文档库 最新最全的文档下载
当前位置:文档库 › 飞行器气动预研设计的有力工具

飞行器气动预研设计的有力工具

飞行器气动预研设计的有力工具
飞行器气动预研设计的有力工具

飞行器气动预研设计的有力工具

—— NASA快速气动设计软件Cart3D介绍

随着计算机硬件和计算理论的发展,计算流体力学(CFD)技术在飞行器设计中占据越来越重要的地位,其应用贯穿于飞行器设计的全过程。飞行器设计是一个大的系统工程,设计过程包括概念设计、初步设计、详细设计等一系列阶段。在新机预研的概念设计和初步设计阶段,需要对大量气动布局方案进行筛选,此时要求气动软件能快速地给出气动力数据,以便进行方案的比较,确定布局形式。NASA Ames 研究中心开发的Cart3D软件便是专门针对飞行器概念和初步设计阶段的要求而开发的快速气动设计软件,快速高效的特点使其在NASA各研究中心、美军研究机构、航空航天工业公司都得到成功的应用,也因此荣获NASA 2002年度软件大奖。

CART3D的特点

Cart3D是包括几何输入、表面处理和相交、网格生成和流动模拟的完整流动分析软件包。该软件采用最新的计算图形学、计算几何学和计算流体动力学技术,提供了无与伦比的自动和高效的几何处理和流体分析功能。在NASA研究中心该软件主要应用在预研和方案筛选的概念设计阶段,进行设计流程分析和气动数据库生成。Cart3D完全集成在ANSYS ICEM CFD 界面下,充分利用ICEM CFD强大的模型输入、几何处理、网格生成、结果处理功能。具体来说,Cart3D有如下特点:

1.基于部件的几何建模

Cart3D几何体建模采用基于部件的方法,导入Cart3D的几何体由所有部件的集合构成,每个部件都作为独立实体,可以单独移动、旋转,只要求每一个部件是一个封闭的几何面即可。每个部件的表面网格单独创建,各部件之间可以有交叉,交叉部分由Cart3D自动求交,构成单一的飞行器表面网格,求交运算采用一系列经证实的计算几何学和计算机图形学的强壮算法。基于部件方法的好处在于建模简单快速,同时符合飞行器部件设计的规律。每一复杂外形的飞行器布局可以拆为若干个简单的部件(如机身、机翼等),对部件单独建模,并单独创建表面网格,最后由Cart3D自动将部件的表面网格求并集,组合为完整布局的表面网格。这一方法除了使建模快速以外,也使研究部件参数变动异常方便,如调整操纵面偏角或改变机翼外形时,只需变动操纵面或机翼的表面网格,而不用变动其它部件的表面网格。各部件的几何体可以通过ICEM CFD建立,也可有一般的CAD软件创建后导入ICEM CFD,由ICEM CFD划分表面三角形网格。基于ICEM CFD强大的CAD接口能力,几乎可以导入所有格式CAD文件。

2.自适应笛卡儿体网格生成

网格划分通常会占到CFD计算工作量的60%以上,且一般需要专职的队伍,因而网格生成方法一直是CFD应用的关键技术之一。Cart3D采用独特的自适应笛卡儿体网格作为求解的基础,使网格建立变得简单快速,不需要网格划分技巧的,只需简单设置几个参数,系统会基于部件表面网格,自动生成空间笛卡儿网格,并根据加密参数在表面附近自动加密。

强壮的体网格生成算法使用自适应细化笛卡尔网格来捕捉模型的细节,且自适应求解网格可以随求解得到进一步改善。体网格划分速度快,数百万的网格在台式机上几分钟即可生成。网格生成难度对表面描述的复杂性不敏感,因此可以自动处理复杂问题的空间网格,不需要用户的干预。

3.无粘Euler方程求解

Cart3D求解器基于可压缩Euler方程,适用于亚、跨、超音速流动分析。其采用有限体积法离散,流动变量位于网格单元的中心。时间离散使用龙格库塔法,通过时间推进得到稳态解。空间离散为迎风格式,使用限制器,格式具有TVD性质。通量函数和限制器可选。为加速收敛,Cart3D使用多重网格法来加速迭代过程。

Cart3D压力积分模块可从计算结果中快速提取全机和任一部件的升力、阻力,俯仰、滚转力矩等气动参数,并分别以风轴和体轴系给出。同时可给出任一部件、部件组,关于任一点、线的力矩。

计算结果的流场后处理可以使用ICEM CFD的后处理模块,也可以输出到其它多种后处理软件中,给出流场分布信息。

4.并行计算

基于分区算法,Cart3D可用于并行计算,使用64个处理器并行计算,其加速比可达60以上。Cart3D可自动进行分区网格划分,用户只需设置参数。

5.批处理计算

概念和初步设计阶段,除了布局方案多以外,每个方案需要计算的状态也是大量的。Cart3D以快速求解为基础,针对多状态求解,专门提供的批处理计算功能。用户可预先设置一系列需计算的状态参数(如迎角、马赫数等),Cart3D可自动依次求解所用流动状态,并自动给出所有气动力数据,形成气动数据库,来支持预研设计和方案筛选。

6.外挂和导弹投放模拟

针对飞行器外挂物和导弹投放等运动物模拟,Cart3D提供了六自由度刚体和流体耦合模块,其独特的笛卡儿网格系统可方便的采用动网格技术。用户可指定需运动的部件,设置其几何和运动参数、运动起止时间及时间间隔,Cart3D会自动求出每一时间步的流场信息及部件的运动轨迹,实现运动模拟。

基于以上特点可见,Cart3D作为快速气动预研软件,是飞行器概念和初步设计阶段的有力工具,其在航空航天领域的应用也必将越来越广泛。

飞机气动力参数辨识技术的工程应用

飞机气动力参数辨识技术的工程应用 在介绍飞机气动参数辨识原理的基础上,论述了该技术在飞机气动设计、飞行品质鉴定、飞行模拟机的飞行动力学模型开发等方面的应用情况,提出了涉及飞机试飞、模型开发等技术应用场景中的相关注意事项。 标签:飞机;气动参数辨识;试飞;仿真 引言 目前,常用的飞机气动建模技术手段有三种[1]:流体力学、风洞试验和飞行试验。基于飞行试验数据的飞机气动力参数辨识技术作为最重要的手段之一,受到了越来越多的重视,并被广泛地应用于校正飞机气动参数的流体力学计算和风洞试验结果、飞行品质评价、飞行模拟机建模仿真等方面。本文结合飞机/飞行模工程研制工作,详细介绍该技术的具体应用现状,并提出相关注意事项。 1 气动参数辨识原理 飞机气动力参数辨识作为飞机动力学系统辨识中发展最为成熟的一个分支,是系统辨识理论在飞行动力学系统方面的具体应用。该辨识通过测量飞机的发动机推力(测算)、舵面偏转和飞行状态数据,以飞机气动模型和飞机飞行动力方程作为状态方程,以上述测量得到的数据作为状态量和观测量,以此建立作用于飞机的空气动力(矩)与飞机运动状态参数和控制输入之间的解析关系式[2]。在图1所示的辨识基本原理 中,激励信号、辨识模型、参数估计和结果验证是辨识结果可信度的四大影响因素。 图1 飞机气动力参数辨识的基本原理 激励信号设计是通过舵偏操纵信号的优化设计,充分激励飞机的运动特性,确保飞机的运动模态信息尽可能多地包含在飞机试飞数据中[3]。辨识模型建立是基于空气动力学的先验知识初步确定模型的结构,将模型辨识问题转化为参数估计问题。辨识方法应用是选取合适的参数寻优准则和算法,通过飞机真实响应与模型仿真响应之间的差异进行模型参数的优化。辨识结果验证是确保建立的数学模型能够合理、精确地表征飞机的飞行动力学特性。 2 在飞机气动设计中的应用 在飞机的工程研制中建立准确的飞机气动模型,是飞行控制律参数调整、工程模拟机仿真等工作的前提和基础。而在飞机的初步/详细设计阶段,飞机气动模型的建立通常通过流体力学计算和风洞试验两种技术手段实现,但其模型的精度往往与真实飞机存在明显的差异。因此,飞机制造商多在飞机的研发试飞中开

气动工具使用及保养事项(新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 气动工具使用及保养事项(新版)

气动工具使用及保养事项(新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 一、作业服装上的注意事项 作业时候请着轻便的衣服,衣领及太开的袖口等可能被运转中的机器所卷入而造成极大的危险,有很大的影响,作业中请戴上防护眼镜、口罩、耳塞、安全帽、安全鞋等以确保安全。 二、作业环境注意事项 1、作业时可能对周边的环境产生噪音的困扰,请设置简单的隔音设备; 2、作业场地须有充分的照明; 3、除使用外,其余人员不得靠近工作场所,特别是小孩,请特别注意; 三、作业中的注意事项 1、气动工具须在规定的空气压力下使用,请勿使用规定以外之空气压力,会产生危险且会造成工具性能无法发挥,并导致故障情形发生;

2、请勿在工具规定使用之用途外作业,或超过工具能力范围外使用,以免造成故障; 3、作业中工具状况不好时,或有异常现象时请立即停止使用并马上送修; 4、工具不使用时,或是更换配件时请务必拆下空气管,以免造成危险; 5、请避免长时间的连续使用,以防振动、噪音造成身体的危害。 四、保养检查的注意事项 气动工具的保养、检查,对使用寿命及性能有很大的影响,为了长久的使用,下列的注意事项请确实遵守: 1、关于空气压缩机及其配件 为使性能充分发挥,须使用干净干燥的压缩空气,空气压缩机内的配管中的锈屑和水分须过滤去除才能使用,请安装雷曼过滤器或更高效率的三点组合。 2、关于适当的空气压力 请在5-8kg/cm2的空气压力范围下使用,若使用超出此压力范围的高压力,会造成故障,压力不足时,亦会使其性能无法发挥。 3、关于给油

B747型飞机夹具样板设计方法研究

B747型飞机夹具样板设计方法研究 摘要:文章主要论述了B747型飞机夹具样板设计的两种方式,即传统的依据PCM图的设计方式与应用数字化三维数据集的设计方式。对于这两种设计方法的设计过程进行了详细的阐述,并对这两种设计方法的优点与缺陷进行了对比与分析。 关键词:夹具样板;三维数据集;PCM图 中图分类号:V267 文献标识码:A 文章编号:1006-8937(2016)15-0001-02 1 夹具样板的基本特征和主要用途 1.1 基本特征 凡用于制造安装和检验标准样件或装配工艺装备、检验夹具的样板统称为夹具样板。按工装设计部门所提供的夹具样板图及其技术要求制造。 1.2 主要用途 ①制造安装标准样件; ②安装装配夹具,检验夹具和装配型架等。 2 B747型飞机夹具样板的设计 B747型飞机夹具样板的设计依据一般分为两种,即PCM 图和三维数据集。在实际设计过程中,要根据不同情况采用

不同的设计依据。 2.1 依据PCM图的设计方法 由于B747型飞机的机型较老,项目持续时间较长,因 此该机型与其他新机型相比缺少数字化设计制造依据,例如三维数模、电子图纸等。但是该机型拥有大量外方提供的PCM图,均为以1:1比例绘制而成的胶版,这些PCM图可作为设计制造的依据,这也是B747型飞机最大的特点之一。在设计B747型飞机夹具样板时首先要考虑的,同时也是最 常用的设计依据就是PCM图。 首先,根据工装设计部门提供的夹具样板图找出该块夹具样板所涉及到的零件图号、站位(如:框、长桁)以及标记线(如:WL、LBL)和孔位(如:K孔、工具孔)等元素,如图1所示,然后根据零件图号查找该图号的图纸,此时可根据夹具样板图中提供的站位和长桁的信息在图纸上查找 相应位置的视图或剖视图,查到后检查在所需的视图或剖视图中是否包含了夹具样板图中涉及到的所有元素,如所需零件边缘、标记线、孔位等,若内容齐全则可按照该PCM图制造此夹具样板。 有些夹具样板中还含有一些尺寸标注,如图1中的“200”,这种情况表示该夹具样板除按照PCM图制造外还要按标注 的尺寸制造,上图中标记零件外缘的一侧为样板的工作边,按尺寸加工的一侧为非工作边。

飞机的气动布局和机翼几何参数

与机翼的几何参数 往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 白乘飞机,不知如何写佳作。是否同意写成如下: 帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 飞翔,必须做到: 的气动外形 的结构 的动力 定的速度 的操纵机构 系统 同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L V¥(升力与重力平衡) D//V¥(推力与阻力平衡) (俯仰力矩保持守恒)

必须具备的条件: 飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 的气动外形、受力大小和飞行姿态。 保持和改变飞行状态的能力。 布局 型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。 机的气动布局? 飞机主要部件的尺寸、形状、数量、及其相互位置。 件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 连接的相互位置分为:

有无上反角分为: 分为: 的相对纵向位置分为: 花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使良好的气动外形,是指升力大、阻力小、稳定操纵性好。

闭环气动参数辨识的两步方法

闭环气动参数辨识的两步方法 王贵东,崔尔杰,刘子强 (中国航天空气动力技术研究院气动理论与应用研究所,北京100074) 摘 要:对于闭环控制飞行器动力学系统,如果输入输出数据中含有误差和噪声,将其直接用于辨识气动参数是有偏差的。针对这个问题,利用闭环控制飞行仿真数据,采用两步方法辨识飞行器的气动参数,并与直接开环辨识的结果及参数真值进行对比,表明两步方法辨识结果较直接开环辨识方法具有更高的精度,是一种有效的闭环气动参数辨识方法。 关 键 词:闭环系统;气动参数辨识;极大似然估计 中图分类号:V 412 文献标识码:A 文章编号:1002 0853(2010)02 0016 04 引言 收稿日期:2009 07 17;修订日期:2009 11 16 作者简介:王贵东(1976 ),男,河南鹿邑人,高级工程师,主要从事飞行力学和飞行器系统辨识研究; 崔尔杰(1935 ),男,河北高阳人,中科院院士,主要从事飞行器动态气动力与气动弹性研究。 飞行器气动参数辨识研究可以追溯到1919年W arner 和N orton 所进行的先导性工作,至今已有近九十年的历史。随着计算机技术和现代控制理论的 发展,不同国家在频域和时域辨识方面都开展了深入的研究,使得飞行器气动参数辨识技术得到了迅速发展,并成功地应用于飞机、导弹和返回舱等飞行器[1] 。出于飞行安全的考虑,大多数飞行器的飞行试验都是在闭环控制条件下进行的。飞行器闭环控制飞行时,由于控制系统的增稳作用,使得输入输出数据中有关系统动态特性的信息量减少,进而影响到系统参数的可辨识性。同时,如果输入输出数据中存在误差和噪声,将其直接用于辨识气动参数会使结果产生偏差。特别是一些量值较小的气动参数会被噪声淹没,使得这些参数不可辨识或辨识的误差很大。为了提高辨识结果的准确度,有必要研究飞行器在闭环控制条件下的气动参数辨识方法。目前,对于闭环控制飞行器飞行试验,一般采用开环处理的方法,即直接利用控制输出的测量数据和飞行状态的测量数据进行辨识。但理论已经证明,闭环系统的开环辨识是有偏估计,只是当噪声水平较小时,上述偏差是可以接受的。两步辨识方法是一种间接辨识方法,是指当飞行器的控制规律已知,且具有线性时不变的特性时,可以先辨识得到控制律参数和常值测量误差,并估计控制输出。进而利用控制输出的估计结果和飞行状态测量数据辨识前向通道的动力学参数[2 4] 。本文利用闭环控制飞行仿真数据,采用两步方法辨识飞行器的控制参数和气动参数,并与直接开环辨识结果及参数真值进 行比较,验证了两步方法是一种有效的闭环控制飞行器气动参数辨识方法。 1 参数辨识的极大似然算法 飞行器飞行动力学系统参数辨识问题的一般性描述为: x (t)=F [x (t),u (t), ,t]+ (t)x (0)=x 0 y (t)=H [x (t),u (t), ,t] z i =y i +G v i (i =1,2, ,N ) (1) 式中,x (t)为n 维状态向量;y (t)为m 维输出向量;z (t)为m 维观测向量;u (t)为l 维输入向量; 为p 维参数向量; 为n !q 过程噪声分布矩阵; (t)为q 维随机噪声向量;F 和H 为已知的实值函数。 取似然函数为: J = ? N i=1 {v T i B -1 i v i +ln |B i |} (2) 式中,v i 和B i 分别为t i 时刻的新息和新息协方差矩阵,其表达式为: v i =z i -y i ,B i =E {v i v T i } (3) 参数估计的极大似然方法就是求取参数 ^ ,使似然函数J 达到极小值[5] 。这是一个泛函极值问题,无法得到解析解,也无法直接数值积分,只能采用迭代求解算法。泛函极值的迭代求解法有多种,实践表明,N e w ton Raphson 寻优方法对于动力学系统辨识是最有效的。优化过程为: 设未知参数 第k 步的预估值 k ,由式(2)算出判据J k ,若J k 不是极小值,需调整 k ,即 k +1= k +! k ,使J k +1达到极小值,其必要条件为: 第28卷 第2期 飞 行 力 学 V o.l 28 N o .22010年4月 FL I GHT DYNAM ICS Apr .2010

气动工具使用安全措施.

风动工具使用安全措施 一、措施概述 为防止风动工具使用不当造成人员的伤害及风动工具的损坏,保证延长风动工具的使用寿命,特制定本措施。 二、使用要求 一)风动工具使用前 1、风动工具所使用的压缩空气应保持在0.4-0.63MPa,压缩空气要洁净干燥,风动工具进气管路配置有效的气水分离器,并在每次钻孔作业前排放积水。压缩空气管路上还要配置油杯并对其进行注机械油或抗磨油,保证润滑风动工具内部的元件。 2、作业前检查风动工具各部位是否完好,控制手把必须处于关闭状态,进气、进水管连接前应将进气、进水管路内杂质和积水吹除并将管接头清理干净,在先空载运转,检查运转是否正常,阀门控制全部正常后正常钻孔作业,防止使用过程出现杂物进入风动工具内部造成风动工具磨损。 3、连接风动工具的压缩空气胶管应符合煤炭行业标准的规定,风动工具与胶管之间、胶管与管路接头之间的连接应牢固、可靠无漏风。U型卡子必须完好,弯曲变形及磨损及时更

换,禁止使用铁丝或其他物品代替,防止胶管接头处抽头伤人。压风胶管接头及外皮必须完好,有松动及破皮现象,必须更换,防止接头突然松脱或胶管突然爆裂照成人员伤害。 4、严禁操作人员疲劳、无力或精力不集中操作高压风管。使用风动工具的操作人员必须遵守本安全技术措施规定施工。 5、操作风动打压泵前要检查打压泵油量是否充足,压力表压力指示是否正确,泵体是否变形损坏,无问题方可使用,压力调节阀门不得随意调节。 6、风动工具与压风管路连接、拆卸时必须将压风管路、风包阀门关闭或关闭分支阀门,将残余压力放空后在进行连接、拆卸禁止带压操作损伤人员。 二)、风动工具使用过程中 1、井下工作时,严格按各相关措施作业,工作前必须首先检查作业现场的安全情况,无问题后方可进行作业。 2、湿式钻孔时冲洗水质要洁净,否则水路容易阻塞,水压应保持0.6-1.2MPa,如水压低了影响煤岩屑及时从钻孔中排出,从而不能取得理想的钻孔速度,每次完成钻孔作业应先关闭水阀,再让风动工具空转几秒钟,排尽风动工具内部积水。 3、开眼位时转速不可过快,当钻进孔眼30毫米左右时,打开水阀,逐步加快转速进入正常钻孔作业,钻孔到位后,调

飞机的常见气动布局

飞机的常见气动布局 亲爱的同学们 大家好: 今天,我想和大家讲一讲,飞机的常见气动布局。大家知道的都有哪些呢? 目前我们所知的可行的飞机的空气动力布局方式有:常规、鸭式、三翼面、变后掠、无尾、飞翼、前掠翼。这些布局方式各有特色各有长短,我将为大家逐个讲解。 首先是常规,常规布局也就是主翼在前,水平尾翼在后,有一个或两个垂尾的气动布局方式。使用这种气动布局设计的具有代表性的战斗机有,美国——洛克希德马丁公司:F22猛禽。俄罗斯——苏霍伊设计局:苏27侧卫。但其实,我们常见的客货机几乎全是这种设计的。常规布局的优点是技术成熟,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡。只是由于均衡所以也没有特别出色的地方。 然后是鸭式。因为当初这种气动布局的飞机飞起来像鸭子,故此得名。说到鸭式布局,我们就不得不说世界上第一架飞机——莱特兄弟的飞行者一号。它所使用的布局其实就是鸭式布局。鸭式布局也是主翼在后面,前面加个小机翼叫做鸭翼。简单地来看,鸭式布局就是将常规布局中的水平位移移到了主翼前方,但鸭翼与平尾并不是一个概念。虽然鸭

翼也承担着控制俯仰的责任,但除此之外,鸭翼还会产生涡流。这些涡流吹过主翼会带来强大的增升效果,也就是说,鸭翼能提供额外的升力。如此,鸭式布局的飞机的短距起降性能更强,因为它们在低速度状况下也能获得较高的升力。鸭式布局的飞机在高速飞行中有着更高的稳定性,机动性也要比常规布局飞机更加出色。有时鸭式布局飞机还会在机身的后下方增加两片叫做腹鳍的翼面,以增加大迎角情态下的飞行稳定性,这是因为在大迎角情态下,常规布局的飞机的垂尾还会接触到由主翼和平尾的间隙间吹过的气流,而鸭式布局的飞机的主翼往往会阻断流往垂尾的气流,如此垂尾便不能很好地控制飞机的水平方向稳定,而在机身下方增加的腹鳍则能解决这个问题。这也是鸭式布局飞机的一个不同之处。鸭式布局设计的代表战机有:中国成飞歼20,欧洲双风:阵风、台风。而鸭式布局正是我国擅长,欧洲钟情的飞机气动布局方式。这里补充一个鸭翼与平尾的不同之处:鸭翼与主翼的耦合一般是不允许二者处于同一平面的:鸭翼的位置要高于主翼。如此鸭翼才会体现它的特性。而常规布局的飞机的平尾和主翼是可以,或者说一般都是处在同一平面的。可这样一来,我们知道,使用鸭式布局的我国歼20属于第四代隐身战机。而鸭翼的这种耦合方式会对飞机的外形隐身带来很大的负面影响。所以我们的歼20身上鸭翼与主翼的耦合方式变为了鸭翼上反和主翼下反。这样做确实压抑了鸭

先进气动布局设计技术

中文名称:先进气动布局技术 英文名称:Advanced aerodynamic configuration technology 相关技术:总体设计;机翼设计;综合设计 分类:飞机总体设计;气动布局;空气动力学; 定义与概念:为实现先进的气动性能和战术技术指标要求,对飞机气动设计中主要参数进行的综合性选择和规范。 气动布局的研究对象是主要气动参数(如升力、阻力、力矩系数和其它气动导数)以及主要气动参数与飞机外形参数的关系。研究的内容包括:飞机各主要部件的外形和相对配置,各种外形和配置下飞机的气动特性;此外,由于很多气动技术对飞机部件外形和配置的选择有很大影响,所以较重大的气动技术是气动布局研究的重要内容和基础。 气动布局的研究范围很广,大到飞机总体布局的类型和参数,小到机翼剖面外形、前后缘襟翼这类气动技术,都对飞机气动布局的选择和确定以及最终的飞机性能有根大影响。国外概况:冷战时期,前苏联的先进气动布局技术与美国并驾齐驱,如Su-27依靠优良的气动布局设计,使其气动性能超过了美国的第三代战斗机。但冷战后,俄罗斯由于经济上的原因,新技术的发展十分缓慢,第四代战斗机迟迟出不来,明显已落后于美国。而美国气动力技术的发展却未见减缓,仍然保持着冷战时的高速发展态势,不但第四代战斗机F-22和JSF 都已研制出来,而且已开始着手发展下一代战斗机的气动力和先进气动布局技术。因此,目前美国在气动布局技术方面处于领先地位。西欧则稍稍落后于美俄,保持着较高水平,又以其体现多用途的战斗机气动布局而独具特色,如EF-2000和法国的"阵风"。 美国空军认为,虽然近年来在提高战斗机机动能力的先进气动布局方面作了一些工作,隐身气动设计和隐身能力也得到很大提高,但他们确实忽视了先进气动布局的研究和发展。在轰炸机方面,B-2的飞翼布局是40年代和50年代提出的概念的现代翻版。随着现代计算流体力学的进展和流动控制技术的提高,先进气动布局研究有可能获得新生。今后先进气动布局研究主要沿着如下两个方向: 第一,对过去提出的方案进行系统化研究。对亚音速飞机,这些方案包括带支撑机翼、翼身融合体、环翼、多机身飞机等。对超音速飞机,通过有利干扰降低阻力的布局已经提出但尚未进行系统的研究。这些方案过去都曾提出但没能研究下去,原因包括:设计工具和数据库不合适,稳定性和控制问题(现在可以成功地与现代结构和控制技术一起考虑),缺乏总体发展和实际验证。 第二,全新的布局概念研究,尤其是同时利用流动控制技术和现代结构和控制概念的布局研究。这些概念可能包括:带嵌入式层流控制吸气系统的复合材料机翼蒙皮;用于控制旋涡和边界层的机敏蒙皮;将层流控制、推进和结构设计综合在一起的翼型;其它等等。由于计算流体力学提供了探索和预测有利非线性干扰效应的能力,并且有了旋涡、粘流效应和分离的控制技术,全新气动布局概念的潜力是可以发挥的。 未来先进气动布局研究必须沿着多学科的路线进行。新布局的早期方案研究必须考虑推进一体化以及结构和控制方案。设计一体化技术的发展将使新方案的快速分析成为可能。 涉及先进气动布局的研究计划将为飞机性能的提高开创新的可能性,也许能开发出新的应用。不仅如此,这样的研究计划对诸如流动控制、设计方法和多学科综合这样的基础领域的研究来说,还将起到指南的作用,从而使先进气动布局的所有支撑技术能够同时成熟。从这一点来看,先进气动布局将重新发挥其作为气动技术推动力的作用。 美国90年代中期进行了"新世界展望"(New World Vistas)和"2025年的空军"(AF 2025)等对未来军事技术的预测研究,其研究结果最近已经过综合,并开始在美国空军的"航空器科学技术"(Air Vehicles S&T)的范围内进行技术开发。1997年,美国空军启动"未来飞机

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行就是从模仿鸟类飞行开始的。但就是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许就是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力与升力面分开考虑,而发明了固定翼飞机。 飞机就是二十世纪人类史最伟大的科学成就。就是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会与国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,她立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。就是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行就是依靠与空气的相对运动,而产生作用在飞机上的力与力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V¥ (升力与重力平衡) F=D D//V¥ (推力与阻力平衡) M=0 (俯仰力矩保持守恒)

飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行就是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也就是取源于空气。 (2)必须存在一定的飞行速度(飞机与空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小与飞行姿态。 (4)必须存在保持与改变飞行状态的能力。 1、飞机的气动布局 不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局就是不同的。 何为飞机的气动布局? 广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。 飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。 按机翼与机身连接的相互位置分为: 按机翼弦平面有无上反角分为:

气动工具如何正确操作 气动工具安全操作规程

气动工具如何正确操作气动工具安全操作规程 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 气动工具已经受到了各行各业的广泛使用。一般来说,气动工具都需要由专业人员维修,气 动工具操作也必须遵守所有的使用规则和规程,那么气动工具的安全操作规程是什么呢?今 天,小编想告诉您气动工具的正确使用方法。在安装、拆除、调整气动工具配件或保养气动 工具时,要将气动工具与压缩空气管解开,并且将空气给关掉,在此过程中,要戴上安全护 目镜;护面罩和耳罩,并且要随时注意气动工具运转出现的突然变化,一切以安全为重。 气动工具须由专业受过训练人员维修。在使用,检查,保护气动工具时必须遵守所有 的使用规则。不要使用危险、已磨损或品质差的压缩空气管及连接器或接头。不要撕去气动 工具上的贴标及换上任何损坏的贴标。保持身体平衡及稳固的姿势。当使用气动工具时,不 要太靠近,在空气压力的作用下;气动工具不使用时,要清洁及润滑它们,然后储存在干 净干燥地方。每天开始使用气动工具前使用气动工具两、三小时后,在气动工具进气口内滴 约1。5CC左右的润滑油。 永远保持清洁、干燥及最大90PSI的压缩空气。灰尘、腐蚀性气体及湿气都会损坏气 动气动工具的马达。检查空气管线配件和水从过滤器流出,及空气系统清洁及干燥。定期检 查离合器润滑油。为了安全及达到气动工具最好性能及寿命,使用气动工具时,空气压力最 大不要超过90PSI〔6。3KG/CM〕,并且使用3/8”内径的空气管连接。手、宽松衣服及 长发不要靠近气动工具使用时的旋转部位。

现代飞机常见气动外形特点及发展

摘要 我们看到任何一架飞机,首先注意到的就是气动布局。飞机外形构造和大部件的布局与飞机的动态特性及所受到的空气动力密切相关。关系到飞机的飞行特征及性能。故将飞机外部总体形态布局与位置安排称作气动布局。简单地说,气动布局就是指飞机的各翼面,如主翼、尾翼等是如何放置的,气动布局主要决定飞机的机动性,至于发动机、座舱以及武器等放在哪里的问题,则笼统地称为飞机的总体布局。 飞机的设计任务不同,机动性要求也不一样,这必然导致气动布局形态各异。现代作战飞机的气动外形有很多种,平直机翼布局、后掠翼布局、变后掠翼布局、无尾翼布局、鸭式布局、三翼面布局、前掠翼布局等。而以巡航姿态为主的运输机等大型飞机,其气动布局就相对比较单一,主要以常规布局为主 关键词:翼型;尾翼;气动外形;空气动力

目录 引言 (1) 一、现代飞机常见气动外形 (2) (一)作战飞机气动外形 (2) (二)非作战飞机气动外形 (7) 二、国内飞机常见气动外形 (7) (一)作战飞机气动外形 (7) (二)非作战飞机气动外形 (9) 三、飞机气动外形发展 (11) (一)作战飞机气动外形的发展 (11) (二)非作战飞机气动外形的发展 (11) 四、我国大飞机气动布局设计的发展建议 (15) 致谢 (17) 参考文献 (18)

引言 自从莱特兄弟发明第一架飞机以来,航空科技一直伴随着科技革命的推进迅速发展,由于该行业属于技术密集型,因此也使得航空科技一直云集着该时代最先进的科技成果,和众多的行业精英。因此航空技术往往代表着一个时代的科技水平,也促进和引领着科技进步。而一个时代的航空科技水平则主要体现在该时期的航空器上,飞机作为数量最多、最为常见的航空器,当然代表着一个时代航空科技的水平。而一个时代飞机的技术水准,则直观的体现在飞机的气动外形上。从飞机的气动外形我们就可以看出:这个时代航空科技的总体水平,这个时代的设计理念,甚至这个时代的军事政治战略格局等等。因此,研究飞机的气动外形及其发展,对于我们学习航空科技进而了解世界科技、历史、军事、政治等方面知识有着深远的意义。

飞机气动布局简介.

飞机气动布局简介 想必很多人对飞机很感兴趣,因为飞机大多是很漂亮的,流线型的机身,舒展的机翼,实现了人类在蓝天翱翔的梦想。其实飞机外型的美观虽然是人类主动的设计创作,而实质却是受制于空气阻力的被动结果,从某种意义上讲,这种符合人类审美标准的流畅线条其实是空气动力原理的杰作。 大千世界千变万化,飞机也是形态各异,大的、小的、胖的、瘦的,四个翅膀的、两个翅膀的甚至还有一个翅膀的,打个比方,飞机的式样就像宠物狗一样,当真是品种丰富,血统复杂。俗话说外行看热闹,内行看门道,既然飞机的外观是空气动力原理决定的,那么这么多种飞机的形状在飞机设计中就有个称谓,叫做空气动力布局。下面我们就逐一介绍一下各种气动布局,当了解到气动布局这个概念后再回过头来看这些飞机,就会发现自己不会再看花眼了,其实全世界的飞机品种再多,也无非就以下这几种气动布局而已。 各种空气动力布局的主要差别就在于机翼位置上的差别,首先介绍一个最常见的布局——常规布局。这种布局的特点是有主机翼和水平尾翼,大的主机翼在前,小机翼也就是水平尾翼在后,有一个或者两个垂直尾翼。世界上绝大多数飞机属于这种气动布局,特别是客运、货运大型飞机,几乎全是这种布局,例如波音系列、欧洲的空中客车系列,我国的运七、运八、ARJ21,美国的C130等。我国的军用飞机中除了歼10猛龙战斗机以外,都是常规气动布局。 常规布局最大的优点是技术成熟,这是航空发展史上最早广泛使用的布局,理论研究已经非常完善,生产技术也成熟而又稳定,同其他气动布局相比各项性能比较均衡,所以目前无论是民用飞机还是军用飞机绝大多数使用这种气动布局。 常规气动布局机型——我国的ARJ21祥凤支线客机

民用飞机气动设计原理

民用飞机气动设计原理民用飞机可以随时转为军用。海湾战争期间,美国曾动员民用飞机用于军事运输。预警机、加油机等军事用途飞机也往往由民用飞机改型而成。下面是为大家分享民用飞机气动设计原理知识,欢迎大家阅读浏览。 宽体飞机相对于窄体飞机,超临界机翼气动设计的难点主要体现在哪里?(Dan) 超临界翼型设计的本质是弱激波翼型的设计。超临界翼型相较于普通翼型,其头部比较丰满,降低了前缘的负压峰值使气流较晚达到声速。即提高了临界马赫数。同时超临界翼型上表面中部比较平坦,有效控制了上翼面气流的进一步加速,降低了激波的强度和影响范围,并且推迟了上表面的激波诱导边界层的分离。因此超临界翼型有着更高的临界马赫数和更高的阻力发散马赫数。 超临界翼型与传统翼型对比 对于窄体飞机,其巡航马赫数范围在0.78-0.80 之间,通常巡航时间占全航程比例不高,因此翼型设计需要多考虑起降、爬升等非巡航性能。而宽体飞机的巡航马赫数则通常在0.85-0.90 之间,并常用于长航程飞机,应此翼型设计需要多考虑巡航性能。更高的巡航马赫数使得机翼表面有很大的超声区,使得通过翼型设计来削弱、推迟激波的设计难度大大加大。 控制律载荷一体化技术能改善飞机什么性能?有何效 益?(Zhijie) 放宽静稳定性使飞机阻力减小,减轻飞机的质量,增加有用升

力,使飞机的机动能力提高; 边界控制技术减轻了驾驶员的工作负担并保证飞机安全; 阵风载荷减缓技术减小阵风干扰下可能引起的过载,从而达到减轻机翼弯曲力矩和结构疲劳的目的,并提高乘坐舒适性; 机动载荷控制改变飞机机动飞行时机翼的载荷分布,降低翼根处的弯曲力矩,从而减轻机翼的结构重量和机动时的疲劳载荷,最终可以提高商载能力和增加飞行航程; 颤振模态控制技术通过改变翼面的非定常的气动力分部,从而降低或改善机翼的气动弹性耦合效应,最终达到提高颤振速度的目的。 A320 阵风载荷减缓控制系统说说风洞试验中,风洞的问题和缩比模型的问题、试验结果的一致性问题(Shaoyun) 风洞试验是指在风洞中安装试验模型,研究气体流动及其与模型的相互作用,以了解实际飞行器的空气动力学特性的一种空气动力试验方法。 F22 飞机风洞模型风洞的基本参数一是风洞几何参数,包括风洞截面积、风洞试验段长度等,二是风洞的试验风速,一般地,0~0.3M 范围为低速风洞,0.3M~1M为高速风洞,大于1M为超音速风洞。 由于模型缩比等原因,风洞试验模型不能完全保留真实飞行器的气动特性。风洞试验通过采用相似准则来尽可能地使试验特性同真 实特性一致,通常根据试验的目的不同会选择不同的相似准则,但一般都会满足的重要准则包括: 几何相似性,模型几何特征同真实飞行器尽可能等比例的放大或缩小; M 数相似,风洞试验M数和飞行器实际使用M数保持一致;

飞机设计软件

正确使用软件能加快设计进度,提高设计质量。以下列出了几个可用于飞机设计教学的软件。这些教学软件大多可在南京航空航天大学飞机系获得,或通过网上下载。 初步确定客机主要参数的界限线绘制程序 为了有助于设计人员在初始设计阶段能快速地确定客机主要参数,开发了界限线图绘制计算机程序。该程序功能是:按照给定的性能要求,绘制出满足这些要求约束下的推重比和翼载的界限,形成界限线图;并标注出可行域。该程序有助于设计人员快速确定客机的推重比和翼载。界限线图绘制程序。 翼型气动特性分析与设计软件 ?Airfoil 该程序是余雄庆在原多段翼型分析程序M C AR FA基础上开发的,适用于亚声速翼型气动特性的分析。MC A RF A是根据位流理论与附面层理论相结合的方法,用Fortran语言编写的。Airfoil简化了原MC A F E输入文件的格式,并用M at l a b对计算结果进行后处理,可直观显示翼型外形和压力分布。可下载Airfoil的EX E文件、用于演示计算结果的Ma t la b 文件及使用说明书(英文)。 ?Pablo ( P otential flow around A irfoil with B oundary L ayer coupled O ne-way )该软件是由瑞典皇家理工学院Rizzi教授和他的学生Christian Wauquiez 开发的。他们应用面元法(Panel Method)和附面层理论,用Ma t la b语言编写了这个翼型分析软件。P a b lo具有良好的用户界面,使用方便,适用于亚声速翼型气动特性的分析。可免费下载P a b lo软件M at l ab 的源代码。 ?Airfoil Optimizer

【CN110187713A】一种基于气动参数在线辨识的高超声速飞行器纵向控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910294878.3 (22)申请日 2019.04.12 (71)申请人 浙江大学 地址 310058 浙江省杭州市西湖区余杭塘 路866号 (72)发明人 杨华 陈丽华 罗鹏 陈加政  (74)专利代理机构 杭州求是专利事务所有限公 司 33200 代理人 万尾甜 韩介梅 (51)Int.Cl. G05D 1/04(2006.01) G05B 13/04(2006.01) (54)发明名称一种基于气动参数在线辨识的高超声速飞行器纵向控制方法(57)摘要本发明公开了一种基于气动参数在线辨识的高超声速飞行器纵向控制方法。该方法是首先采用结合了扩展卡尔曼滤波算法和迭代滤波理论的迭代扩展卡尔曼滤波算法对气动参数进行在线辨识,为后续的控制提供较精确的模型;然后基于辨识得到的气动参数,设计自适应滤波反步控制器对高超声速飞行器的纵向方程进行精确控制。本发明采用的迭代扩展卡尔曼滤波算法相比传统的扩展卡尔曼滤波算法具有更高的精度,能够更加准确地辨识出气动参数。本发明提出的控制策略能有效克服“天地参数不一致”的现象,通过在线辨识提高模型的准确性,减轻控 制系统的压力。权利要求书3页 说明书12页 附图9页CN 110187713 A 2019.08.30 C N 110187713 A

1.一种基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,该方法是先采用结合了扩展卡尔曼滤波算法和迭代滤波理论的迭代扩展卡尔曼滤波算法对气动参数进行在线辨识;再采用自适应滤波反步控制器对高超声速飞行器进行精确控制。 2.根据权利要求1中所述的基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,包括如下步骤: 步骤(1)针对高超声速飞行器纵向方程,将待辨识参数作为系统状态得到扩展的状态方程, 并将量测方程进行线性化得到扩展卡尔曼滤波算法进行辨识得到实时的状态值 步骤(2)在上述状态估计点对量测方程进行泰勒级数展开来降低线性化误差,从而得到更好的状态的估计值,并迭代多步,得到迭代扩展卡尔曼滤波算法,对气动参数进行在线辨识; 步骤(3)基于步骤(2)辨识得到的气动参数,得到较为精确的高超声速飞行器纵向方程,针对该方程,采用自适应滤波反步控制器进行控制。 3.根据权利要求2所述的基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,步骤(2)采用的迭代扩展卡尔曼滤波算法,是在扩展卡尔曼滤波算法的基础上结合迭代滤波理论,通过在扩展卡尔曼滤波算法得到的状态估计点对量测方程进行泰勒级数展开得到更好的状态估计值,从而得到更精确的辨识结果。 4.根据权利要求2所述的基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,基于迭代扩展卡尔曼滤波算法进行在线辨识得到气动参数后,即可以得到较为精确的高超声速飞行器纵向方程;由于飞行器的速度主要通过发动机的油门开度η改变推力来控制,高度则通过舵偏角δe 改变俯仰力矩来控制, 因此,将高超声速飞行器的纵向运动分为高度子系统和速度子系统; 则高度子系统的动力学方程为: 速度子系统的方程表示为: 其中:V为飞行器的速度,h为飞行高度,γ表示航迹角,α为迎角,ωy 为俯仰角速度,这五个状态构成了纵向的状态变量;m表示飞行器的质量,μ表示引力常数,I y 为转动惯量,r为飞行器质心到地心的距离,T为发动机提供的推力,D ,L ,M分别为在线辨识具体参数后的阻力、升力和俯仰力矩,其具体的表达式为: 权 利 要 求 书1/3页2CN 110187713 A

气动工具的构造及使用维修

气动工具的构造及使用维修 一、原理及简史: 以压缩气体为工作介质,靠气体的压力传递动力或信息的流体传动。传递动力的系统是将压缩气体经由管道和控制阀输送给气动执行元件,把压缩气体的压力能转换为机械能而作功﹔传递信息的系统是利用气动逻辑元件或射流元件以实现逻辑运算等功能,亦称气动控制系统。 简史:1829年出现了多级空气压缩机,为气压传动的发展创造了条件。 1871年风镐开始用于采矿。 1868年美国人G.威斯汀豪斯发明气动制动装置,并在1872年用于铁路车辆的制动。后 来,随着兵器﹑机械﹑化工等工业的发展,气动机具和控制系统得到广泛的应用。 1930年出现了低压气动调节器。50年代研制成功用于导弹尾翼控制的高压气动伺服机 构。 60年代发明射流和气动逻辑元件,遂使气压传动得到很大的发展。 二、气动工具与电动工具相比较的优点及其应用: 1、可以使用于爆炸性、腐蚀性、高温及潮湿的工作环境中; 2、可超负荷操作而不致使马达烧毁; 3、结构简单、坚固耐用、维护相对容易; 4、输出扭矩大、重量轻、效率高; 5、可实现无级调速,以及可产生旋转、往复及冲击运动; 6、工作压力低,一般为0.3~0.8兆帕,气体黏度小,管道阻力损失小,便于集中供气和中距离输送。 7、.耐水性强浸水虽然对工具有害,但不会像电动工具那样有致命的危害 等优点,而被广泛的应用于现代机械制造、船舶制造、汽车制造等许多领域,特别是在汽车制造业,广泛应用在整车生产过程中的打磨、抛光、喷涂、装配等工况,是现代汽车批量大规模生产不可缺少的重要工装设备之一,而由于在汽车制造业中,整车装配近90%的联接形式采用螺纹联接,因此

_大型飞机气动设计中的CFD技术

由于CFD 在节省研制费用、缩短研制周期、实现研制数字化自动化、提高研制质量等方面的优势,越来越多的人认为未来飞行器性能的确定,将依赖于在“虚拟风洞”数据基础上产生的“虚拟飞行”,这将是飞行器研制的主要发展方向。 近30多年来计算机和CFD 计算方法的迅速发展,CFD 取得了很大的成就。今天,以数值求解Euler 方程和RANS 方程为代表的CFD 技术已经广泛应用到航空、航天、船舶、武器装备等领域,取得了令人瞩目的成就,日益展现出它蓬勃的活力和发展的潜力 [1]。在航空航天等领域,CFD 革命性地改变了传统的空气动力学研究和设计方法,推动了这些领域的技术进步。由于CFD 在节省研制费用、缩短研制周期、实现研制数字化自动多数型号单位成为主要的气动设计 手段,风洞试验成为后期的确认性工作;(2)一般情况下,CFD 精度可以满足工程要求,型号部门大都购买了商业CFD 软件,但使用者的水平需要进一步提高;(3)商业CFD 软件具有功能全面、使用方便、技术服务好等优点,但这些商业软件的性能低,如计算精度、计算效率、可靠性均较差。西方大国的先进CFD 软件是禁止向我国出口的,如CFL3D、USM3D 等NASA 发展的著名CFD 软件; (4)计算周期大大缩短,常规CFD 任务可以在一周至数周内完成,复杂任务可以在数周至数月内完成。 基于CFD 在我国航空航天领域应用的现状,本文主要论述大型飞机气动设计中的CFD 技术。 大型飞机是指起飞总重超过 阎 超 液体力学教授,博士生导师,主要从事CFD 领域的研究工作。 大型飞机气动设计中的 CFD技术 北京航空航天大学国家计算流体力学实验室 阎 超 甘文彪 CFD Technology for Aerodynamic Design of Large Commercial Aircraft 化、提高研制质量等方面的优势,越来越多的人认为未来飞行器性能的确定,将依赖于在“虚拟风洞”(CFD)数据基础上产生的“虚拟飞行”,这将是飞行器研制的主要发展方向。美国NASA 在20世纪90年代的20项关键技术中CFD 技术被列为第8项, 属最优先发展的技术领域。 今天的CFD 已经成为飞机、导弹、飞船等航空航天飞行器研制中一种主要的气动分析和设计工具。CFD 以其快速、经济、高效、适用面广、约束少、数据详尽、容易实现数字化和自动化设计等特有的优势改变了传统的气动设计方法,成为航空航天飞行器研制中无可替代的有力工具。在我国,CFD 研究及其应用也得到了迅速的发展。目前,CFD 在我国航空航天领域的现状是: (1)CFD 已经得到普遍的认可,成为型号设计部门的常规手段,在大

飞机装配定位方法及其应用案例解析

一、飞机装配定位方法及其应用案例 飞机装配过程一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用。 在装配过程中首要问题是要按图纸及设计要求确定零件,组合件之间的相对位置,即进行装配定位。。定位方法是完成在装配过程中定位零件、组合件的手段,包括基准件定位法、画线定位法、装配孔定位法和装配型架定位法四种常用的定位方法: 1、用基准零件定位 待装配的零件、组合件以基准零件、组合件或者先装的零件、组合件来确定装配位置。这种装配定位方法简便易行,装配开放,协调性好,在一般机械产品中大量使用。基准零件一般是先定位或安装好的零件,零件要有足够的刚度及较高的准确度,在装配时一般没有修配或补充加工等工作。在飞机制造中,液压、气动附件以及具有如(图1-1)所示,连接框和长行用的角片可以预先装在长行上,然后按角片确定框的纵向位置,或者在骨架装配时按框和长珩定位角片。这种基准件定位法要求基准件位置准确、刚性强,多用于小零件和小组合件的定位,方法简单、方便。

2、用画线定位 即待装配的零件按画在零件上的线条确定装配位置,如(图1-2)所示,角材位置按腹板上划线定位。这种定位方法准确度较低,一般用于刚性较大,无协调要求和位置准确度要求不高的零件定位;还有此方法工作效率不高,容易产生差错,所以在飞机研制阶段为了减少工艺装配数量,采用这种方法定位零件,在成批生产中作为一种辅助的定位方法 3、用装配孔定位 即是把相互连接的零件、组合件分别按一定的协调手段,具体过程如下:装配以前,在各个零件的部分铆钉位置上(一般是每隔400mm左右钻一个装配孔,孔径比铆钉孔径小)预先按各自的钻孔样板分别钻出装配孔,装配时个零件之间的相对位置按这些装配孔设置。如图1-3所示。其中,孔称为装配孔。 装配孔的数量取决于零件的尺寸和刚度,一般不少于两个。在尺寸大、刚性弱的零件上取的装配孔数量应适当增加。这种定位方法在铆接装配中应用比较广泛。它适用于平面型和单曲面壁板型组合件装配。按装配孔定位的特点:(1)定位迅速、方便; (2)减少或简化装配型架;

相关文档
相关文档 最新文档