个发病期间为自然状态也就是无人为外界干扰,政府等其它形式进行隔离预防。 4、忽略特殊情况,如个别人体质弱或强的。 假定初始时刻得病例数为M0。平均每位病人每天可传染N个人,可传染他人的时间为T 天。则在T天内,病例数目的增长随着时间t(单位天)的关系是; M(t)=M0(1+N)t 如果不考虑对传染期的限制则病例数将按照指数规律增长考虑,当传染期T的作用后,变化将显著偏离指数规律,增长速度会放慢。把达到T天的病例从可以引发直接传染的基数中去掉,为了方便,从开始到高峰期间,均采用同样的N值,(从拟合这一阶段的数据库定出),到达高峰之后在10天的范围内逐步调整N值,到比较小,然后保持不变,拟合后在控制阶段的全部数据。 评价及其合理性和实用性; 本模型主要有三个参数M0、N、T,且都具有实际意义。T可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后失去传染能力,可能原因是被隔离、病愈或死去等等。N表示某种社会条件下平均每位病人每天传播的人数(但并非文中所述的一个病人的感染他人的平均概率)。整个模型抓住了SARS传播过程中两个主要特征:传染期T和传染率N,反映了SARS的传播过程。使人很容易理解该模型。 模型灵活 通过调整M0、N、T值,就可以描述不同地区,不同环境下SARS的初期传播规律预测准确 通过模型对表格的调查结果进行了分析,得到的预测值与实际统计数据较接近。可大致预测出疫情的爆发点和发展趋势。 预期模型的缺点: 1、对于如何确定对于三个参数M0、N、T,未给出一般的原则或算法,只能通过对 于已发病地区的数据进行拟合得出。按照作者的表述,N值是以病发高峰为界取各段的平均值作为传染概率,虽然简化了运算,但是在现实情况下,不同地区的N值是不同的。在实际应用中,如果没有一定量的数据,是无法得出N值的。在我们对该模型

matlab数学建模实例

第四周 3. function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度( 分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0)

x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1);

matlab数学建模实例

m a t l a b数学建模实例集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

第四周3. function y=mj() for x0=0::8 x1=x0^*x0^2+*; if (abs(x1)< x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>= x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>= x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0);

k=1; while (abs(x1-x0)>= x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>= x0=s; s=B*x0+G; n=n+1; end n Seidel迭代法: function s=seidel(a,d,x0) D=diag(diag(a));

简单数学建模100例

“学”以致用 -----简单数学建模应用问题100例 数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的. 数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模 如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。 一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的. 二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善. 三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜

数学建模实例人口预报问题

数学建模实例:人口预报问题 1.问题 人口问题是当前世界上人们最关心的问题之一.认识人口数量的变化规律,作出较准确的预报,是有效控制人口增长的前提.下面介绍两个最基本的人口模型,并利用表1给出的近两百年的美国人口统计数据,对模型做出检验,最后用它预报2000年、2010年美国人口. 表1 美国人口统计数据 2.指数增长模型(马尔萨斯人口模型) 此模型由英国人口学家马尔萨斯(Malthus1766~1834)于1798年提出. [1] 假设:人口增长率r是常数(或单位时间内人口的增长量与当时的人口成正比). ()t x,由于量大,[2] 建立模型:记时刻t=0时人口数为x0, 时刻t的人口为 ()t x可视为连续、可微函数.t到t +时间内人口的增量为: t?

()()()t rx t t x t t x =?-?+ 于是()t x 满足微分方程: ()??? ??==0 0x x rx dt dx (1) [3] 模型求解: 解微分方程(1)得 ()rt e x t x 0= (2) 表明:∞→t 时,()∞→t x (r>0). [4] 模型的参数估计: 要用模型的结果(2)来预报人口,必须对其中的参数r 进行估计,这可以用表1的数据通过拟合得到.拟合的具体方法见本书第16章或第18章. 通过表中1790-1980的数据拟合得:r=0.307. [5] 模型检验: 将x 0=3.9,r=0.307 代入公式(2),求出用指数增长模型预测的1810-1920的人口数,见表2. 表2 美国实际人口与按指数增长模型计算的人口比较

以后的误差越来越大. 分析原因,该模型的结果说明人口将以指数规律无限增长.而事实上,随着人口的增加,自然资源、环境条件等因素对人口增长的限制作用越来越显著.如果当人口较少时人口的自然增长率可以看作常数的话,那么当人口增加到一定数量以后,这个增长率就要随着人口增加而减少.于是应该对指数增长模型关于人 口净增长率是常数的假设进行修改.下面的模型是在修改的模型中著名的一个. 3. 阻滞增长模型(Logistic 模型) [1]假设: (a )人口增长率r 为人口 ()t x 的函数()x r (减函数),最简单假定 ()0, ,>-=s r sx r x r (线性函数),r 叫做固有增长率. (b )自然资源和环境条件年容纳的最大人口容量m x . [2]建立模型: 当 m x x =时,增长率应为0,即()m x r =0,于是 m x r s =,代入 ()sx r x r -=得: ()??? ? ??- =m x x r x r 1 (3) 将(3)式代入(1)得: 模型为: ()?? ???=???? ??-=001x x x x x r dt dx m (4)

数学建模小实例

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下: 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员? 解: 设i x 为第i 班应报到的人员 )6,,2,1( =i ,建立线性模型如下: ∑==6 1min i i x Z

?????? ?????≥≥+≥+≥+≥+≥+≥+0 ,...,,3020 506070 60..62 1655 4433221 61x x x x x x x x x x x x x x x t s LINGO 程序如下: MODEL: min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人。

2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢?

3、 棋子颜色问题 在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢? 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a

简单数学建模应用问题100例

附件2 简单数学建模应用问题100例

前言 “数学建模”之解读 数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的. 数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模 如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。 一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的. 二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾

为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善. 三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则. 四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。 五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为. 不难发现,在上述的五个步骤中,关键的是第三步“模型构成”——由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。所以说模型构成是数学建模的核心,它和数学的关系最密切。所得出的数学公式、图形或算法称之为数学模型(即解决实际问题的数学描述)。通常所说的数学建模实际上就是:寻找有用的数学模型的过程 为了避免作业书写中不必要的繁琐,通常用“分析”,“假设”,“模型”,“解析”,“检验”来表示数学建模的五个不同步骤,虽然每题不一定面面俱到,但假设,模型,解析三个步骤要求明确

数学建模示例

【前言:笔者在养猪场工作期间,每天清晨第一件乐事就是推着独轮车运送猪粪。小路高低不平,而年轻人的躁动与乐天驱使饲养员们推车飞跑,翻车是屡见不鲜的喜剧。笔者注意到,轮子越大的粪车推起来越平稳,越不容易翻车。2002年,有中学生问我数学建模问题,使我想起了当年思考过的粪车问题。粪车当然不在城市少年的视野之内,于是便从自行车谈起,是为本文缘起。初稿发表于苏州大学出版的《中学数学月刊》2002年第10期,标题为《行车颠簸问题的数学模型与分析》。此为修订稿,对于建模的过程解说得更加详细。】 数学建模示例 ——行车颠簸问题的数学模型与分析 “建立数学模型”(本文简称建模),就是以准确的数学语言来描述一件具体的事情,为的是以数学的方法或计算机软件对它进行分析处理。这在应用数学和计算机软件设计中是极为重要的手段。 一件具体的事情往往有很多方面的属性,但是在建模时,只需要抽出与当前研究的问题相关的那些属性,这叫做抽象。例如,对于一个杯子,可以有形状、材质、透明度、颜色、保温性等等方面的描述。如果当下我们要研究它的形状与装水多少的关系,则只需要将它作为一个几何体来计算它的容积,而忽略其颜色、材质等其他方面的属性。 骑过自行车的人都有体会:小轮自行车在经过路面上的不平整之处时要比大轮自行车更为颠簸一些,这是生活常识。那么,其中有什么数学道理吗?本文打算建立这个问题的数学模型并讨论之,所用的知识不超出中学课本,涉及的知识点有:圆、勾股定理、根式、函数等。 1.建立“颠簸程度”的数学模型 我们在研究行车颠簸问题时,把车轮抽象为一个几何上的圆,而忽略其材料、辐条、轴承等方面的属性,这是我们为建模所做的第一重抽象。 这个圆在理想的平整路面上滚动时,圆心对路面没有垂直方向的位移,这叫做没有颠簸。当这个圆在不平整路面上滚动时,会有上下跳动,即圆心对路面有垂直方向的位移,这叫做有颠簸。这是我们将“颠簸”这种日常的语言转化为数学语言。 但是,不同大小的车轮在同样一段不平整的路面上行进,都会产生相同的垂直方向的位移,为什么给骑车人的颠簸感觉不一样呢?这与完成垂直方向位移所用的时间长短有关。同样大小的垂直方向位移在越短的时间内完成,造成的颠簸感觉就越强烈,即颠簸程度越大。这已经很接近准确的

相关文档
相关文档 最新文档