文档库

最新最全的文档下载
当前位置:文档库 > 中考数学总复习资料数与式

中考数学总复习资料数与式

中考数学总复习资料

第一部分---数与式

实数基础知识点

一、实数的分类:

★判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念

1、相反数(符号不同)的两个数叫做互为相反数(a 和b 互为相反数?a+b=0)

2、倒数:(1)实数a (a ≠0)的倒数是a

1;(2)a 和b 互为倒数?1=ab ;(3)0没有倒数 3、绝对值:?????-==0

,0,

00, a a a a a a (2)实数的绝对值----非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)化简必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根

(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(2)立方根:3a 叫实数a 的立方根。

一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴

1、数轴:规定了原点、正方向、单位长度的直线称为数轴---数轴的三要素。

2、实数和数轴上的点是一一对应的关系。

四、实数大小的比较

1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。

五、实数的运算

1、加法:

(1)同号两数相加,取原来的符号,并把它们的绝对值相加;

(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。

2、减法—减去一个数等于加上这个数的相反数。

3、乘法:

(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:

(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

六、有效数字和科学记数法

10(其中1≤a<10,n为整数)。

1、科学记数法:设N>0,则N=a×n

2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。精确度的形式有两种:(1)精确到那一位;(2)保留几个有效数字。

代数式基础知识点

一、代数式

1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。单独一个数或者一个字母也是代数式。

2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。

3、代数式的分类:???

????????????无理式分式

多项式单项式整式有理式代数式 二、整式的有关概念及运算

1、概念

(1)单项式:数与字母的积叫做单项式。单独一个数或字母也是单项式。

次数:一个单项式中,所有字母的指数叫做这个单项式的次数。

系数:单项式中的数字因数叫单项式的系数。

(2)多项式:几个单项式的和叫做多项式。

项:多项式中每一个单项式都叫多项式的项。一个多项式含有几项,就叫几项式。

次数:次数最高的项的次数,就是这个多项式的次数。不含字母的项叫常数项。

升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。

(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。

2、运算

(1)整式的加减:

合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。

添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。

☆整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。

(2)整式的乘除:

幂的运算法则:其中m 、n 都是正整数

同底数幂相乘:n m n m a a a +=?;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)( 积的乘方:n

n n b a ab =)(。

中考数学总复习资料数与式

乘法公式:

平方差公式:22))((b a b a b a -=-+; 完全平方公式:2

22)(2b a b ab a ±=+±

三、因式分解

1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。

2、常用的因式分解方法:

(1)提取公因式法:)(c b a m mc mb ma ++=++ (2)运用公式法:

(3)十字相乘法:))(()(2

b x a x ab x b a x ++=+++

(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。

(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:

3、因式分解的一般步骤:

(1)如果多项式的各项有公因式,那么先提公因式;

(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;

(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。

(4)最后考虑用分组分解法。

四、分式

1、分式定义:形如B

A 的式子叫分式,其中A 、

B 是整式,且B 中含有字母。 (1)分式无意义:B=0时,分式无意义;B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分—把一个分式的分子与分母的公因式约去

方法—把分子、分母因式分解,再约去公因式。

(4)最简分式-----一个分式的分子与分母没有公因式,一定要化为最简分式。

(5)通分—把几个异分母的分式分别化成与原来分式相等的同分母分式的过程

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质:

(1))0(的整式是≠??=M M B M A B A ;(2))0(的整式是≠÷÷=M M

B M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:

(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

五、二次根式

1、二次根式的概念:式子)0(≥a a 叫做二次根式。

(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽方的因式的二次根式叫最简二次根式。

(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。

(3)分母有理化:把分母中的根号化去叫做分母有理化。

(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;

d c b a +与d c b a -)

2、二次根式的性质: (1))0()(2≥=a a a ;(2)???<-≥==)0()0(2a a a a a a ;

(3)b a ab ?=(a ≥0,b ≥0);(4))0,0(≥≥=b a b

a b a 3、运算:

(1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。

(2)二次根式的乘法:ab b a =?(a ≥0,b ≥0)。

(3)二次根式的除法:)0,0(≥≥=b a b

a b a

二次根式运算的最终结果如果是根式,要化成最简二次根式。

二、式的运算

1、巧用公式----灵活运用,掌握公式的变形,逆用,掌握运用公式的技巧,使运算简便准确。

2、化简求值:------一定要先化到最简再代入求值,注意去括号的法则。

3、分式的计算:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号

4、根式计算----二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。